2023 IEEE Wireless Communications and Networking Conference (WCNC) | 978-1-6654-9122-8/23/$31.00 ©2023 IEEE | DOIL: 10.1109/WCNC55385.2023.10119088

FRAVaR: A Fast Failure Recovery Framework for
Inter-DC Network

Haogiang Huang'*, Yuchao Zhangs=1'*, Ran Wang'*, Qiao Xiang'', Wendong Wang'*, Xirong Que'”, and Ke Xu'

TBeijing University of Posts and Telecommunications, Beijing, China
*With the State Key Laboratory of Networking and Switching Technology
"School of Informatics, Xiamen University, China
IDepartment of Computer Science and Technology, Tsinghua University, China

Abstract—Along with the development of 5G and IoT tech-
nologies in recent years, Inter Data Center (Inter-DC) network
is facing an explosive growth of geographically distributed user
data, which needs to be duplicated among DCs in a real-time
manner. Transmission-based applications require high availabil-
ity that is going beyond 99.99%. However, with the expansion
of Inter-DC network scale, link failures are also growing, which
seriously affects data transmission efficiency, so fast link failure
recovery is then urgently needed. Many previous works have been
done to achieve fast failure recovery, but most of them ignore
two key points, 1) the cost of deploying recovery strategies, and
2) the side-effect of re-transmission to network availability. These
two factors make the existing failure recovery process too slow
to be practical in real-time online industrial environments. To
achieve realistic fast recovery from Inter-DC network failures, we
propose a failure recovery framework FRAVaR, which achieves
high network availability with very little deployment overhead.
Particularly, FRAVaR reduces the deployment overhead by a
novel incremental routing strategy to isolate link failures. In
other words, it only needs to shuffle a tiny amount of traffic
within a small failure isolation domain. On this base, FRAVaR
further adopts a risk assessment theory named Value-at-Risk
(VaR) to control flow re-transmission. We implement a prototype
of FRAVaR and conduct a series of experiments on 4 real Inter-
DC network topologies (ATT North America, IBM, GlobalCenter,
AGIS). Experiment results show that FRAVaR outperforms state-
of-the-art solutions on the recovery speed by 70.2%. '

Index Terms—Inter data center network, Failure recovery,
Value at Risk

I. INTRODUCTION

In recent years, user data generated from edge access networks
has explosively grown and needs to be transmitted among
geographically distributed data centers (DCs) in a nearly real-
time manner. In order to keep pace with the large number
of data transmissions, Internet Service Providers (ISPs) are
extending their Inter-DC networks at an incredible speed. For
example, Google tripled its Inter-DC network B4 [1] scale to
carry the data traffic which has increased by 100 times in five

=1 Corresponding author, E-Mail: yczhang @bupt.edu.cn

'The work was supported in part by the National Key R&D Program of
China under Grant 2019YFB 1802603, the National Natural Science Founda-
tion of China(NSFC) under Grant 62172054 and 62072047, the Key Project
of Beijing Natural Science Foundation under M21030, and the ByteDance
Grant under S2022054.

years [2]. At the same time, transmissions of this large amount
of data require extremely high availability that goes beyond
99.99% [1], because even one second of network breakdown
would result in a loss of 100GB-level network traffic and
would be instantly observed in a global range [3]. In order
to achieve high availability in such large Inter-DC networks,
large ISPs (e.g. Google [1], Microsoft [4]) leverage Software-
Defined Networking (SDN) in management and optimization.

With the continuous growth of the Inter-DC network scale,
link failures occur more frequently in actual networks. Ac-
cording to the report in [5], in a practical Inter-DC wide area
network with about 200 routers and 6000 links, the probability
of link failures in every 5 minutes is close to 25%, and that
in every 10 minutes is approximately 40%.

Inter-DC networks need a fast link failure recovery frame-
work to improve availability by coping with such high failure
frequency. Many previous works have already made consid-
erable achievements in recovering from link failures. [6]-
[13] Most recovery solutions (e.g. FFC [5], SMORE [9] and
TEAVaR [6]) prepare backup network resources for recovery
while sacrificing part of bandwidth. Others devote to reducing
traffic loss in failures and re-transmit flows after failures.
Nevertheless, the previous work neglects the cost of deploying
rerouting strategy. While a measurement in [14] shows that
updating routing rules do take a certain amount of time that
cannot be ignored. For example, updating only 20K rules
introduces millisecond-level latency on average. In nowadays
200Gbps Inter-DC network, such an update would delay the
transmission of megabyte traffic. Meanwhile, the deployment
of rerouting strategies always results in a large number of re-
transmissions, which finally leads to slow failure recovery.

Designing a fast recovery framework is never an easy
task due to the following two challenges. First, recovery
solutions with globally optimal rerouting strategies are usually
accompanied by a large amount of routing rules updates [14],
which makes those solutions suffer from long deployment time
on routers. Second, the failure recovery process would bring a
lot of flow re-transmissions [8] (we call these flows "shuffled"
flows), especially in large Inter-DC networks. During the
rerouting process, the controller needs to carefully decide

978_16%%5%%%%6%%%%%&%9 %’r%e?’dl%gﬁsinghua University. Downloaded on December 09,2023 at 18:50:15 UTC from IEEE Xplore. Restrictions apply.

the update order of routers to avoid out-of-order packets,
congestion, and packet loss [15], while calculating order
also consumes time. What’s worse, connection rebuilding,
transmission, and congestion control, all of these processes
consume so much time that some works reroute in free time
[16], and consequently, recovery methods should be able to
solve all the above problems.

In this paper, we propose FRAVaR, a framework that
achieves fast failure recovery while still maintaining compara-
ble throughput and link utilization performance with state-of-
the-art failure recovery solutions. To speed up the implemen-
tation of rescheduling strategy and shorten the time of router
reconfiguration, we propose an incremental reroute algorithm
IR, which reduces the amount of re-transmission flows by
isolating link failures within a limited range of network and
carefully selecting available links to replace the failed ones.
Thus, IR substantially reduces the number of routers that need
to be reconfigured and the number of routing rules to update,
and therefore accelerates the deployment of our rerouting
strategy. On this base, we further introduce the Value at Risk
theory (VaR) [7] to guide flow shuffles, which makes FRAVaR
more inclined to shuffle flows to low failure probability links.
Through VaR, we formulate the traffic loss in rerouting paths
and minimize it through linear programming (LP). Finally,
VaR reduces the amount of failed flows and re-transmissions
and further accelerates the recovery process.

The main contributions of this paper are as follows: 1)
We disclose two essential factors to fast failure recovery: the
deployment overhead of rerouting strategy and the affected
scale of flow retransmissions. 2) We propose a fast failure
recovery framework FRAVaR, where an incremental reroute
algorithm IR isolates link failures within a small domain and
a VaR-based flow shuffle algorithm shrinks re-transmission
scale. 3) We implement a prototype of FRAVaR on four real
Inter-DC topologies and the results show that it reduces about
70.2% recovery time compared with existing solutions.

The remainder of this paper is organized as follows. We
discuss the situation and challenges of recovery in Inter-DC
network and give a motivating example in Section II to show
the necessity of designing FRAVaR. We introduce the specific
algorithm model in Section III. We then show experimental
results of FRAVaR and other recovery solutions in Section
IV. Finally, we conclude the paper in Section VI.

II. MOTIVATION

We discover, although a little bit counterintuitive, that deploy-
ment overhead becomes one of the bottlenecks to fast link
failure recovery. Traditional deployment of routing strategy
runs like this: SDN controller sends out new routing rules
to routers that new routing paths traverse, and these routers
update new routing rules into their routing table. But at the
same moment, there are thousands of flows on the paths
and they have to wait for updating. When failure occurs, the
network stops transmitting these flows, deploys a new routing
strategy, rebuilds connections, and restarts transmission. Over
this process, the problem is that updating is no more fast

m < 120KB > 120KB

m <4MB

> 4MB

(a) FBHadoop (b) WebSearch

Figure 1. Flow size distribution of Inter-DC network data sets

compared to the high speed of Inter-DC networks and re-
transmission consumes too much time. To locate the next hop
in routing tables within a fraction of a millisecond, Ternary
Content Addressable Memory (TCAM) is broadly installed in
routers as the proprietary memory to store routing tables for
its concurrent and efficient searching structure. Unfortunately,
unlike the efficiency in searching, updating rules in TCAM
is not swift enough. We show the flow size distribution in
Inter-DC networks from two large data sets, FBHadoop [17] in
Figurel(a) and WebSearch [18] in Figurel(b). More than 90%
of flows are less than 120KB in FBHadoop and approximately
99% of flows in WebSearch are within 4MB. That is to
say, in 400G Inter-DC networks, almost every flow finishes
transmission within 0.1 milliseconds, while the time cost of
updating 20K routing rules is a hundredfold. And that is what
hinders a fast link failure recovery.

Besides, restarting transmission is never a slight task and it
is likely to influence applications. For instance, flow connec-
tion establishment needs TCP connection establishment first,
which consumes at least 1.5 RTT and also CPU resources. In
this case, CPU resources that assign to transmission sharply
rise up, and CPU resources for other works are occupied. As a
result, the performance of both network and those applications
dependent on the hosts, like distribution machine learning,
drops down. And that is the reason why the scale of re-
transmission flows matters a lot in network performance.

A. A Motivating Example

We illustrate our motivation in the example shown in
Figure2. Figure 2(a) shows an initial traffic distribution with
four ﬂOWS, fli 81-83-S5, fgi S9-S5, f31 84-83-S5, and f41 S4-
s5. The dashed curves represent flows and numbers represent
the traffic volume they carry. When link s;-s3 fails, a globally
optimal recovery strategy adjusts flow assignment like Figure
2(b), i.e. f1 to s1-s2-s5. This strategy requires updating all the
flows in this network to deploy its rescheduling result, which
increases the amount of re-transmission flows.

However, if we adjust f; to sj-$9-s3-s5, as shown in
Figure 2(c), other flows would not be affected anymore and
thus avoids re-transmission. Although it’s not the optimal
transmission path for f; compared to Figure2(b), only two
routers need to be reconfigured and all the other routers can
remain the same as before, so that f; can be rescheduled
quickly and the whole network can fast react to link failures.
And it isolates these link failures within only one path s1-s3-
S5, making it unable to affect other flows outside this range.

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 18:50:15 UTC from IEEE Xplore. Restrictions apply.

Link capacity: 10

All the flows have to be re-scheduled

(a) Initial traffic distribution (b) Traffic distribution after global

scheduling

Low risk of rerouting in the future

. P =0.1
Only one flow is re-scheduled down(s,52)

Pdown(sl,54)= Pdown(si,54)=0-001

(c) Incremental scheduling (d) FRAVaR scheduling

Figure 2. Network Example of Recovery Rerouting

While Figure2(c) seems to be a better choice when all
the links are equally stable, it is not good enough when
different links have different failure probabilities. As shown in
Figure2(d), if the failure probability of link s1-s2 is 0.1, while
that of link s1-s4 and s4-s3 are both 0.001, there would be a
great risk that the scheduling results in Figure2(c) is unstable
and f is more likely to fail again and has to be rescheduled in
the future again. But see the assignment in Figure2(d), which
enjoys a more stable path, it shuffles f; to si-s4-s3-s5. This
recovery schedule enjoys higher availability.

From the slightly artificial example, we illustrate that it
is efficient for only part of network to participate in failure
recovery while sacrificing a little bit of negligible performance
impact. An incremental reroute brings: 1) fewer changes of
routing rules and 2) less scale of shuffle traffic, which greatly
speeds up the process the network recovers from failures and
returns to a normal operation state.

B. Our Approach

Motivated by the above example, FRAVaR comes up with
a very simple idea, less is better. The fewer routes we adjust,
the fast reaction we achieve. The fewer flows we shuffle, the
fast recovery we achieve. FRAVaR tries to adjust the minimum
number of transmissions that are already built up. Following
this principle, we narrow the range of recovery to a local part
of the network while still maintain the performance. Along
the way, we propose IR, our incremental reroute algorithm.
IR adjusts routing rules only on a short route bypassing the
failed link and carefully selects rerouting paths by breadth-
first-searching (BFS) algorithm. BFS promises completeness
of recovery routes and we use visited tags to guarantee all
the routes are disjoint. In this way, IR isolates link failures
into a small domain of network. Based on IR, we then
strengthen FRAVaR by introducing a minimum loss flow
shuffle algorithm based on Value at Risk theory. Specifically,

we calculate the mathematical expectation of the flow shuffle
scale, or so-called “risk", and minimize it by solving a linear
programming problem. We combine VaR with IR and then
introduce the whole framework of FRAVaR in the next section.

ITII. FRAVAR DESIGN

In this section, we firstly introduce a network model and then
FRAVaR’s two-phase design.

A. Network Model

In the beginning, we consider an Inter-DC network G =
(V,E) with nodes V' and directed links E. The link from
node i to node j is simply denoted as 75 and ¢;; is the capacity
of link 5. A route r is the set of head-to-tail links and, for
example, a route that traverses node a, b, ¢ and d is expressed
as r = (ab,bc, cd). R is the general set of routes. A flow is
defined as f and the demand scale of it is defined as dy. Then,
the scale of f allocated to route r is defined as z;. 3/ denotes
whether link 47 is available, which ¥/ = 0 indicates that ij is
broken and 4/ = 1 means 4 is available. Similarly, y" defines
the availability of route r. The failure probability of link 77,
when considering link failure as a mutually independent event,
is simply a decimal p;; between O and 1.

B. Incremental Rerouting

Although a global schedule brings optimal performance in
utilization and availability, it also slows down the processing
speed of recovery and elongates the time delay. A little
sacrifice of performance would extremely improve recovery
speed. Here comes two design principles behind IR.

A trick to efficiency. In traditional TE, recovery algorithms
are running on the whole network. Global failure recovery
solutions can achieve good performance in many ways, but not
all. To improve recovery efficiency, the scale of links chosen
to recover the network needs to be pruned. When a link failure
occurs, global recovery algorithms take the whole network into
consideration, making the scale of route space too large to
explore and resulting in extremely high computation overhead.
So the key point of our fast recovery solution is to reduce the
exploring space while maintaining network performance.

Avoid SRLG. Shared Risk Link Group (SRLG) is one of
the problems that reroute algorithms try to avoid. SRLGs are
link groups that in a group, multiple routes go through the
same link. We call them “share" the failure risk when they
share the same link and whenever this shared link fails, each
route that traverses this SRLG goes down and it is one of the
most critical situations. The network has to recover multiple
routes at the moment. As a solution, we enhance IR by visited
tag and achieve a SRLG-disjoint reroute algorithm.

Here we introduce an incremental reroute algorithm of our
fast recovery framework, IR, and show it in Algorithm 1. The
input n is the amount of links of network G. IR scans the Inter-
DC network G, collects failure links (e.g. i), and designates
a subset of network P as the rerouting paths. Firstly, IR puts
source node ¢ as an incomplete path into heap). Next, in
every iteration, IR gets “top” path 7" from (), adds an adjacent

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 18:50:15 UTC from IEEE Xplore. Restrictions apply.

node of T to acquire a new path 77, and puts 7" into @ if it
has not reached destination node j. Whenever j is visited, IR
pushes this path into result set P. IR ends when the amount
of recovery paths has reached the limit n.

Moreover, IR introduces a visited tag array vis to mark the
nodes when they are visited so that searches in later iterations
refuse to select visited nodes. The visited tag provides two
guarantees: 1) With the help of BFS, it ensures that when
a node is reached, hops of the route are minimal. 2) SRLG
rerouting is avoided. Through visited tag and BFS, IR offers a
rerouting path set P with mutually disjoint and shortest paths.

Here, IR introduces minimum heap () to accelerate the
searching process. We define a cost function fi to sort heap,
while the top of the heap is the node with minimal cost. Here
we introduce a cost function to describe fi, which considers

both capacity and resilience.
Chk

fx = Dhk)]

Where h is the current node being traveled and k is one of
the adjacent nodes. ¢4, is the maximum capacity of all the
available links. With the help of minimum heap, IR chooses
the link with the minimal cost within time cost O(logK),
where K is the number of links of the selected paths.

Algorithm 1: Incremental Reroute
Input: G, ij, n
Output: P
c:=0;
push ¢ into minimum heap Q;
while ¢ < n and Q) not empty do
T := top of Q;
pop @;
h := last node of T}
foreach hk € E, vis[hk] = false and k ¢ T do
set TV =T,
push & into T”;
if k = j then
| push 7" into P;
else
push 77 into Q;
vis[lg] = true, Vlg € SRLG

C. Flow Shuffle and Formulation

We design a risk evaluation function to describe the expec-
tation of the loss for the flow shuffle scheme and formulate
flow shuffle problem within this function. A natural solution
to evaluate the expectation of flow loss is to simulate every
possible scenario that every subset of surviving links fails,
which time complexity is O(2") where N is the number of
links in network G. Obviously, it is unacceptable. Now, with
IR narrowing the scale of network, the time complexity is
reduced to O(2K) where K is the number of links in sub-
network, and in most cases, we have K < N and thus make
a reactive computation of scenarios into practice.

Here we introduce the probability of scenarios. Firstly we
denote a scenario as ¢ and the availability of link ¢j in ¢

is denoted as y//. That is, in scenario g, link ij is available
(yg = 1) or down (y;7 = 0). And route availability y; is
derived from the following expression:
v =[] vt)
hker
The probability p, of scenario g to occur is naturally the
probability of paths combinations as follows:
pa= [[i *v) + (1= pij) = (1 —) 3)
ijEE
For the reason that the scenarios unlikely to occur are of little
value and little risk, we prune the scenarios with p, < 1076,
Then, we introduce the percentage of flows NOT meeting the
demands. Thus, the loss of scenario ¢ is formulated as follows:

xfyd
eq — zf:[l _ Ereg,f ryr]+ (4)
Where 6, is the loss and dy is the demand of flow f. The
notation [a]4+ means 0 when « < 0 and it guarantees that in
extreme situations, like network overload, the loss is not less
than 0. Especially, in the scenario that all links are available,
the loss is 0. So the “risk" © of the re-allocation scheme is

given as:
0=> b, 5)
q

So far, we have finished the construction of our framework
and the objective is clearly defined. The formulation of the
“risk" problem is shown as follows:

min ©
st. (2)—(5)
Zx; <ciy,Vijer (6)
f
> @ >dy ™

Constraint (6) specifies that the whole flow allocated is not
greater than the minimal link capacity of the path and it pro-
vides a minimum congestion control for network. Constraint
(7) indicates that all the shuffle data of a flow is not less than
its demand. So far, we have built up a fast failure recovery
framework. Next we analyze the performance with evaluation.

IV. EVALUATION

We design a simulation to evaluate the performance of
FRAVaR and the other three algorithms on failure recovery:
TEAVaR [6], FFC [5], and SMORE [9]. We adopt Gurobi
[19] as the optimization framework.We develop a data-driven
simulation software and it contains three components:
Topology. Our simulation includes four real Inter-DC network
topologies: ATT, IBM, GlobalCenter, and AGIS, which are
real Inter-DC network topologies from the internet topology
z00 [20]. These networks cover situations from looseness to
compactness. Table I shows the size of the networks.

Traffic Information. We use the real traffic demand matrices
from a big ISP’s Inter-DC network and replay it on the above
four Inter-DC topologies.

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 18:50:15 UTC from IEEE Xplore. Restrictions apply.

Table I
INFORMATION OF NETWORK TOPOLOGY.

Topology Name DCs links
ATT North America 25 112
IBM 18 48
GlobalCenter 9 72
AGIS 25 60
Recovery Time(Avg)
351 -#+- FRAVAR
g TEAVAR
S *01 -+~ SMORE
= ,5] -—== FFC
Q =
g 2.0 ,--'"/
E e
g 15 ’,-"‘"“ e ,.,—""*
E ’("",x _"/_*,—r‘
3 1.0 T ‘,r"'r
£ _'_,‘.—*" P }
=] - _a--9"
O o5 _.__._>..-4—-"""

0 2 a 6 8 10 0
Failure Times

(a) Cumulative summation of recovery time.

72 FRAVaR

EEE TEAVaR B FFC

[SMORE

40|

Throughput(%)
«
3

995 99.9
Avalability(%)

(b) Comparison on maximum throughput with different net-
work availability requirement.

Figure 3. Average recovery performance under four topologies.

Failure Information. For each link, we build a failure prob-
ability array following Weibull distribution. It is noted that
in this mode, the larger network will be given more failures,
which is in line with reality.

A. FRAVaR Over Existing Solutions

Methodology. We compare FRAVaR with TEAVaR, FFCs,
and SMORE, where FFC, refers to FFC with the assumption
that at most 2 failures happen simultaneously.

Recovery Time. We show the average consumption in Figure
3(a). The changing amplitude of gradient of accumulation is
not large in the four algorithms so it is obvious that the time
consumption of each epoch is broadly consistent. TEAVaR is
the most time-consuming algorithm overall and after TEAVaR,
FFCs, and SMORE are separately the second and third time-
consuming algorithms, while FRAVaR consumes the least
time, which is the attribution of IR.

Throughput and availability. We calculate the network avail-
ability with a post-processing simulation [6] that we generate
scenarios from the current network state and for each scenario
we try to send the entire demands through the network and

record whether the network can satisfy the demands. The ratio
of unsatisfied scenarios reflects the availability. Then, we put
the average throughput and availability into one graph and
show it in Figure 3(b). With the improvement of availability
requirement, throughput of the four methods all drop. TEAVaR
achieves the best balance between throughput and availability
while the throughput of network applying SMORE drops
more. The performance of FRAVaR and FFC, is relatively
stable. Generally, with a little sacrifice in the balance between
throughput and availability, FRAVaR achieves a much faster
IECOVery process.

B. Shuffle scale

Next, we use a micro-benchmark to evaluate the scale of
shuffle traffic among the algorithms. We trace the traffic
on each link when failures occur and record the difference
between the traffic before rescheduling and after. For example,
the traffic on link e is 5GB when failures occur and then the
recovery algorithm starts to reschedule traffic. When resched-
ule finishes and the tasks have not been transmitted yet, the
traffic on link e is 10GB. Then, the difference on link e in this
recovery is SGB. We accumulate the change on each link by
order of epoch and refer to it as the rerouted traffic. See Figure
4 for the experiment results. In the network of large topology
like ATT and AGIS, the superiority of FRAVaR is highlighted.
In this topology, the other three algorithms similarly shuffle
much traffic when FRAVaR still maintains a low-level scale
of rescheduling. While in a small topology, like GlobalCenter,
the advantage of FRAVaR is not especially obvious. The
phenomena shows a plain fact that a recovery algorithm is
more likely to impact more traffic during rescheduling when
it covers a larger range of Inter-DC network and when in a
larger network, the impact will be enlarged. While in such
cases, FRAVaR holds the degree of influence thanks to IR,
which prunes reroute space into a stable scale whatever how
large the network is. The impact of the size of network on
rerouted traffic scale is universal. The difference of shuffle
traffic scale over four algorithms in small topology is smaller
than of the larger topology.

V. RELATED WORK

Advanced TE work notice the importance of failure recovery
and tried to address link failures from different aspects.
TEAVaR [6] focuses on the balance of network utilization
and availability and introduces VaR [7] to formulate the loss
function to evaluate the failure risk, so as to reduce the
rerouting probability. TEAVaR uses the decision tree pruning
method to simplify rerouting process. Its traffic schedul-
ing method inspired our algorithm in this paper. Similarly,
SMORE [9], which comprehensively considers two aspects of
traffic engineering, uses Racke’s oblivious routing algorithm to
select a low extension, diversified and load-balanced path set,
and dynamically adjusts the transmission rate.R3 [11] adds a
virtual demand on each available link which may be rerouted
on it when failures occur and reserves bandwidth resources
for recovery. FFC ensures the stability of failure recovery
through redundant links to increase efficiency. CFR-RL [10]

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 18:50:15 UTC from IEEE Xplore. Restrictions apply.

- FRAVAR

8 8 2 2

U 1.50{ = FRAVAR 72 | O -+~ FRAVAR 1 | g] e FRAAR

S TEAVAR ~Z TEAVAR P D S TEAVAR s L - TEAVAR

T 1.25{ -~ SMORE F |13 o SMoRe e T 77| - smore = - SMORE

= -~ FFC A7 | R = - FFC = 1O e -
a s =) = 1.00 = o

= 1.00 Q 5 o 08 g

-~ &} (S .
p 510 <075 = -
=075 = = = 0.6

3 & S <

2050 @ 0.50 @® 04

& o5 P o

502 i Sos = 02l =

7 0.00 z = - z L

o 2 4 6 8 10 12 14 16 18 4 8 12 16 20 24 : 2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12

Failure Times

(b) ATT

Failure Times

(a) AGIS

Failure Times

(d) IBM

Failure Times
(c) Global Center

Figure 4. Comparison of the scale of traffic rerouted by four failure recovery algorithms over four network topologies.

considers the negative effects of rerouting, like packet disorder
and packet loss, and from the perspective of minimizing the
rerouting probability, CFR-RL uses RL method to identify key
flows. The fast failure recovery problem has been discussed
for a long time. However, most of the work is on the network
layer, like LFA-FRR [12] and MPLS TE FRR [13], which
limits the probability to achieve the optimal performance over
the network and reduces the risk of meeting overlapping
failures.

VI. CONCLUSION

In this paper, we discuss the importance and challenges of
fast recovery in Inter-DC network, and to reduce the deploy-
ment overhead, we introduce a two-phase solution FRAVaR,
in which the first step is to cleverly select little links to
reroute with an incremental rerouting algorithm IR, and then
FRAVaR formulates flow shuffle by converting it into a traffic
scale reduction problem with Value-at-Risk theory. Evaluation
results show that FRAVaR outperforms the state-of-the-art
algorithms in recovery time consumption down to 70% on
average and save 29.8% shuffle flow scale, and at the same
time, FRAVaR also achieves comparable performance on both
network throughput and availability.

REFERENCES

[1] C.-Y. Hong, S. Mandal, M. Al-Fares, M. Zhu, R. Alimi, C. Bhagat,
S. Jain, J. Kaimal, S. Liang, K. Mendelev et al., “B4 and after: managing
hierarchy, partitioning, and asymmetry for availability and scale in
google’s software-defined wan,” in Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication, 2018, pp.
74-87.

S. Hu, W. Bai, G. Zeng, Z. Wang, B. Qiao, K. Chen, K. Tan,
and Y. Wang, “Aeolus: A building block for proactive transport in
datacenters,” in Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications,
technologies, architectures, and protocols for computer communication,
2020, pp. 422-434.

U. Krishnaswamy, R. Singh, N. Bjgrner, and H. Raj, “Decentralized
cloud wide-area network traffic engineering with {BLASTSHIELD},”
in 19th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 22), 2022, pp. 325-338.

C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and
R. Wattenhofer, “Achieving high utilization with software-driven wan,”
in Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM,
2013, pp. 15-26.

J. Bogle, N. Bhatia, M. Ghobadi, I. Menache, N. Bjgrner, A. Valadarsky,
and M. Schapira, “Teavar: striking the right utilization-availability
balance in wan traffic engineering,” in Proceedings of the ACM Special
Interest Group on Data Communication, 2019, pp. 29-43.

H. H. Liu, S. Kandula, R. Mahajan, M. Zhang, and D. Gelernter, “Traffic
engineering with forward fault correction,” in Proceedings of the 2014
ACM Conference on SIGCOMM, 2014, pp. 527-538.

[2]

[3]

[4]

[6

=

[5]

[7]1 Rockafellar, Journal of risk. Uryasev S, 2000, ch. Optimization of
conditional value-at-risk, pp. 21-42.

Y. Zhang, X. Nie, J. Jiang, W. Wang, K. Xu, Y. Zhao, M. J. Reed,
K. Chen, H. Wang, and G. Yao, “Bds+: An inter-datacenter data
replication system with dynamic bandwidth separation,” IEEE/ACM
Transactions on Networking, vol. 29, no. 2, pp. 918-934, 2021.

P. Kumar, Y. Yuan, C. Yu, N. Foster, R. Kleinberg, P. Lapukhov,
C. L. Lim, and R. Soulé, “Semi-oblivious traffic engineering:
The road not taken,” in I5th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18). Renton, WA:
USENIX Association, Apr. 2018, pp. 157-170. [Online]. Available:
https://www.usenix.org/conference/nsdil 8/presentation/kumar

J. Zhang, M. Ye, Z. Guo, C.-Y. Yen, and H. J. Chao, “Cfr-rl: Traffic
engineering with reinforcement learning in sdn,” IEEE Journal on
Selected Areas in Communications, vol. 38, no. 10, pp. 2249-2259,
2020.

Y. Wang, H. Wang, A. Mahimkar, R. Alimi, Y. Zhang, L. Qiu, and
Y. R. Yang, “R3: Resilient routing reconfiguration,” in Proceedings of
the ACM SIGCOMM 2010 Conference, ser. SIGCOMM °’10. New
York, NY, USA: Association for Computing Machinery, 2010, p.
291-302. [Online]. Available: https://doi.org/10.1145/1851182.1851218

S. Bryant, C. Filsfils, S. Previdi, M. Shand, and N. So, “Remote loop-
free alternate (Ifa) fast reroute (frr),” Internet Requests for Comments,
RFC Editor, RFC, vol. 7490, 2015.

O. Lemeshko and O. Yeremenko, “Linear optimization model of mpls
traffic engineering fast reroute for link, node, and bandwidth protection,”
in 2018 14th International Conference on Advanced Trends in Radio-
elecrtronics, Telecommunications and Computer Engineering (TCSET).
IEEE, 2018, pp. 1009-1013.

P. He, W. Zhang, H. Guan, K. Salamatian, and G. Xie, “Partial order
theory for fast tcam updates,” IEEE/ACM Transactions on Networking,
vol. 26, no. 1, pp. 217-230, 2017.

A. D. Ferguson, S. Gribble, C.-Y. Hong, C. Killian, W. Mohsin,
H. Muehe, J. Ong, L. Poutievski, A. Singh, L. Vicisano et al.,
“Orion: Google’s {Software-Defined} networking control plane,” in /8th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 21), 2021, pp. 83-98.

M. A. Qureshi, Y. Cheng, Q. Yin, Q. Fu, G. Kumar, M. Moshref, J. Yan,
V. Jacobson, D. Wetherall, and A. Kabbani, “Plb: congestion signals are
simple and effective for network load balancing,” in Proceedings of the
ACM SIGCOMM 2022 Conference, 2022, pp. 207-218.

A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication, 2015,
pp. 123-137.

Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye,
S. Raindel, M. H. Yahia, and M. Zhang, “Congestion control for large-
scale rdma deployments,” ACM SIGCOMM Computer Communication
Review, vol. 45, no. 4, pp. 523-536, 2015.

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19] 1. G. Optimization et al., “Gurobi optimizer reference manual, 2018,”

URL http://www. gurobi. com, 2018.

[20] T. U. of Adelaide, “The internet topology z0o0.” [Online]. Available:
http://www.topology-zoo.org/

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 18:50:15 UTC from IEEE Xplore. Restrictions apply.

