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Abstract

Vision-Language Pre-training (VLP) models have exhibited
unprecedented capability in many applications by taking
full advantage of the learned multimodal alignment. How-
ever, previous studies have shown they are vulnerable to ma-
liciously crafted adversarial samples. Despite recent suc-
cess, these attacks are generally instance-specific and re-
quire generating perturbations for each input sample. In
this paper, we reveal that VLP models are also susceptible
to the instance-agnostic universal adversarial perturbation
(UAP). Specifically, we design a novel Contrastive-training
Perturbation Generator with Cross-modal conditions (C-
PGC). In light that the pivotal multimodal alignment in VLP
models is achieved via contrastive learning, we devise to
turn this powerful weapon against VLP models themselves.
Le., we employ a malicious version of contrastive learning
to train the proposed generator using our carefully crafted
positive and negative image-text pairs. Once training is
complete, the generator is able to produce universal pertur-
bations that can essentially destroy the established align-
ment relationship in VLP models. Besides, C-PGC fully
utilizes the characteristics of Vision-and-Language (V+L)
scenarios by incorporating both unimodal and cross-modal
information as effective guidance. Extensive experiments
show that C-PGC successfully forces adversarial samples
to move away from their original area in the VLP model’s
feature space, thus fundamentally enhancing attack perfor-
mance across various victim models and V+L tasks.

1. Introduction

Vision-Language Pre-training (VLP) models have recently
demonstrated remarkable efficacy in a wide range of Vision-
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Fig. 1: Illustration of universal adversarial attacks. With only a
pair of image-text perturbations, the proposed method can effec-
tively mislead different VLP models on diverse V+L tasks.

and-Language (V+L) tasks. By self-supervised pre-training
on large-scale image-text pairs, VLP models efficiently
align cross-modal features and capture rich information
from the aligned multimodal embeddings, thereby provid-
ing expressive representations for various applications.

Adversarial attacks [7, 13], which aim to deceive mod-
els during inference time, have attracted extensive attention
due to their significant threat to security-critical scenarios
[11]. Recent studies have shown that VLP models are also
vulnerable to adversarial samples. The pioneering work
Co-Attack [48] proposes the first multimodal attack that si-
multaneously perturbs both image and text modalities and
displays excellent performance. However, Co-Attack only
considers relatively easier white-box attacks where victim
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Fig. 2: Performance of existing UAP on text retrieval with AL-
BEF [23] and BLIP [24] as surrogate models. Note that UAP [31]
is initially based on DeepFool [30], and the corresponding PGD-
learned version UAP p@ p is provided for a fair comparison.

models are completely accessible. To handle more practi-
cal black-box settings, subsequent studies propose various
transferable adversarial samples generated on an available
surrogate model to fool other inaccessible models. Specifi-
cally, SGA [29] significantly improves the adversarial trans-
ferability through the set-level cross-modal guidance ob-
tained from data augmentations. Subsequently, TMM [40]
proposes to jointly destroy the modality-consistency fea-
tures within the clean image-text pairs and include more
modality-discrepancy features in the perturbations to fur-
ther enhance transferability. While existing methods have
achieved great success, they are all instance-specific and
need to generate a perturbation for each input pair, which
results in substantial computational overhead. Meanwhile,
universal adversarial attacks (illustrated in Fig. 1), as an
efficient instance-agnostic approach that uses only one Uni-
versal Adversarial Perturbation (UAP) to conduct attacks,
have not been fully investigated for VLP models. This nat-
urally leads to a question, is it possible to design a UAP that
can deceive VLP models across different image-text pairs?

Motivation. To this end, we make an intuitive attempt
to transplant renowned approaches UAP [31] and GAP
[35] to attack several VLP models by maximizing the dis-
tance between the embeddings of the adversarial image
and its matched texts. Unfortunately, Fig. 2 demonstrates
that these methods yield unsatisfactory attack success rates
(ASR), especially for black-box attacks. Empirically, this
failure stems from their narrow focus on the image modal,
disregarding the other modality and the multimodal infor-
mation that plays a pivotal role in VLP models. To over-
come this challenge, we revisit VLP models’ basic training
paradigm and emphasize that regardless of the downstream
V+L tasks, their achieved outstanding performance is heav-
ily reliant on the well-established multimodal alignment,
which draws the embeddings of matched image-text pairs
closer while distancing those of non-matched pairs. In light
of this consideration, we argue that the core of an effec-
tive universal adversarial attack is to obtain a UAP that can
fundamentally destroy this learned alignment relationship

to mislead VLP models into making incorrect decisions.

Besides, Fig. 2 shows that the generator-based GAP consis-

tently outperforms UAP methods, due to the excellent dis-

tributional modeling capability of generators. This suggests
the superiority of the generative paradigm, which is also

corroborated by numerous studies [14, 15].

Based on these insights, we propose a novel generative
framework that learns a Contrastive-training Perturbation
Generator with Cross-modal conditions (C-PGC) to launch
universal attacks on VLP models. To essentially destroy
the multimodal alignment, we devise to utilize VLP mod-
els” most powerful weapons to attack against themselves.
Le., utilize the contrastive learning mechanism to train the
generator based on maliciously constructed image-text pairs
that completely violate the correct V+L matching relation-
ship, to produce a perturbation that pushes the embeddings
of matched pairs apart while pulling those of non-matched
ones together. Moreover, most previous studies [29, 48, 49]
simply exploit the crucial cross-modal information by max-
imizing the feature distance between samples of different
modals to optimize perturbations, without deeper explo-
ration for attack enhancement. In contrast, we fully harness
V+L characteristics by refining the generator architecture to
incorporate cross-modal knowledge through cross-attention
mechanisms for better guidance. Besides, we also consider
the intra-modal influence and introduce a unimodal distance
loss to further improve attack effectiveness. We highlight
that the proposed framework is seamlessly compatible with
text perturbation generation, achieving a truly multimodal
universal attack that benefits from the synergy between V+L
modalities. Our contributions are as follows:

* We propose C-PGC, a novel perturbation generator condi-
tioned on cross-modal knowledge, to produce both image
and text UAPs for powerful attacks on VLP models.

* We design a malicious contrastive learning paradigm that
incorporates both unimodal and multimodal guidance to
train the generator to produce UAP that can essentially
disrupt the multimodal alignment in VLP models.

» Extensive experiments on 6 various VLP models across
diverse V+L tasks reveal that our method achieves out-
standing attack performance in different scenarios.

2. Related Work

2.1. Vision-Language Pre-training Models

VLP models are pre-trained on massive image-text pairs to
learn the semantic correlations across modalities and serve
diverse multimodal user demands [8, 10]. We next illustrate
the basis of VLP models from multiple perspectives.
Architectures. Based on the ways of multimodal fu-
sion, the architectures of VLP models can be classified
into two types: single-stream and dual-stream architec-
tures. Single-stream architectures [9, 25] directly concate-



nate the text and image features, and calculate the atten-
tion in the same Transformer block for multimodal fusion.
On the contrary, dual-stream architectures [24, 37] sepa-
rately feed the text and image features to different Trans-
former blocks and leverage the cross-attention mechanism
for multimodal fusion. Generally, single-stream architec-
tures are more parameter-efficient than dual-stream archi-
tectures since they adopt the same set of parameters in a
Transformer block for the text and image modalities.
Pre-training Objectives. The pre-training objectives
for VLP models mainly include masked feature completion,
multimodal feature matching, and specific downstream ob-
jectives. Masked feature completion [9] encourages VLP
models to predict the deliberately masked tokens based on
the remaining unmasked tokens. Multimodal feature match-
ing [23] pre-trains VLP models to precisely predict whether
the given image-text pairs are matched. Specific down-
stream objectives [2] directly utilize the training objectives
of downstream tasks for pre-training VLP models.
Downstream Tasks. In this paper, we mainly consider
the following multimodal downstream tasks: (1) Image-text
retrieval (ITR) [41]: finding the most matched image for
the given text and vice versa, including image-to-text re-
trieval (TR) and text-to-image retrieval (IR). (2) Image cap-
tion (IC) [4]: generating the most suitable descriptions for
the given image. (3) Visual grounding (VG) [20]: locating
specific regions in the image that correspond with the given
textual descriptions. (4) Visual entailment (VE) [42]: ana-
lyzing the input image and text and predicting whether their
relationship is entailment, neutral, or contradiction.

2.2. Adversarial Attacks

Among various attacks [12, 16, 17, 36, 46, 51], adversarial
attacks stand out as a particularly powerful type.

Instance-specific Attacks on VLP Models. The adver-
sarial robustness of VLP Models has become a research
focus. Early works [22, 44] impose perturbations only on
a single modal and lack cross-modal interactions when at-
tacking multimodal models. To solve this, Co-Attack [48]
conducts the first white-box attack on VLP models. Based
on Co-Attack, [29] extends the attacks to more rigorous
black-box settings and proposes SGA, which utilizes set-
level alignment-preserving argumentations with carefully
designed cross-modal guidance. However, [40] points out
that SGA fails to fully exploit modality correlation and pro-
poses TMM to better leverage cross-modal interactions via
modality-consistency and modality-discrepancy features.
Nonetheless, these methods are all instance-specific and
need to craft perturbations for each input pair.

Universal Adversarial Examples. Universal adversar-
ial attacks [31, 32, 50] aim to deceive the victim model by
exerting a uniform adversarial perturbation to all samples.
These attacks save the redundant procedures of redesign-

ing perturbations for each input sample and are hence more
efficient than instance-specific methods. Generally, univer-
sal adversarial attacks can be categorized into optimization-
based [28, 31, 39] and generation-based [3, 15, 18, 50]
methods. Benefiting from the powerful modeling abili-
ties of generative models, generation-based methods are
more versatile and can produce more natural samples than
optimization-based ones. A concurrent work, ETU [49],
also investigates UAP on VLP models and proposes a data
augmentation named ScMix. However, ETU adopts a non-
generative approach that narrowly focuses on image UAP,
failing to constitute a truly multimodal attack for VLP mod-
els. Moreover, ETU demonstrates insufficient attack effects,
especially for black-box transferability. In contrast, we pro-
pose a generative multimodal attack framework based on a
malicious variant of contrastive learning, which yields UAP
with strong attack effects and high transferability.

3. Universal Multimodal Attacks

In this section, we first present the problem statement of
universal adversarial attacks on VLP models. Next, we in-
troduce the overview of our framework. Finally, we illus-
trate the detailed design of the proposed C-PGC.

3.1. Problem Statement

We define an input image-text pair as (v,t) and denote e,
and e; as the image and text embeddings encoded by the
image encoder f;(-) and text encoder fr(-) of the targeted
VLP model f(-). Let Dy be an available dataset consisting
of image-text pairs collected by a malicious adversary. The
attack objective is to utilize D; to train a generator G, (+)
for producing a powerful pair of universal image-text per-
turbations (J,,d;) that can affect the vast majority of test
dataset D; to fool models into making incorrect decisions.
Formally, the attack goal can be formulated as:

T(f(v + 0y, D 5t)) # Y, st ”51/”00 < €, H5t||0 < €&,
(D

where 7 (-) denotes the operation that uses the output V+L
features to obtain the final predictions, & indicates the text
perturbation strategy [29, 48] that replaces certain impor-
tant tokens of the original sentence with crafted adversarial
words, and y is the correct prediction of the considered V+L
task. To ensure the perturbation’s imperceptibility, we con-
strain the pixel-level image perturbation with [, norm of a
given budget ¢,. Following previous studies [29, 40, 48],
the textual perturbation is token-level and the stealthiness is
accordingly constrained by the number of modified words
€;. To ensure the stealthiness of text perturbation, we apply
a rigorous restriction that permits only a single word to be
substituted (e; = 1). On the premise of imperceptibility, the
attacker attempts to generalize the crafted UAP to a wider
range of test data and victim models.
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Fig. 3: An overview of our proposed universal adversarial attack. Benefiting from the well-designed unimodal distance loss £p;s and
multimodal contrastive loss Lc 1, the generator G, (), conditioned with cross-modal embeddings, learns rich knowledge from features of
different modalities and thus produces d,, and J; of superior generalization ability across diverse models and downstream tasks.

3.2. Overview of the Proposed Framework

The overview of C-PGC is depicted in Fig. 3. We adopt a
multimodal perturbation strategy and generate perturbations
for both image and text modalities. Given the high similar-
ity between the workflows of image and text, we then take
image attacks as an example for illustration.

Firstly, a fixed noise z, is randomly initialized and sub-
sequently fed into the conditional generator. For each image
v and its descriptions t, the generator G, (+) translates the
input noise z, into the adversarial perturbation §, that is
of the same size as v. During generation, the network G,
additionally benefits from cross-modal information by inte-
grating the embedding of text descriptions corresponding to
the current input image v, i.e., §, = Gy (2y; fr(t)). Next,
the generated adversarial noise J, is injected into the clean
image to obtain the adversarial image via vyq, = v+ 9. To
better guide the training process, we design two effective
unimodal and multimodal losses as our optimization objec-
tives. Unimodal loss is straightforward and aims to push
the adversarial images away from the clean images in the
latent embedding space, while multimodal loss is based on
contrastive learning using our manually constructed posi-
tive and negative samples to strongly destroy the image-text
matching relationship achieved by feature alignment. Once
we finish training C-PGC using the proposed loss function,
the input fixed noise is transformed into a UAP with great
generalization and transferability.

3.3. Detailed Design of C-PGC

Next, we provide a detailed introduction to each of the pro-
posed designs. Note that we primarily discuss the image
attack as an example, given that the design of the text attack
is completely symmetrical. The pseudocode of the training
procedure is provided in Appendix A.

Perturbation Generator Conditioned on Cross-modal
knowledge. Previous generative universal attacks [3, 15]
have shown excellent efficacy in fooling the discriminative
models. Nevertheless, since existing generative attacks are
limited to a single modality, directly utilizing the off-the-
shelf generators might fail to leverage the multimodal inter-
actions in these special V+L scenarios. To address this lim-
itation, we additionally introduce cross-modal embeddings
as auxiliary information to further facilitate the process of
perturbation generation. Specifically, we modify the archi-
tecture of existing decoder-based generators by adding sev-
eral cross-attention modules that have been proven effective
in tasks with multiple input modalities. The obtained tex-
tual embeddings e; encoded by fr(-) are then incorporated
into our generator through:

Q = hthaK = etha V= etha

T 2
Attention(Q, K, V) = softmax (Qj%) Vv 2

where h;, € RB*do is the flattened intermediate features
within G, (+), and W, € Réexd 17, e RO2Xd Wy, ¢



R>12%4 are the optimized parameters of attention modules.

Multimodal Contrastive Loss. The preceding analysis
regarding the failures of existing UAP attacks encourages us
to design a loss function that can guide the generated UAP
to break the learned multimodal feature alignment. Mo-
tivated by the fact that contrastive learning underpins the
cross-modal alignment, we advocate leveraging this mech-
anism to attack VLP models themselves by contrastively
training our C-PGC to essentially disrupt the benign align-
ment relationship. Concretely, we adopt the widely recog-
nized InfoNCE [19] as our basic contrastive loss.

To establish the contrastive paradigm, we first define the
adversarial image v,q4, as the anchor sample. Besides, it
is also necessary to construct an appropriate set of posi-
tive and negative samples. Based on the fundamental ob-
jective of our attack, it is natural to leverage the origi-
nally matched text description set t = {¢t1,t2,...,tar} as
negative samples t,,., to amplify the discrepancy between
matched image-text pairs in the feature space of VLP mod-
els. Additionally, we need to select a set of positive sam-
ples to further pull the adversarial image v,4, away from
its corresponding text descriptions t. To this end, we pro-
pose a farthest selection strategy, which associates the an-
chor image vqq, with target texts t,,; whose embeddings
differ significantly from that of the original clean image v,
to reach a more strong disruption of the multimodal align-
ment. Specifically, we randomly sample a batch of text sets
from Dy and select the text set with the largest feature dis-
tances from the current image v as positive samples, i.e.,
tpos = {th,t5 ..., }. Moreover, we utilize data augmen-
tations that resize the clean v into diverse scales and ap-
ply random Gaussian noise to acquire a more diverse image
set v .= {vy,v2...,vn} for set-level guidance [29]. With
these well-constructed positive and negative samples, the
multimodal contrastive loss L, can be formulated as:

N M
> 2. s(vi + 6v, t5)
i=1j=1

Lor =log 5 N K
> D 8(vi 4 0usty) + 320 >0 s(vi + 6o, th)
i=1j=1

i=1j=1
3)

where J, is the universal image perturbation; s(v,t) =
exp(sim(f7(v), fr(t))/7), where T denotes the tempera-
ture parameter and sim(-, -) represents the cosine similarity.
Unimodal Distance Loss. Apart from the multimodal
guidance, we also consider the unimodal influence by di-
rectly pushing adversarial images away from their initial
visual semantic area to improve the attack. Similarly, the in-
put image v also undergoes resizing and noise perturbation
to generate the augmented image set v = {v1,vs ..., 05}
for set-level guidance. Then, we craft the adversarial im-
age through v,4, = v + §,, and process v,q4, With the same
augmentation operation to obtain the adversarial image set

9

Vade = {34 0§% ... 034}, Finally, we minimize the
negative Euclidean distance between the embeddings of ad-
versarial images and clean images to optimize the UAP gen-
erator. Formally, the loss Lp;s is formulated as:

N N
Lpis == Y If1@f*) = fiwj)ll2. @

i=1j=1

Taking advantage of the unimodal guidance, £p;s ensures
an effective optimization direction during the generator
training and further enhances the attack effectiveness.

Training Objective. With the above two well-designed
loss terms Lp;s and L1, the overall optimization objec-
tive of our conditional generator for image attacks can be
formulated as:

H11111n ]E(th)’\‘Ds 7tposNDs ('CCL + A'CDiS)’
S.t. HGw(Zv7fT(t))”OO S €v,

where A is the pre-defined hyperparameter to balance the
contributions of Lo, and Lp,;s. By training the network
with the proposed loss function over the entire data distri-
bution of the multimodal training dataset Dy, the generator
G (+) is optimized to generate UAPs that push the features
of mismatched image-text pairs together while pulling the
embeddings of the matched ones apart. This finally enables
the generation of UAPs with strong generalization capabil-
ities and high adversarial transferability.

Text Modality Attacks. In textual attacks, the genera-
tor architecture and training loss are completely symmetri-
cal with those of image attacks. Correspondingly, embed-
dings of the matched image v are used as the cross-modal
conditions for the generator. Given an adversarial text ¢4,
as the anchor sample, we use the set v = {v1,va..., o5}
scaled from the originally matched image v as negative
samples while the v/ = {v}, v} ..., v}y } augmented from
the farthest image v’ within the randomly sampled image
set as positive samples to formulate the Lo 1oss. Lp;s
is consequently calculated as the negative Euclidean dis-
tance between the embeddings of ¢, and the clean input ¢.
Accordingly, the conditional generator is utilized to output
the adversarial textual embeddings, which are subsequently
mapped back to the vocabulary space to obtain a universally
applicable word-level perturbation.

A notable distinction between image and text attacks is
the way to inject adversarial perturbations. We align with
previous studies [29, 40, 48] and apply the token-wise sub-
stitute strategy that replaces certain important words in the
original sentence with crafted adversarial words. Prior to
the word replacement, a meticulous process is undertaken
to identify the most optimal position within the sentence to
insert the perturbation. Our strategy intends to replace the
words that are more likely to have a greater influence dur-
ing decision-making. Concretely, for each word w; within

&)



Table 1. ASR (%) of different methods for image-text retrieval tasks on Flickr30k dataset. TR indicates text retrieval based on the input

image, while IR is image retrieval using the input text. The results on the MSCOCO dataset are in Appendix C due to space limits.

Source  Method | ALBEF TCL X-VLM CLIPyir CLIPcnN BLIP
| RR" IR | TR IR | TR IR | TR IR | TR IR | TR IR
GAP | 69.78 81.59 | 22.15 29.97 | 6.61 18.37 | 23.40 37.54 | 29.92 4429 | 16.09 28.12
ALBEF ~ ETU | 78.01 8456 | 29.92 3591 | 1433 2203 | 23.77 39.20 | 33.55 47.69 | 22.61 32.28
Ours | 90.13 88.82 | 62.11 64.48 | 20.53 39.38 | 43.10 65.93 | 54.40 7251 | 44.79 5636
GAP | 3350 40.61 | 8241 80.67 | 6.61 17.79 | 21.55 3856 | 30.57 4548 | 2145 31.82
TCL ETU | 2826 3503|9048 87.57 | 9.65 20.56 | 25.00 39.68 | 36.14 49.33 | 1893 29.19
Ours | 50.26 56.29 | 94.93 90.64 | 14.94 33.96 | 46.92 66.41 | 52.98 70.66 | 35.75 52.52
GAP | 16.14 2443 | 17.08 26.20 | 90.24 8598 | 24.51 41.15 | 42.62 53.08 | 16.19 25.74
X-VLM  ETU | 1233 21.93 | 1398 24.04 | 93.19 90.85 | 23.89 39.62 | 3562 51.19 | 12.09 23.59
Ours | 24.46 47.77 | 29.19 50.15 | 9329 91.90 | 4347 66.03 | 59.20 7279 | 32.39 52.24
GAP | 1172 2334 | 1532 2639 | 8.54 2048 | 8573 90.45 | 48.83 60.78 | 14.83 26.46
CLIPyr  ETU | 1480 2523|2122 30.87 | 10.87 24.96 | 84.14 9045 | 57.51 65.51 | 1640 27.22
Ours | 2323 38.67 | 25.05 41.79 | 1585 35.59 | 88.92 93.05 | 66.06 7542 | 26.71 45.70
GAP | 1357 2521 | 19.05 2887 | 11.59 23.13 | 27.46 43.16 | 73.18 81.60 | 1525 27.94
CLIPcyw ETU | 894 2059 | 1325 2441 | 894 2082 | 21.92 4051 | 91.71 9240 | 11.15 23.82
Ours | 19.01 41.86 | 22.98 47.02 | 19.61 43.26 | 40.89 65.77 | 96.50 94.22 | 24.19 48.17
GAP | 1223 23.94 | 1449 2544 | 691 17.81 | 2032 37.00 | 26.81 43.59 | 4721 73.33
BLIP  ETU | 1932 2791 | 1998 29.15 | 11.99 2091 | 2438 39.84 | 31.61 46.22 | 59.52 77.82
Ours | 32.17 44.40 | 3344 4451 | 18.60 35.53 | 43.35 60.26 | 48.96 66.95 | 71.82 82.82

a given sentence, we compute the distance between the em-
beddings of the original sentence and the w;-masked ver-
sion to determine its contribution. By convention, the im-
perceptibility of text UAP is controlled by the number of
modified words €; [6]. As aforementioned, we set ¢, = 1
for high stealthiness, i.e., choose the single word exerting
the highest feature distance as the target for replacement.

4. Experiments

We conduct comprehensive experiments on diverse V+L
tasks across multiple VLP models. Please see more exper-
imental results in the Appendix. Our code is available at:
https://github.com/ffhibnese/CPGC_VLP_
Universal_ Attacks.

4.1. Experimental Setup

Downstream tasks and datasets. We evaluate C-PGC on
four downstream V+L tasks, including image-text retrieval
(ITR), image captioning (IC), visual grounding (VG), and
visual entailment (VE). Following [29, 48], we employ the
Flickr30K [34] and MSCOCO [27] datasets for ITR tasks,
. The MSCOCO is also adopted for evaluating the IC task.
For VG and VE tasks, we evaluate on SNLI-VE [42] and
RefCOCO+ [45] datasets, respectively.

Models. We conduct experiments on a wide range of
VLP models, including ALBEF [23], TCL [43], X-VLM
[47], CLIPy;r [37], CLIPcNN [371, and BLIP [24]. Note that
for different V+L tasks, we correspondingly select different

VLP models for evaluation based on their capability [40].
For instance, among the six considered VLP models, only
ALBEF, TCL, and X-VLM can handle VG tasks, while only
ALBEF and TCL can deal with VE tasks.

Baselines. We transplant the representative GAP [35]
to V4L scenarios by appropriately editing its original loss
function [29]. We also consider a concurrent UAP study
ETU [49], which adopts a non-generative method that nar-
rowly focuses on image perturbation, despite the multi-
modal nature of V+L scenarios. Note that it implements
several versions, and we report their best results.

Implementation details. Following the SGA [29], we
adopt the Karpathy split [21] to preprocess the dataset
and build the test set for evaluation. The test set is dis-
joint from the generator’s training data for rigorous assess-
ment. To ensure perturbation invisibility, we follow [40]
and limit the perturbation budgets €, to 12/255 and ¢, to 1.
For augmentation, we resize the original images into five
scales {0.5,0.75,1,1.25,1.5}, and apply Gaussian noise
N(0,0.5%). See Appendix B for more details.

4.2. Universal Attack Effectiveness

To align with previous studies [29, 48], we first consider the
typical V+L task image-text retrieval and calculate the ASR
as the proportion of successful adversarial samples within
the originally correctly predicted pairs. We present the per-
formance based on R@1 retrieval results in Table 1. Ap-
pendix C supplements the results of R@5 and R@10.
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Table 2. Performance of C-PGC on the visual grounding task. The first row displays the source models, and the Baseline indicates the

clean performance of the target model on clean data.

‘ Baseline ALBEF TCL X-VLM
Target

| Val  TestA TestB | Val TestA TestB | Val TestA TestB | Val TestA TestB
ALBEF | 58.4 65.9 46.2 37.1 39.8 32.0 422 46.9 35.2 37.6 40.2 33.0
TCL 59.6 66.8 48.1 43.6 47.8 36.9 39.0 41.4 33.6 39.5 41.7 34.1
X-VLM | 70.8 67.8 61.8 51.8 54.7 47.7 52.7 559 47.8 33.1 34.7 28.8

Table 3. Performance of C-PGC on image captioning task. The
Baseline represents the clean performance. The target is BLIP.

Source B@4 METEOR ROUBEL CIDEr SPICE
Baseline  39.7 31.0 60.0 133.3 23.8
ALBEF  30.1 23.7 51.2 92.5 17.5

TCL 29.5 23.5 51.0 88.9 17.3
BLIP 21.2 19.1 45.5 62.5 13.7

White-box attack performance. By observing the
white-box ASR in the gray-shaded area, we demonstrate
that the proposed algorithm stably achieves excellent ASR
on all the evaluated VLP models, validating the outstand-
ing capability of the produced UAP. With only a single pair
of perturbations, we reach a noteworthy average white-box
ASR of nearly 90% on two large datasets in terms of both
TR and IR tasks. Compared with GAP [35] and ETU [49],
the proposed method consistently enhances the fooling rates
in the white-box scenario, confirming the great validity of
our suggested multimodal contrastive-learning mechanism.
Essentially, the exceptional performance stems from the ef-
ficacy of our generated UAP in destroying the alignment
between the image and text modalities, thereby misleading
the VLP model during inference.

Black-box attack performance. We also conduct thor-
ough experiments regarding the adversarial transferability
of the generated UAP by transferring from surrogate mod-
els to other inaccessible models. As demonstrated in Table
1, the proposed C-PGC displays great attack effects in the
more realistic black-box scenarios, e.g., 72.51% from AL-
BEF to CLIPcny for IR tasks. We highlight that the advan-
tage of C-PGC over the concurrent study ETU is greatly am-
plified in the more challenging black-box scenarios, which
achieves a significant average improvement of 17.76% on
the Flickr30K dataset. These experimental results indicate
that our generative contrastive learning framework does not
overly rely on the encoded feature space tailored to the sur-
rogate model. Conversely, it is well capable of transferring
to breaking the multimodal alignment of other unseen target
models, thus attaining superior adversarial transferability.

4.3. Evaluation on More Downstream Tasks

We then provide results on more downstream V+L tasks.
Specifically, we consider Image Captioning (IC), Visual

Grounding (VG), and Visual Entailment (VE). The results
of VE are shown in Appendix C due to space limit.

Visual grounding. This is another common V+L task,
which aims to locate the correct position in an image based
on a given textual description. We conduct experiments on
RefCOCO+ using ALBEF, TCL, and X-VLM as source and
target models. Table 2 indicates that C-PGC brings a no-
table negative impact on the localization accuracy in both
white-box and black-box settings, again verifying that the
produced UAP strongly breaks the cross-modal alignment.

Image captioning. The objective of IC is to generate
text descriptions relevant to the semantic content based on
the given image. We use ALBEF, TCL, and BLIP as source
models and attack the commonly used captioning model
BLIP. Similar to SGA [29], several typical evaluation met-
rics of IC are calculated to measure the quality of generated
captions, including BLEU [33], METEOR [5], ROUGE
[26], CIDEr [38], and SPICE [1]. The results in Table 3
demonstrate that our algorithm again displays prominent
attack effectiveness, e.g., the crated UAP induces notable
drops of 10.2% and 9% in the B@4 and ROUGE_L respec-
tively when transferred from TCL to BLIP.

4.4. Ablation Study

This part employs ALBEF [23] as the surrogate model and
provides ablation studies on Flickr30K. We begin our anal-
ysis on the contribution of each proposed technique. Next,
we examine the sensitivity of certain hyperparameters.

The effect of Lo and Lp;s. To investigate the impact
of the proposed loss terms, we introduce two variants C-
PGC¢r, and C-PGCp;, that remove Loy, and Lp;s from
the overall training loss respectively. As shown in Table
4, the removal of L, leads to significant degradation, par-
ticularly for black-box transferable attacks. E.g., a 27.12%
ASR drop occurs in TR tasks when transferring from AL-
BEF to TCL. This validates the considerable contribution of
L1, to guarantee a successful attack. Regarding the influ-
ence of Lp;s, we demonstrate that the unimodal guidance
further enhances the attack on the basis of L. Especially
in white-box scenarios, L£p;s brings a 10.59% increase in
the ASR of TR tasks on ALBEF. The proposed two loss
terms complement each other and jointly underpin the gen-
eralizability and transferability of the produced UAP.



Table 4. ASR (%) of C-PGC and its variants averaged across six target models on retrieval tasks.

Method | ALBEF TCL X-VLM CLIPyir CLIPcny BLIP
| TR IR | TR IR | TR IR | TR IR | TR IR TR IR
C-PGC 90.13 88.82 | 62.11 64.48 | 20.53 39.38 | 43.10 65.93 | 54.40 7251 | 4479  56.36
C-PGCop | 76.46 77.58 | 34.99 4755 | 1433 33.61 | 4298 6281 | 46.11 6558 | 27.13  46.44
C-PGCp;s | 79.54 8246 | 5652 62.21 | 2024 3826 | 39.78 65.10 | 5220 71.01 | 4243 5552
C-PGCRrang | 61.87 65.17 | 43.69 5254 | 19.51 3547 | 4033 6577 | 54.15 70.62 | 39.43 5259
C-PGCca | 85.18 83.07 | 4576 5373 | 1524 3402 | 3929 60.61 | 47.15 40.64 | 3239 4829
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Fig. 4: ASR of five target models on TR tasks
under various values of A.

The effect of positive sample selection. To validate the far-
thest selection strategy for positive sample construction, we
design another variant C-PGCprg,q that adopts randomly
sampled data points as positive samples. Table 4 reveals the
necessity of the proposed technique as it brings an average
improvement of 25.96% in white-box ASR and 4.95% in
black-box ASR. We also find that if positive samples are not
adequately defined, adding the £~ would even harm the
white-box performance (see C-PGC¢, and C-PGCrgna),
highlighting the significance of our selection strategy.

The effect of cross-modal conditions. As aforementioned,
cross-attention (CA) modules are introduced into the gen-
erator to exploit cross-modal information. We then design
C-PGC¢ 4 that cancels these CA layers to explore the in-
fluence. As expected, it causes a notable 9.78% average
decrease across six target models, verifying its vital role
in boosting attacks. Another finding is that C-PGC¢ 4 in-
duces a more pronounced drop in black-box attacks than
white-box ones, indicating that cross-modal conditions ex-
ert a greater contribution to adversarial transferability.

Different regulatory factor A\. The value of ) is a critical
factor as it adjusts the scales of the two loss terms L, and
Lpis- We evaluate the attack performance under various
values of \ to confirm the optimal value. Fig. 4 indicates
that A = 0.1 achieves superior performance.

Different perturbation budgets ¢, and ¢;. As shown in
Fig. 5, we analyze varying perturbation budgets for €, and

Fig. 5: ASR of five target models on the TR task under different values of perturbation
budgets for €, and €, respectively.

€;. Generally, the ASR increases with the larger perturba-
tion magnitudes. Note that when €,, = 4/255, C-PGC’s per-
formance is severely compromised since the budget 4/255
is too small to allow the UAP to carry enough information
required to generalize to diverse data samples.

It also indicates that the improvement slows down as ¢,
increases from 12/255 to 16,/255. Thus, we select the mod-
erate value of 12/255 to reach a balance between attack util-
ity and imperceptibility. For text perturbation, €, exhibits a
more profound influence on the black-box attacks. In our
experiments, we strictly set e, = 1 for invisibility. Attackers
can adjust the value of ¢; in accordance with their demands
to trade off the attack efficacy and perturbation stealthiness.

5. Conclusion

In this paper, we investigate the challenging task of univer-
sal adversarial attacks on VLP models. We begin by reveal-
ing the deficiency of existing attacks and empirically ex-
plaining the underlying reasons. Based on the analysis, we
propose to break the crucial multimodal alignment in VLP
models by designing a contrastive-learning generative UAP
framework that leverages both unimodal and multimodal in-
formation. Extensive experiments validate the efficacy of
C-PGC on diverse VLP models and V+L tasks. We high-
light that this work makes a significant step in exploring
UAP in multimodal attacks and deepens our understanding
of the mechanism underlying VLP models.
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