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Abstract— Converged Ethernet employs Priority-based Flow
Control (PFC) to provide a lossless network. However, issues
caused by PFC, including victim flow, congestion spreading,
and deadlock, impede its large-scale deployment in production
systems. The fine-grained experimental observations on switch
buffer occupancy find that the root cause of these performance
problems is a mismatch of sending rates between end-to-end
congestion control and hop-by-hop flow control. Resolving this
mismatch requires the switch to provide an additional buffer,
which is not supported by the classic dynamic threshold (DT)
policy in current shared-buffer commercial switches. In this
paper, we propose Selective-PFC (SPFC), a practical buffer
management scheme that handles such mismatch. Specifically,
SPFC incrementally modifies DT by proactively detecting port
traffic and adjusting buffer allocation accordingly to trigger PFC
PAUSE frames selectively. Extensive case studies demonstrate
that SPFC can reduce the number of PFC PAUSEs on non-bursty
ports by up to 69.0%, and reduce the average flow completion
time by up to 83.5% for large victim flows.

Index Terms— Priority-based flow control, lossless network,
buffer management, mismatch.

I. INTRODUCTION

MICRO-BURST, exemplified by incast, is a typical traffic
pattern in modern data center networks [1], [2], [3].
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Generally, it refers to bursty traffic with a microscopic time
scale that cannot be regulated by end-to-end congestion con-
trol. It is typically generated by various online data-intensive
applications [4] and virtualized services [5], which appear
in switches when packets of multiple concurrent flows are
destined for the same output port. Packet dropping caused by
micro-burst traffic might be unacceptable because micro-burst
traffic is usually comprised of several delay-sensitive short
flows, and the triggered timeouts always extend the flow
completion time (FCT) [3], [6], [7].

In recent years, lossless networks have become the trend of
data centers [8], [9], [10] and cluster computing systems [11],
[12], [13], which can avoid loss retransmissions. In addition,
scaling transport protocols such as Remote Direct Memory
Access (RDMA) in data centers require reliable transport with-
out congestion loss [14], [15]. In order to provide a lossless
network switching fabric, Converged Ethernet employs the
Priority-based Flow Control (PFC) [16] mechanism, which
ceases the upstream port before the buffer overflows and
resumes packet sending after queue decreasing.

The decision maker of the PFC threshold, i.e., the PFC
trigger, depends on the buffer architecture and buffer man-
agement policy in a switch. Today, most commercial switches
employ on-chip shared memory to reduce latency by avoiding
packet reads and writes from/to external storage [3]. They
share the input queue to trigger PFC by counting ingress
bytes [17]. To guarantee efficiency, every port can access
the shared memory pool, meaning that any single port can
theoretically use as much as the entire buffer space. However,
shared memory switches might suffer the fairness problem that
few ports could occupy all shared buffers, starving other ports.
To overcome the problem, many buffer management policies
were proposed to restrict the queue length on each port.

Among them, the classic Dynamic Threshold (DT) pol-
icy [18] has been widely used by switch manufacturers [19].
In this policy, the queue length is restricted by a dynamic
threshold shared by all ports, proportional to the current
amount of free buffer space. All ports with sufficient traffic
to warrant thresholding should obtain the same amount of
space. Each port attempts to limit its length to some function
of the unused buffer space. However, we find that the classic
DT policy has limitations. It treats every switch port fairly
and fails to make full use of buffers to improve performance
according to the characteristics of the lossless network.
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To explain this more clearly, we have conducted empir-
ical and experimental investigations to attain an in-depth
understanding of buffer management architecture in lossless
Ethernet. We can find that burst traffic causes throughput
loss on non-burst traffic ports, resulting in the victim traffic
phenomenon. The root cause of this performance issues is due
to the mismatching between the fast hop-by-hop PFC flow
control and the relatively slow end-to-end congestion control.
This mismatch may occur during the interaction between burst
flows and non-burst flows. And this can be further attributed to
the PFC DT policy that all the ingress ports have an identical
PFC threshold. For burst flows, the rate regulation through
congestion control is difficult, and the burst traffic ports can
only be suspended through messages called PFC PAUSE
to stop sending. For non-burst flows, end-to-end congestion
control needs buffers (time) to adjust to the target sending
rate [20], [21]. Hence ports with non-burst traffic also trigger
PFC PAUSE, causing the victim traffic phenomenon.

In light of these insights, we re-architect buffer management
in lossless Ethernet. We aim to propose a buffer management
policy that can buffer non-burst mismatch traffic to alleviate
the victim traffic phenomenon problem. Designing such a
policy can be challenging because it requires switch ports
to proactively detect port traffic and adjust buffer allocation
accordingly. More specifically, a switch port must determine
the type of traffic it transmits on time with limited port-
level information, such as queue length, packet count, and
input/output rate.

In this paper, we propose Selective-PFC (SPFC), a buffer
management policy that controls the buffer allocation of shared
memory switches based on real-time detection of port traffic
status. The primary objective of SPFC is to fully utilize
the shared buffer to absorb mismatch traffic, avoid a larger
performance penalty by sacrificing the burst port’s buffer for
a short time strategically, and be friendly to applications in
data centers that emphasize tail latency.

In particular, SPFC uses a set of port-wise control states to
differentiate the status of different ports and impose different
thresholds on individual ports accordingly. The transition
between different port control states is determined by a state
decision module that detects port traffic in real-time. The state
decision module of SPFC is only composed of several counters
and triggers. When port traffic changes, SPFC proactively
raises or lowers the port threshold according to the port control
state to allocate buffer among different ports dynamically.

We evaluate SPFC with ns-3 [22] simulation and
DPDK [23] testbed, comparing SPFC with existing buffer
management policies. Extensive results demonstrate that SPFC
can reduce the number of PFC PAUSEs on victim ports in burst
tolerance scenarios by up to 69.0%. In real workload, SPFC
reduces the average FCT by up to 83.5% for large victim
flows, compared to the classic schemes DT and ST (Static
Threshold). When there is a deadlock topology, SPFC can
also provide better performance. In summary, we make the
following contributions:
• SPFC is the first PFC threshold adjustment policy, to the

best of our knowledge, that reduces unnecessary PFC
triggerings.

• A detailed design of threshold determination is provided
based on ingress port states and the state decision module.

• Solid testbed experiments and large-scale simulations
with real workloads have verified SPFC’s performance.

The rest of the paper is organized as follows. We introduce
the background in Section II. Section III reveals inadequate
elements in the existing buffer management architecture for
lossless Ethernet and gives the motivation for our solution. The
detailed design of SPFC is demonstrated in Section IV. Then
we discuss the implementation and design details in sections V
and VI. In Section VII, we evaluate SPFC. Section VIII
summarizes related work, and Section IX concludes the paper.

II. BACKGROUND

A. Traffic Workload in Data Centers is Bursty

The traffic demands of the various applications in data
centers are complex in terms of distributions and patterns [24],
[25], [26]. For example, WebSearch [27] service usually
generates short and burst flows, while distributed data storage
applications introduce a few long-lived flows to transfer the
bulk of data.

Many surveys of operation data centers show a wide dis-
tribution of traffic patterns [28]. Short flows can be tiny
(0.05 KB), whereas long flows can be huge (over 100 MB).
Short flows contributed the most traffic connections, while
long flows contributed the most bytes of traffic. Due to the
high bandwidth-delay product (BDP) in the data center (e.g.,
100 Gbps × 20 us = 250 KB), most short flows cannot be
adjusted by an end-to-end congestion control scheme finishes
sending all packets before receiving any ACKs.

Besides, many measurements [1], [24], [28], [29] show
that the occurrence of short flow is frequent and bursty. The
frequent burst of short flows will shock the switch buffer,
resulting in RTT instability and buffer overflow [3], [6],
[28]. Although these flows do not react to congestion control
schemes, they seriously interfere with the regular congestion
management of switching fabric in data centers.

B. Priority-Based Flow Control in Lossless Networks is
Inevitable

Many cloud providers deploy RDMA due to ultra-low
latency, high throughput, and low CPU overhead. To deploy
RDMA in Ethernet networks, PFC is needed to enable a
lossless Ethernet fabric. PFC prevents buffer overflow on
switches and NICs [30], [31]. As shown in Fig. 1(a), the
receiver pauses the sender when the ingress queue length
exceeds Xoff . The receiver will resume the sender When the
ingress queue length decreases below Xon. PFC specifies up
to eight priority classes. PAUSE/RESUME packets specify the
priority classes to which they are applied.

Although PFC can guarantee zero packet loss due to net-
work congestion, it also causes some well-known performance
issues such as head-of-line blocking (HLB), victim traffic
phenomenon and even deadlock [30], [32], [33], [34]. Because
PFC is a coarse-grained mechanism, it operates at the port
(or port plus priority) level and does not distinguish between
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Fig. 1. The model of a shared memory switch.

flows. The solution for these performance issues is to elim-
inate persistent congestion by end-to-end congestion control
schemes such that PFC is not triggered incessantly [34], [35],
[36]. The RDMA needs PFC to prevent packet loss due to
transient congestion of uncontrollable bursts, and RDMA also
needs end-to-end congestion control to eliminate persistent
congestion. In this case, the end-to-end congestion control and
hop-by-hop lossless flow control are complement each other.

C. Two Perspectives of PFC-Enabled Shared Memory Switch

Fig.1(b) shows the simplified architecture of a typical
PFC-enabled shared memory switch. The architecture can
be divided into three components: forwarding core, memory
management unit (MMU), and shared memory pool. Each
ingress port maintains an IngressBytes counter which is the
bytes entered from this ingress port, and the packets are still
queued in the switch egress. Indeed, IngressBytes is the
input queue size. When the packet enters a port, the MMU
checks whether the IngressBytes of the current port exceeds
the Xoff threshold for triggering the PFC PAUSE, and then
updates the IngressBytes counter and the EgressBytes
counter of the corresponding output port. Once the port
triggers PFC PAUSE, the port sends a RESUME message
only when the IngressBytes counter is reduced to Xon. It is
worth noting that the ingress bytes are counted for the PFC
trigger, while the egress bytes are counted for the ECN trigger.
Next, we will further illustrate the principle of PFC-enabled
switches.

Fig.1(c) shows a 5-to-1 incast traffic pattern with two views
in the MMU. Five flows (each flow has two packets) enter
the switch through 5 ports and leave the switch through one
port. Physically, these ten packets are all stored in the shared
memory pool. But from the MMU’s perspective, different
views have different functions:

(a) PFC trigger works on the ingress view. From the
ingress view, the packets of each flow are queued at the
corresponding input port in virtual. When the queue length
of an input port (IngressBytes) reaches the PFC threshold,
PFC PAUSE is triggered. The IngressBytes counters and DT
algorithm determine whether PFC should be triggered.

(b) ECN trigger works on the egress view. From the egress
view, the packets of each flow are all queued at the output
port. When the output queue length reaches the threshold, each
packet will be labeled as specified by ECN policy [3], [37].

Fig. 2. Queue length and threshold evolutions.

Each port has its own reserved buffer and headroom [38],
which are used to absorb packets after sending PFC PAUSE
until the upstream is actually paused. To allocate buffer
for ports, shared memory switches rely on a specific buffer
management policy deployed on MMU, which we will discuss
next.

D. Classic Buffer Management Policies Treat Each Port
Fairly

Classic dynamic threshold scheme (DT) [18] is the most
widely used buffer management policy by switch vendors [39],
which determines whether the ingress port triggers PFC.
DT sets its threshold, which is shared by all ports, proportional
to the current amount of unoccupied buffer space. More
specifically, the threshold at time t can be calculated by

T (t) = α ·

(
B −

∑
i

Qi (t)

)
(1)

Where T (t) is the threshold at time t, B is the total buffer
size, Qi(t) is the queue length of port i at time t, and α is a
control function normally set to a constant value for simplicity.
To avoid unfairness when traffic changes, DT reserves a certain
amount of buffer in a “stable state” (i.e., when queue length
is equal to the port threshold).

To understand DT, consider the following scenario. Assum-
ing that the switch buffer is empty and only one priority is
used. The port k will be overloaded at time t = 0, then∑

i Qi(t) = Qk(t) when t = 0+. Let α = 2, then T (t) =
2(B−

∑
i Qi(t)). At time t = 0, Qk(0) = 0 and T (0) = 2B,

thus Qk(0) < T (0). Packets are allowed to enter into the
buffer, and Qk(t) will increase until Qk(t) = T (t) = 2/3B,
as illustrated in Fig. 2. Once T = Qk, the port cannot occupy
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Fig. 3. Victim phenomenon.

an additional buffer and the queue length will no longer
increase. The reserved buffer size, in this case, is B/3. The α
represents the extent to which the activated port occupies the
buffer. The larger the α, the larger buffer the activated port
occupies and the smaller the remaining buffer.

III. MOTIVATION

In this section, we expose our experimental observations and
insights. First, we conduct a case study to explain the victim
traffic phenomenon. Then we give our insights into why this
phenomenon happens.

A. Victim Traffic Harms Performance

Congestion control algorithms (e.g., DCQCN [34],
TIMELY [35]) have been proven to control long flows well.
However, when a large number of bursty flows flood into
the network unpredictably, the interaction between the flow
control mechanism (PFC) and congestion control may cause
unexpected problems. The existing traffic in the network may
not adjust the sending rate as quickly as possible, resulting
in buffer overflow and triggering PFC PAUSE. As a result,
those flows will still be affected by the side effects related to
PFC, such as congestion spread, victim traffic phenomenon,
and even deadlock. Subsequently, we first conduct a careful,
fine-grained, and multivariable observation and then infer the
root cause of particular symptoms and problems.

We use a topology as illustrated in Fig. 3(a). There are
30 senders (H0-H29), and two receivers (R1-R2) are connected
by a 32-port switch. According to the literature [40], it is a
compact unit in Fat-Tree [27] or Leaf-Spine [41] like Fig. 3,
where S1 sends to R1, S2 sends to R2 and H* sends to R2.
In Fig. 3(a), we simulate the end-to-end transmission process
in data centers. The links, each with a speed of 100 Gbps,
exhibit a propagation delay of 9 µs for the link from H*(0-
29) to the switch, and one hop delay of 1 µs for the link
from the switch to R*(1, 2). The switch buffer size is 16 MB.
The flows are a mixture of long flows and concurrent burst
short flows. In detail, we assume H0 starts two long-lived
flows to R1 and R2, called F1 and F2, respectively.1 When
the two long-lived flows are stable, each sender of H1-H29
generates a short flow (varies from 1 to 29) to R2 at line
rate (i.e., 100 Gbps) simultaneously, and the size of each flow

1F1 can also include delay-sensitive short flows. For brevity, we set F1 to
be a long-lived flow in this case study.

Fig. 4. The pre-experiment results.

is 64 KB. Since each short flow only lasts for 5.5 µs (<1
RTT), it is uncontrollable by the end-to-end congestion control
mechanisms. These uncontrolled burst flows begin at 1 ms and
last for about 11 ms in total. We conduct simulations via ns-3
to investigate various buffer management schemes, including
DT and Static Threshold (ST). We configure α = 1, 2, 4 to
test DT, and the PFC threshold for ST is B/32 (32 is the port
number). For our method, we raise the threshold to the entire
buffer size. The host uses DCQCN as the congestion control.
All parameters are set to the default values recommended by
the related standards, and literature [14], [34], [42], and more
details are given in Section VII.

Fig. 4 shows the simulation results. We measure the PAUSE
rate (i.e., the rate of transmitting PAUSE messages) and the
throughput of port P0 during the burst. As shown in Fig. 4,
the PAUSE rate increases with the increase of concurrent burst
traffic, while the throughput of port P0 rapidly decreases by up
to 80%. F2 is the traffic that actually causes congestion, while
F1 is paused by the PFC. In this paper, we define it as the
victim traffic phenomenon when a flow (e.g., F1) is paused
because of congestion caused by other flows (e.g., F2 and
concurrent burst flows). The victim phenomenon significantly
reduces the forwarding efficiency of the switch and affects the
victim traffic performance. When raising the PFC threshold for
P0, it can eliminate the victim phenomenon (SPFC in figures,
we simply consider a large dynamic PFC threshold as SPFC
to be explored in the pre-experiment.). This is because F2 has
enough buffer (time) to converge to the normal rate without
affecting F1.

In this case study, we have set F1 to be a long-lived flow
for brevity. We note that H0 might also send a mixture of
long flows and short flows. As a result, the occurrence of the
victim traffic phenomenon further enlarges the tail FCT, which
significantly impacts the performance of delay-sensitive short
flows (see detailed results in Section VII).

B. Hop-by-Hop Flow Control Contradicts End-to-End
Congestion Control

The victim traffic phenomenon results in unexpected
throughput loss and enlarged tail FCT. But the root cause of
the victim traffic phenomenon requires further understanding
of the PFC interaction process. To further understand the PFC
interaction process, we now analyze the dynamic behavior of
flows in detail, revealing the reasons for the long duration of
the congestion tree and the unexpectedly large throughput loss.
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Fig. 5. Interactions between PFC and congestion control (grey areas are during burst).

Fig. 5 shows the sequence diagram where N = 24 (N is the
number of burst ports in Fig. 3(a)). In the input port, we mea-
sure the PAUSE rate (i.e., the rate of transmitting PAUSE
messages), ingress bytes, and the throughput. As shown in
the third row of Fig. 5, when PFC is employed, the input
port P0 pauses its upstream port H0 to avoid packet drops,
and concurrent burst flows congest the port P2. During this
process, both the congested flow F2 and non-congested flow
F1 face significant throughput loss, whether they are the direct
cause of congestion at port P2. Conversely, giving more buffer
to P0 ensures keeping the throughput of F1 stable.

During the first 1 ms, the sending rate of F1 and F2 reaches
the fair share, i.e., RF1 = RF2 = 50 Gbps. At 1 ms,
24 uncontrolled burst flows started at line rate. The ideal state
is that F2, H1-H24 share the bandwidth of receiver R2 on
average, which is RF2 = RH1 = . . . = RH24 = 100/25 = 4
Gbps. It is the port P2 rather than its upstream port P0 that is
the bottleneck of F2. As a result, F1 can send data at a higher
rate, i.e., RF1 = 100−RF2 = 96 Gbps. However, congestion
control requires feedback information and multiple RTTs to
adjust the sending rate (one RTT slows down by up to 1/2
the current speed). Excess data will need to be stored in the
switch buffer.

As shown in the second line of Fig. 5, the DT’s Xoff

threshold begins to decrease as the other burst ports and P0
begin to accumulate buffers. These ports start sending PAUSEs
when the Xoff equals the queue length. When port P0 leaves
no buffer to store, P0 will send PFC PAUSE to H0. As a
result, H0 becomes the bottleneck, and F1 turns out to be
the victim. That is, although F1 does not cause congestion,
its sending rate is far below the ideal rate (e.g., 96 Gbps),
shown in the third line of Fig. 5. The PFC’s congestion tree
will continue to pass. If H0 is also a switch at this point,
it may continue to send PAUSEs to its upstream nodes, which
further results in congestion spreading. What’s more, from the
third line of Fig. 5, DT algorithm treats each port equally,
so burst ports are also allocated the same amount of buffer.
DT algorithm degrades into ST algorithm during burst. And
there is no difference in DT between different α.

Based on these observations, we infer that the end-to-end
congestion control needs buffer/time to adjust to the target

Fig. 6. Mismatch between port control and congestion control (CC for short).

sending rate when a burst occurs. Still, the buffers are overrun
with burst traffic, causing avoidable PFC PAUSEs. In other
words, the fast operations of hop-by-hop PFC flow control
mismatch the evolution-based rate adjustment of end-to-end
congestion control. This mismatch fundamentally results in
the victim traffic phenomenon.

Let’s discuss more about the “mismatch problem”. Assum-
ing that the time for F2 to be completely controlled by the
end-to-end congestion control from the arrival of the burst
is denoted as t. During this period, the accumulated F2’s
packets at port P0 can be approximated as S′ = (FlowRate−
C/n)∗t (FlowRate is decreasing). The PFC PAUSE threshold
provided by DT algorithm is T . Due to the mismatch between
instantaneous port rate control and the long time required for
congestion control, F2’s packets accumulate rapidly, resulting
in S′ > T . Consequently, the upstream port of P0 is paused,
affecting the throughput of the victim flow F1. But if we
increase the PFC threshold for port P0 to T ′, ensuring that
S′ < T ′, the port can be kept from triggering PAUSE or
trigger as few PAUSEs as possible. Then the victim traffic
would not be unfairly treated.

To explain this more clearly, we further extend the duration
of the burst and repeat the above experiment with N = 20.
From Fig. 6(a), it can be seen that when congestion control
(DCQCN as default) with DT (α = 2)2 is used, the throughput
of F1 takes nearly 9 ms to recover. However, if more buffer

2If not specified, DT defaults to α = 2 setting afterwards.
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is allocated to port P0 (taken by SPFC), F1 can recover in
less than 1 ms and its throughput is not significantly affected
during this period. As the end-to-end RTT increases, flows
controlled by congestion control would take longer to recover
and the port length easily reaches the PFC PAUSE threshold.
Due to insufficient buffer to accommodate the accumulated
packets, the duration for pausing the upstream port also
increases, as shown in Fig. 6(b). Therefore, the victim port
needs sufficient buffer (time) to match the reaction time of
congestion control, which reduces PFC PAUSE and maintains
the performance of victim flows.

Solving this problem requires a buffer management pol-
icy to determine whether a switch port transmits long-lived
CC-controlled flows or short bursty uncontrolled flows. Con-
sequently, rethinking the way of buffer management that
eliminates the mismatch between congestion control and flow
control would be a relevant contribution. We will elaborate the
design next.

IV. DESIGN OF SPFC

In this section, we developed a new buffer management
approach called Selective-PFC (SPFC), a simple but effective
buffering strategy at each input port, easily implemented
in switches. The critical factor that inspires the new buffer
management approach is that if we could give more buffer
for CC-controlled traffic to allow them to adjust their sending
rate, we would reduce unnecessary PFC PAUSEs (see SPFC’s
performance preview in the first row of Fig. 5). The goal of
SPFC is to eliminate the victim traffic phenomenon, conges-
tion spreading, and even deadlock. Therefore, SPFC needs to
identify ports in different states and then configure different
buffer management policies according to the states.

A. An Overview of SPFC

The victim traffic includes not only long flows but also
short flows destined for other output ports. According to the
previous analysis, they should not be paused for transmission.
We refer to the input port through which the victim traffic
passes as the “victim port”. On the one hand, we need to
provide sufficient buffer for this type of port. On the other
hand, we cannot indefinitely squeeze the resources of other
ports. Therefore, when the victim traffic phenomenon occurs,
we allocate as much buffer as possible to the victim port of the
switch, while the other ports continue to use the DT algorithm.

This is not a permanent state. In general, they share the
buffer and use the same DT buffer management. Moreover,
the duration of the victim phenomenon is brief. Once the
congestion ends, the victim port will return to normal status.

We still take Fig. 4(a) as an example. P0 acts as the
victim port and may contain not only F1 but also other short
latency-sensitive flows. When the victim phenomenon occurs,
the PFC pause threshold of port P0 is raised, making the
victim flow less likely to be paused. This provides controlled
time for the normal flow F2, thereby reducing the impact on
the queuing of port P0. Although allocating more buffer can
eliminate this phenomenon, it can be difficult for switches

Fig. 7. State transition diagram of SPFC in each port.

if there are numerous ports similar to P0, due to limited
memory. Fortunately, in data centers, there are relatively few
uncontrollable long-lived flows (like F2 in Fig. 3(a)) [28],
[43], so switches have the ability to provide more buffer to
a limited number of victim ports. Ultimately, P0 and other
burst ports will all revert to the same state and adopt the DT
buffer strategy.

The key to our solution is how to identify the victim port,
assuming that it contains long-lived controlled flows, to adopt
the correct buffer strategy. Next, we’ll detail our definitions
of the two port states, the different actions, and the transitions
between the two states.

B. Port States and Actions

1) Two Different States: As mentioned in Section II-C,
PFC-enabled shared memory switches share buffer across
input ports, so SPFC works on each input port. Based on our
observations in Section III, we define two states of switch
input ports in lossless networks as follows:
•Victim state: This port has potential victim traffic. Once

some of these flows share a bottleneck with the burst flows,
it can cause that port to pause the upstream, affecting other
victim traffic. For instance, in Fig 3(a), port P0 is the victim
port, F1 is the victim flow and F2 shares the P2 with the burst
flows.
•Normal state: There are two cases of this state. The first

is that this port has no victim traffic. The traffic on this port
contributes to congestion, and of course, this port should send
PFC PAUSE. In Fig 3(a), ports H1-H29 are the normal port,
and all the burst flows contribute to the congestion on P2.
The second is that this port was previously a victim port, but
because it doesn’t need more buffer or it can’t take up too
much buffer, it is just like any other normal port. The second
case will be discussed in more detail in the next section.

2) Two Different Actions: The SPFC needs to give more
buffer to the CC-controlled traffic, and then when rate mis-
matches occur, congestion control can be converged to avoid
unnecessary PFC. But on the switch, it is difficult to do per-
flow operations, and it is difficult to identify whether there
is controlled traffic in a port. So, the SPFC assumes that all
victim ports may have long-lived controlled traffic and the PFC
threshold of the victim port is set to a large value. Once the
congested traffic occupies too much of the buffer and triggers
the PFC PAUSEs, the SPFC turns this port to the normal port
state and returns the port’s threshold to the normal value.
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Based on the above analysis, SPFC performs the following
actions according to different states:
•Victim Port Action: The PFC threshold for this port is

set to the buffer size. This means that the victim ports can
use all buffers. But when the shared buffer is full, the victim
ports still trigger the PFC PAUSE. When there is no burst
flow, raising the PFC threshold for the victim ports has no
effect. Long-lived flows using congestion control can make
the queue smaller than the normal DT threshold. PFC will
not be triggered because the queue length is far below the
threshold. A victim port occupies more buffer if and only if
the rate mismatch occurs.
•Normal Port Action: Normal Port uses the normal DT

algorithm. When the victim port occupies more buffer, accord-
ing to the DT algorithm (1), the corresponding PFC threshold
of normal ports becomes smaller.

In this way, SPFC achieved what we expected, providing
more opportunities to occupy buffer for the long-lived flow
and reducing other port buffer usage.

3) State Transitions: To distinguish between these two
different input port states, SPFC needs to use some input port
information. Assume the input port departure rate is the output
speed of the input port, which is:

Rdepart = Rinput −△Qinput (2)

It is the rate at which the input port processes packets and is
also the throughput of each flow that passes through the input
port. Our key finding is that a victim port has a high departure
rate because the port has other victim flows in addition to
the congested traffic. A normal port has no additional flow,
so it has a low departure rate. Therefore, we can rely on a
selected rate C/Kspfc (assume that the port line rate is C) to
distinguish between the victim port and the normal port. The
Kspfc is a key value used to distinguish victim port states.
We will discuss the details later.

Fig 7 illustrates state transitions among two states in switch
ports:
•When Rdepart > C/Kspfc and this port triggers PFC

RESUME, the port is the victim port and the PFC threshold
is the entire buffer size.
•When Rdepart < C/Kspfc or this port triggers PFC

PAUSE, the port is the normal port and the PFC threshold is
controlled by DT.

For example, as shown in Fig. 3(a), when the burst does not
occur, the departure rate of port P0 is 100 Gbps. This indicates
that the port is sending at a very high rate, and the possibility
of the victim port is very high. When a burst occurs, the output
speed of H1-H29 ports is only about 4 Gbps, so H1-H29 is
experiencing a burst.

It’s worth noting that a port’s state is shaped not just by
its rate but also by the length of its input queue. Suppose
a previously victim port returns to normal state due to PFC
PAUSE, its queue length would gradually decrease. After the
length falls below Xon, the port triggers PFC RESUME and
then reverts to the victim state when its Rdepart remains high.

The above analysis shows that the foundation of SPFC is
the Kspfc. It distinguishes whether the port deserves a larger

Fig. 8. SPFC flow model.

TABLE I
PARAMETERS OF THE FLOW MODEL

PFC threshold. The crucial problem is to determine the value
of Kspfc. In the next subsection, we will give an example of
how to use a flow model to select the value of Kspfc. We also
analyzed which cases were misidentified in the port state and
how to remedy them.

C. Flow Model

We build a conceptual flow model to describe Kspfc in
lossless networks. Fig. 8(a) shows traffic distribution. The
traffic of the victim port (left) is divided into two parts: the
victim traffic in red with a traffic rate of (1 − ϵ)C, and the
congestion traffic in yellow, with a traffic rate of ϵC. At time
t1, N burst ports send uncontrolled traffic to congested ports
and end at time t2. It is assumed that all traffic does not change
the sending rate for a short period of time, and that the switch’s
buffer is large enough not to trigger PFC. Key parameters are
listed in Table I.

We have built a fluid model to analyze Kspfc, seen in
Appendix A. From it, Kspfc is determined by N and ϵ.
We conclude that N is independent of ϵ because of the
uncertainty of the flow distribution, and Kspfc is unbounded.
However, a reasonable Kspfc can adapt to most cases, which
is enough for switches to distinguish between the victim port
and the normal port. Fig. 9 demonstrates the values of Kspfc.
We take the 32-port switch as an example in this paper. The
value of ϵ ranges from 0 to 1. The oblique plane at the
top is f(N, ϵ) = N + 1, and the surface at the bottom is
f(N, ϵ) = (N + 1)/((1− ϵ)(N + 1) + 1). The z-value of the
flat plane is Kspfc = 5. We empirically recommend Kspfc is
5 because it can already cover most solutions.

There are two parts that SPFC can’t cover. First, when N <
4, SPFC identifies the burst port as the victim port. In this case,
the burst was so small that a mismatch would require a small
buffer that would not affect the original victim traffic. Even
when burst ports start to trigger PFC, they will return to normal
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Fig. 9. The relationship between burst port number N , ϵ and Kspfc. The
z-value of the flat plane is Kspfc = 5.

without affecting judgment. Second, when ϵ > 0.8+1/(N+1),
SPFC identifies the victim port as the burst port. Note that as ϵ
increases, the ratio of victim traffic to all the victim port traffic
decreases. In this case, it is reasonable to identify the port as
a normal port. And we proved through simulation that SPFC
can also slightly outperform DT in the case of victim traffic.
The recommended setting is also verified through simulations
in Section VII-A.

D. Analysis of SPFC

PFC threshold and queue length: Although we sig-
nificantly increase the PFC threshold when the victim
phenomenon occurs, the impact on normal ports is temporary.
Assume that the switch buffer size is B and there are n
victimized ports and m normal ports at a given moment. The
queue lengths of the victim ports are Q1, Q2, . . . , Qn, and the
queue lengths of the normal ports are q1, q2, . . . , qm. Then the
total buffer occupied by the victim and normal ports are:

Qvictim =
n∑

i=1

Qi qnormal =
m∑

i=j

qj (3)

So the PFC threshold for normal ports is:

Tnormal = α ∗ (B −Qvictim − qnormal) (4)

Typically, the victim port requires one RTT to control the flow
competing with the burst, like F2 in Fig. 3(a). As a result, the
victim port length Qi will decrease and the normal port length
qi will be raised. When reaching the final state, they all have
the same PFC threshold complying with Eqn (4).

Long-lived flow start after burst: In the preceding anal-
ysis, our findings and the flow model are based on the
assumption that a long-lived flow already enters the stable
state when burst flows start. It is not clear what happens when
a long-lived flow starts after there are already a large number
of burst flows in the network. Essentially, the order in which
long flows and bursts arrive does not bring any additional
negative impact. In the latter scenario, there are no victim
ports as the traffic on these ports does not compete with the
burst traffic. The port still uses the DT algorithm at this point.
When a long-lived flow arrives and competes for the same

output port as the burst, it may cause other traffic on the input
port to become victims. In this case, we need to increase the
PFC threshold of the input port to protect the victim traffic.
Therefore, the order in which long-lived flows arrive does not
conflict with our previous analysis.

Different victim patterns: The victim flows can be either
small flows or large flows. When they are small flows, the vic-
tim traffic phenomenon significantly impacts delay-sensitive
small flows. When the victim flow is a large one, a transient
burst has a relatively small impact on it. However, bursts
occur frequently in data centers [2], [44] and the victim’s
long flow would suffer from long-term unfairness, leading
to performance degradation. To thoroughly demonstrate the
effectiveness of our proposed method, we generate a mixed
traffic pattern at port P0, comprising both large and small
victim flows with various sizes (as described in Section VII-
C). Fig. 13 presents the robustness of SPFC under different
traffic patterns.

E. Putting It All Together

To demonstrate the advantages of SPFC, we enable SPFC
and repeat the simulations in section III, and the results are
also inserted into Fig. 4 and Fig. 5. The results in the last
column of Fig. 5 tell that PAUSEs in P0 are completely
avoided. The results also confirm that SPFC can help the
uncongested flows grab idle bandwidth quickly and regulate
the congested flows to proper rates correctly and promptly.
Next, we will explain how SPFC works.

At first, every port is in the normal state, and there is no
traffic on the switch at this time. When H0 starts sending
data, the P0 port detects a speed of 100 Gbps and changes
the port into the victim state. Port P0 does not have queues
building up before burst because there is no bottleneck in its
transmission. When burst comes, the queues of P0 and H1-H29
begin to grow until the entire buffer is full. When the buffer
is nearly full, the PFC threshold for H1-H29 is triggered, and
PFC PAUSE is initiated to notify upstream ports to suspend
transmission. Since port P0 is in the victim state, its PFC
threshold is larger than the other ports, so it will continue to
buffer packets. According to the DT, all PFC thresholds of
H1-H29 are lowered due to the P0 queue increase. All the
buffer saved by H1-H29 was reserved for P0 to absorb the
mismatch traffic. When the congestion control rate of F2 is
adjusted correctly, the queue length of P0 can be controlled
to a smaller queue length than the normal DT threshold, and
the queue length of H1-H29 ports also returns to the normal
DT threshold. During this process, there is no PFC PAUSE in
port P0, so F1 also quickly adjusts the speed to the correct
value through congestion control.

V. IMPLEMENTATION

In this section, we present a possible implementation
of traffic-aware buffer management policies, Selective-PFC
(SPFC). Based on the classic dynamic threshold (DT) [18],
SPFC controls port thresholds by assigning a traffic state
indicator to each port and detecting traffic changes.
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Fig. 10. Circuit diagram.

A. State Decision

An important objective is to design a buffer scheme that
is simple to implement. Fig. 10 illustrates the circuit diagram
of the SPFC added to each input port. Only a few counters
and triggers need to be maintained to monitor the state of
the ports. Inputs of this diagram are the ingress dequeue
signal and PFC PAUSE signal generated by each logic input
queue of the port. A pulse is generated on them whenever a
packet is enqueued or dequeued, and a PFC PAUSE frame
is triggered. The output in this diagram determines whether
SPFC is in the victim port state. Timeout Clock (TC) is a
countdown timer, and they begin to count down from their
default values once they are enabled. Ingress Rate Counter
(IRC) increases its value for every input pulse. State Holder
(SH) holds its state until reset by reset pulse. Next, we’ll
show the details of these timers and counters one by
one.

Timeout Clock (TC) is used to fix a period of time to
calculate the departure rate of each input port. It begins to
count down when Oscillator triggers a pulse signal and stops
when its value reaches 0. When TC is counting down, its
output pin is set to 0. And when it reaches 0, its output pin
is set to 1 to signal IRC to reset its counter to calculate the
next period rate. The default value of the TC should be long
enough to keep the rate calculation stable and prevent the rate
from fluctuating too much. But it can’t be too long, so the rate
calculation is not timely.

Ingress Rate Counter (IRC) is used for identifying that the
input port becomes the victim state. It increases for each pulse
on the ingress dequeue signal. Therefore, in combination with
the TC, its value represents the packet number over a period of
time. When it does not exceed its counting number, its’ output
is 0, indicating that the current rate is insufficient and SPFC
is in the normal state. SPFC will change into the victim state
when it reaches its counting number, and its output turns to 1.
The counting number influences the sensitivity of identifying
the victim state.

State Holder (SH) is used for holding the status of
IRC temporarily. Because every time a TC is re-counted,
the IRC will be cleared to zero, and the output will be 0.
Therefore, SH is to hold the state in the last time interval,
making the change of state stable. In addition, it has the
very important function of penalizing ports that have given
sufficient buffers but still trigger PFC PAUSE. When PFC
PAUSE is triggered, the reset button is activated, making the
port normal and running DT algorithm. During this interval,
the port output remains 0 regardless of the IRC’s output.
The IRC output becomes effective only after receiving PFC
RESUME and the reset becomes 0. The truth table in Fig. 10

concisely illustrates the logic, consistent with the description
in Section IV-B.

B. Convenient Parameter Setting

In SPFC, only three parameters (TC, IRC, and α) need
tuning before deployment. We assume that the line rate C of
all ports is equal in the same switch for simplicity. The switch
has a buffer size of B.

TC and IRC together make victim state decisions; thus,
their thresholds should be set together. TC controls the time
interval for measuring the rate; thus, a smaller TC threshold
means SPFC is more sensitive to rate changes, and a larger
TC would mean otherwise. In practice, TC ≥ 4RTT is good
enough for most cases. IRC is the key to determining state.
We set the IRC threshold as (C × TC)/Kspfc. (C × TC)
is the maximum number of packets that can be exported from
the port in the interval of TC. The Kspfc setting has been
discussed in detail in Section IV-C. The other parameter is α,
which is the parameter of the DT algorithm under the normal
port. It’s a tradeoff, just like a normal DT algorithm. α value
is large, which means that the active port can occupy more
buffer. Small α means otherwise.

VI. DISCUSSION

Implementation requirement: SPFC can be implemented
directly on the data plane, which needs a little switch modi-
fication. Compared to the traditional DT method in switches,
the SPFC only requires one more counter per port and several
more lines of logic. The space and computing complexities of
modification are both O(1).

Temporary unfairness: SPFC essentially uses the buffers
of burst ports to provide more buffers for non-burst ports.
In this case, non-burst ports can be adjusted to the correct
speed by congestion control without causing performance
penalty problems. This creates unfairness in the port, but Fig. 5
shows that the unfairness is temporary and will soon be recov-
ered. By the way, more emphasis is placed on the tail FCT of
services in the data center, and SPFC can greatly reduce the
tail FCT by controlling the victim traffic phenomena.

Low latency requirements: SPFC makes the burst port use
the buffer less, in which case the PFC-induced port latency
might cause some flows to miss their deadline. First, the victim
traffic phenomenon that SPFC wants to address doesn’t happen
very often. SPFC is only effective when the victim traffic
phenomenon occurs, causing temporary unfairness. Second,
suppose it is necessary to ensure low latency for important
flows strictly [45], [46]. In that case, we recommend raising
the priority of these flows so that they are not affected by
SPFC regulation.

Performance across diverse traffic scenarios: Based on
the flow model in Section IV-C, we have inferred that SPFC
can cover most cases under Kspfc = 5. In a few scenarios,
SPFC may also make incorrect judgments regarding the port
state (i.e., when N < 4 or ϵ > 0.8 + 1/(N + 1)). We have
illustrated that the impact of such misunderstandings is neg-
ligible. In addition, we have also conducted experiments to
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Fig. 11. SPFC with Kspfc = 5 can provide better robustness when meeting different number of burst flows. [topology in Fig. 3(a)].

investigate the performance of SPFC when facing different
combinations of traffic. Both victim and burst ports may
contain complex traffic patterns, like a mixture of large and
small flows. We generated test traffic based on the WebSearch
workload [3] for these two types of ports and Fig. 13 demon-
strates the robustness of SPFC under Kspfc = 5. In all-to-all
communication, we have also done testing under the Hadoop
workload [28]. For more traffic scenarios, further exploration
is required and we leave it as future work.

VII. EVALUATION

In this section, we compare the performances of DT, ST and
SPFC on ns-3 platform [22] and DPDK [23] testbed.

We evaluate three critical aspects of SPFC:
(1) We verify the parameter selection by simulation and

verify the correctness of simulation by testbed experiment.
(2) We evaluated the flow scalability of SPFC in the Burst

Tolerance scenario, including PAUSE rate, FCT of different
traffic sizes, and PFC of different ports.

(3) We measured the performance of SPFC in large-scale
all-to-all scenarios and investigated its utility in mitigating
deadlock.

A. Parameter Validation of Kspfc

The first step is to verify that the selection of Kspfc, the
most important parameter of SPFC, is appropriate. As men-
tioned earlier, the phenomenon of victim flows often occurs
due to bursty traffic. In order to create victim flows more
effectively, we have introduced competition between normal
flows and bursts by increasing their intensity. We use the
topology shown in Fig. 3(a). H0 sends 1 long flow to R1,
and 3 (ϵ = 0.75) and 7 (ϵ = 0.875) long flows to R2,
respectively. To validate the theoretical analysis presented
in IV-C, we conducted tests on the PFC pause rate and
throughput under different values of Kspfc. The classical
buffer scheme DT is used for comparison. Fig 11 shows the
experimental results.

From the result, a larger Kspfc (e.g., 7 and 9) will result in
a larger pause rate when the number of concurrent requests is
small. This is because when the concurrent traffic is few, the
phenomenon of victim flows is not obvious, and normal ports
may be mistaken for victim ports. As a result, more victim
ports compete for buffer resources, which can easily trigger
PFC. In contrast, a smaller Kspfc (e.g., 3) will not guarantee
a good throughput when the number of concurrent requests
is large. So Kspfc = 5 is recommended as a good choice.

Fig. 12. Result of Testbed Validation.

In addition, in section IV-C, we analyzed that when ϵ > 0.8+
1/(N + 1), SPFC identifies the victim port as the busrt port.
However, fig 11(b) and (d) show that when Kspfc = 5, SPFC
still performs better than DT. Even if SPFC misidentifies the
state of a port, it is only temporary because N will dynamically
change with the burstiness of traffic.

B. Testbed Validation

In this subsection, we verify the basic function of SPFC
using simple synthetic microbenchmarks and repeat the exper-
imental results of Section III-A on the testbed.

Testbed setup: We deploy SPFC on a testbed built upon
DELL servers with two Intel 82599 NICs and four Intel
850nm SFP+ laser ports for optical fiber connections, acting
as a PFC-enable switch. Each NIC has two 10Gbps Ethernet
ports, and the server is equipped with Intel i7-9700K CPUs (8
cores, 3.60GHz). We configure 8GB huge page memory for
DPDK (4GB/NUMA Node). We bind 5 threads on 5 physical
cores for analyzing traffic and adjusting port state. Due to
the lack of physical ports, we virtualize 5 network ports in
the DPDK kernel. Thus, the server can work as a nine-port
switch. We implement PFC according to IEEE 802.1Qbb [16].
Both PFC and SPFC are based on the reference test-pipeline
project [47]. Four hosts are equipped with Mellanox RDMA
10Gbps network adapters, two with CX5 [48] and two with
CX6 [49]. They are all connected to the PFC-enable switch.
PFC-support service is enabled to process received PFC
frames.

Scenario: The network topology is similar to Fig. 3(a),
where the hosts linked to the four physical ports are victim
port H0, receiver port R1, R2, and burst port H1, respectively.
The DPDK switch will make 5 copies of the traffic from the
H1 port to virtualize additional ports. Packets are forwarded
to the corresponding egress ports based on their destination
addresses. The total buffer of the switch is 2.5MB and the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Tsinghua University. Downloaded on July 24,2024 at 08:01:04 UTC from IEEE Xplore.  Restrictions apply. 



HUANG et al.: RE-ARCHITECTING BUFFER MANAGEMENT IN LOSSLESS ETHERNET 11

Fig. 13. Compared with DT and ST, SPFC can also perform well in PAUSE rate and FCT even under a mixture of traffic patterns. [topology in Fig. 3(a)].

Kspfc is set to 5. We used DT and ST as the comparison
schemes. At the end host, DCQCN is used as the congestion
control with default parameters. We use Perftest [50] to
generate traffic.

The measurement results are shown in Fig 12. The testbed
experiment well verifies the simulation results. With the
increase of burst ports, SPFC does not cause the victim port
to trigger too many PFC packets, and the throughput of the
victim port does not decrease. In contrast, ST performs the
worst because it cannot dynamically allocate resources among
different ports.

C. Burst Tolerance

One advantage of SPFC is its robustness against PFC
triggers caused by concurrent burst flows. Next, we also
use the basic scenario in Fig. 3(a) to evaluate SPFC in the
typical victim traffic scenario. The bandwidth and latency of
the links remain consistent with the specifications outlined
in Section III-A. Hosts H0-H29 generate flows according to
the heavy-tailed WebSearch workload [3] with exponentially
distributed inter-arrival time. Especially, the workload gener-
ators at hosts H1-H29 are set to be synchronous to simulate
concurrent bursts. The target load at the bottleneck links is
set to 0.6 (0.4 for H0 and 0.2 for burst). The switch memory
is 16 MB, and the α for DT and SPFC is set to 1. DCQCN
and TIMELY are set to the default values recommended by
the related literature [34], [35]. We measure the pause rate and
flow completion time (FCT) of SPFC and compare them with
DT and ST.

Performance Results: The left subgraph in Fig. 13 shows
the generating rate of PFC PAUSEs. SFPC triggers the fewest
PAUSEs. It can reduce 31.6% and 69.0% PFC PAUSEs
compared to DT and ST with DCQCN, 36.5%, and 49.7% with
TIMELY, respectively. And the average and 95th percentile
FCT slowdowns from different hosts are drawn in the right
subgraph in Fig. 13, where the slowdown is the ratio of
the actual time required to complete an echo RPC divided
by the best possible time for an RPC of that size on an
unloaded network. A lower slowdown value indicates better
performance. A slowdown of 1 is ideal. Slowdowns for small
flows and large flows are independent and cannot be compared

TABLE II
FLOW SIZE DISTRIBUTION OF REALISTIC WORKLOADS

with each other. The solid bar at the bottom indicates the
average FCT slowdown, and the upper stripe bar shows the
95th percentile value. Clearly, SPFC performs better than DT
for all kinds of flows in general.

As mentioned earlier, the SPFC actually uses the H1-
H29 buffer for the P0 buffer during mismatch, so the FCT
slowdown of H1-H29 is increased a little in some cases,
but the FCT slowdown of H0 is reduced clearly compared
with DT and ST. For all ports, SPFC achieves lower 95th
FCT slowdown compared to DT and ST. Specifically, when
adopting DCQCN, for small flows (<10KB), SPFC provides
similar FCT slowdown with DT and ST. But for flows (10KB-
1MB), SPFC outperforms the other two schemes. For large
flows (>1MB), SPFC reduces the average slowdown by 57.9%
compared to DT and by 83.5% compared to ST. Furthermore,
under the TIMELY’s control, the performance improvement
of SPFC is similar with DCQCN’s, except for small flows
(<10KB). The reason is that incast flows from H1-H29 ports
could not obtain enough buffer, prolonging the overall latency
for small ones. While for large flows, SPFC reduces the
average slowdown by 39.4% compared to DT and by 70.9%
compared to ST. For port H1-H29, SPFC only has obvious
FCT increase on small flows (<10KB) due to inadequate
buffer. But its impact is limited, and we can improve the
overall performance of other kinds of flows.

Fined-grained Analysis: We measured the average length of
burst ports when PFC pause frames are triggered. Fig. 14(a)
demonstrates the queue lengths of ports under different burst
load. In SPFC switches, burst ports pioneer in triggering PFC,
which keep the queue length at a lower level. Although DT
also reduces the PFC threshold, it provides longer queues,
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Fig. 14. (a) The queue length of burst ports is lowest under SPFC.
(b) The ratio of buffer occupancy, between victim ports and normal ports,
demonstrates that the victim port do not excessively preempt resource under
SPFC when the burst load is lower.

which increases packet queuing delay. As mentioned in
section IV-D, victim ports do not excessively occupy the
resources, even though they are provided with a higher thresh-
old. Fig. 14(b) shows the ratio of the average cache occupancy
of victim ports to that of normal ports when triggering PFC.
The logic for calculating this ratio is as follows: assume that
the victim port triggers PFC x times, and the buffer occupancy
of the port is V1, V2, . . . , Vx each time PFC is triggered. The
normal port triggers PFC y times, and the buffer occupancy is
N1, N2, . . . , Ny . Then the ratio is

∑x
i=1 Vi∑y
i=1 Ni

. The SPFC-enabled
switch is significantly lower than DT’s. Overall, it maintains
this value within a lower range under low burst load. Although
the buffer occupancy of victim ports under SPFC control
increases rapidly under high burst load, it remains lower
than that of DT. ST sets the same static threshold for each
port, so the victim port do not excessively occupy the buffer.
Through the analysis of queue lengths, we explain the reason
for low latency and demonstrate the protective for buffer of
normal ports.

D. Performance in Large-Scale Networks

In this subsection, we evaluate the performance of SPFC
in multi-hop datacenters to demonstrate the universality of
SPFC. We still use DCQCN and TIMELY as the congestion
control at the end host with the default parameter settings.
Normal Pods: We consider an 8-pod clos network. Each pod
consists of 2 Leafs, 4 ToRs, and 64 hosts (16 in each rack),
and communicates with other pods through 4 spines. The
link capability is 100Gbps below ToRs and 400Gbps above
them. All links have a 2µs propagation delay, which gives a
24µs maximum base RTT. The switch memory is 32 MB, and
the α for SPFC is set to 2. To support multi-path capability,
the Equal Cost Multi Path (ECMP) scheme is used. We use
widely accepted and public available data center traffic traces,
WebSearch (W1) [3] and FB Hadoop (W2) [28]. We generate
flows with exponentially distributed inter-arrival time and the
target loads for ToR down-links range from 10% to 90%. The
source and destination of each flow are arbitrarily selected.

Fig. 15 and Fig. 16 present the FCT results for all-to-all
traffic under W1 workload. SPFC performs better than DT and
ST for DCQCN and TIMELY. We obtained similar results in
W2, and do not repeat the presentation.

Large flows: When the load is low, there is not much
difference between SPFC and the other two schemes. This

TABLE III
AVG THROUGHPUT OF LARGE FLOWS (UNIT: GBPS)

is because fewer flows result in fewer occurrences of victim
flows. However, when the load exceeds 0.5, the advantages of
SPFC start to become prominent. In terms of average latency,
under DCQCN’s control, SPFC achieves an improvement of
up to 46.1% compared to DT and 53.8% compared to ST
(139.8 for SPFC, 259.4 for DT, and 302.9 for ST). Under
TIMELY’s control, SPFC achieves an improvement of up to
32.3% compared to DT and 38.9% compared to ST (176.8 for
SPFC, 261.3 for DT, and 289.3 for ST). As the load increases,
incast occurrences become more frequent, which leads to more
large victim flows.

Small flows and Overall: Under DCQCN’s control, SPFC
provides similar performance to DT and ST in terms of average
latency. Only under higher loads does SPFC exhibit a slight
advantage. Because many small flows passing through victim
ports obtain more buffer. Under TIMELY’s control, the 99th
percentile FCT slowdown for some flows is lower. It indicates
that SPFC has the capability to ensure high throughput.

From the above results, SPFC can timely alleviate the
problem of congestion control mismatch by applying more
buffer, which reduces the impact on victim flows from the
same port. ST has the worst performance because it does not
use the buffer well. Although DT can dynamically allocate
buffer among different ports, it fails to protect victim ports,
causing innocent traffic to suffer PFC pause.

We have already demonstrated that SPFC provides good
performance through latency analysis. In data centers, through-
put of large flows is also an important performance metric.
We tested the average throughput of each large flow under
different buffer schemes in the above scenario under 50%
load. From Table III, the results achieved by SPFC are higher
than the other two schemes’. This is because ports containing
large victim flows have high rate, and SPFC increases the PFC
threshold to avoid innocent flows being affected. Under the
same control strategy, the throughput achieved with the Web-
Search workload is higher than that achieved with Hadoop.
Due to more large flows contained in WebSearch, it is easier
to achieve higher throughput.

Deadlock Pod: PFC is a significant cause of deadlock,
and we demonstrate it through the following experiment the
performance of SPFC in a deadlock scenario. We adopt the
topology in Fig. 17(a), which is a single pod of the above’s
topology. The links L0-T3 and L1-T0 are failed, such that
there is a cycle buffer dependency (CBD) as the red line draws.
Other settings are kept consistent with the above’s.

First, we investigated the PFC trigger frequency, which is
the most direct indicator that affects deadlock. We simulate
DCQCN + SPFC, DCQCN + DT, TIMELY + SPFC and
TIMELY + DT with the W1 workload. The target load is
0.5 at ToR down-links. Each scheme is tested 1000 times, and
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Fig. 15. FCT statistics under DCQCN. [All-to-all communication].

Fig. 16. FCT statistics under TIMELY. [All-to-all communication].

Fig. 17. The deadlock test.

every simulation lasts for 10 ms. We record the time when a
deadlock occurs. We record the time when a deadlock occurs
and draw the statistical results in Fig. 17(b).

Among the 1000 simulations, SPFC encounters with dead-
lock for 237 and 209 times with DCQCN and TIMELY,
while DT is deadlocked for 612 and 538 times with DCQCN
and TIMELY, respectively. SPFC can reduce the probability
of deadlock from 61% to 24%. The advantage of SPFC
comes from the positive effect of mitigating PFC triggers and
stopping congestion spreading.

Fig. 18 shows experimental results when meeting a dead-
lock. Whether the end-host is using DCQCN or TIMELY, the
performance of SPFC is similar to DT but slightly better than
ST under W1 (WebSearch workload). SPFC performs better in
cases where W2 (Hadoop workload) is the majority of small
flows. For small flows (<10KB), it can reduce 95th FCT by
up to 45.9% compared to ST. For large flows (>1MB), it can
reduce average FCT by up to 53.3% compared to ST. These
benefits are due to the fact that SPFC can generate fewer PFC
triggers. This shows that when there is CBD in the data center,
SPFC can well alleviate the mismatching problem of the
congestion control mechanism, and the network performance
is greatly improved.

VIII. RELATED WORK

Buffer management in lossy ethernet: Enhanced Dynamic
Threshold (EDT) [51] improves the burst absorbing ability
of DT by temporally relaxing threshold restraint to absorb

Fig. 18. When facing CBD, other schemes are more prone to triggering PFC
PAUSE, resulting in longer FCT. [topology in Fig. 17(a)].

microburst traffic. Traffic-aware Dynamic Threshold (TDT)
[52] punishes the overwhelmed traffic by limiting the threshold
value, thus reserving more buffer to improve the capacity of
EDT to absorb the microburst traffic. We argue that they are
not applicable to solving the mismatch problem in lossless
networks. Take the Enhanced Dynamic Threshold (EDT) [51]
as an example. (a) Different goals: First of all, EDT is
designed for lossy networks. Its goal is to absorb micro-burst
traffic so as to give more buffer for burst ports to prevent
timeout retransmission due to packet loss. Since the lossless
network ensures no packet drops, we design SPFC to give a
larger buffer for non-burst traffic in order to absorb mismatch
traffic. (b) Different functions: In addition, EDT controls the
packet drops on the output port, and the control threshold is
adjusted based on the egress bytes. The SPFC controls the
PFC triggering on the input port, and the threshold is adjusted
based on the ingress bytes.

Accurate congestion control: Recently, a large number
of congestion control works have been proposed [3], [15],
[34], [35], [36], [40], [53], [54]. DCQCN [34] is a congestion
control algorithm that combines DCTCP [3] and QCN [42]
by replacing the congestion notification mechanism with ECN
in the network layer. TIMELY [35] is another congestion
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control heuristic algorithm, which uses delay measurements
to detect congestion, and then adjusts transmission rates
according to RTT gradients. HPCC [36] uses switch INT (in-
network telemetry) to obtain the precise switch congestion
state and calculates the remaining bandwidth. PCN [40] is
a receiver-driven RDMA congestion control that differentiates
mismatch traffic and thus reduces the amount of PFC PAUSEs.
BFC [54] utilizes new hardware and employs a hop-by-hop
control mechanism to avoid end-to-end latency.

DCQCN and TIMELY are congestion control algorithms
that have been deployed in data centers at present. They
are slow evolution-based end-to-end congestion control and
have the problem of mismatching that SPFC needs to solve.
HPCC and PCN can accurately adjust the sending rate of the
end hosts, so they have almost no mismatching problems.
However, they need to modify both the end node and the
switch at a much higher cost than SPFC, which only needs
to modify the switch. Although BFC also eliminates the
mismatch problem, it is difficult to scale when there are a
large number of flows.

Deadlock mechanism for RDMA: There are several mech-
anisms available to solve the problem of deadlock in RDMA
networks. In order to eliminate cycle buffer dependency
(CBD), Tagger [55] placed multiple independent priority
queues on each switch and increased the grouping priority hop
by hop. In this way, no CBD exists under the same priority,
thus eliminating the deadlock. GFC [56] is a fine-grained
manipulation port rate that allows all ports to keep packets
flowing, even if there is CBD, and theoretically demonstrates
that GFC can eliminate deadlocks. The above work is com-
pletely orthogonal to SPFC. Tagger [55] and GFC [56] will
also encounter the problem of throughput mismatch. SPFC can
be well-compatible with the above work.

IX. CONCLUSION

In this paper, we demonstrate that mismatching of end-host
congestion control leads to improper PFC PAUSEs, which
can result in congestion spreading, victim traffic phenomenon,
and even deadlock. We re-architect buffer management for
lossless Ethernet and propose Selective-PFC (SPFC), which
provides the ability to occupy more buffer on mismatched
traffic ports. SPFC is a practical solution and can be easily
implemented on commodity switches with incremental mod-
ifications. Extensive evaluations confirm that SPFC greatly
improves performance, significantly mitigates PFC PAUSE
messages, and reduces the flow completion time under realistic
workloads. We believe SPFC should be considered for wide
adoption in commodity switches.

APPENDIX

In the following, we analyze the rate changes of different
types of flows based on the model developed in Section IV-C.
Accordingly, we find the appropriate K to distinguish different
types of ports. Moreover, we determine the conditions that
needs to be satisfied to distinguish different types of ports.

When no burst occurs (i.e. t < t1), Rdepart for the victim
port is C and Rdepart for the burst port is 0. When t = t1,

N burst ports start to send packets at rate C. Since there are
N + 1 ports sending traffic to congested ports, their departure
rate per port is

Rburst
depart =

C

N + 1
(5)

The victim port departure rate is the victim flow part and
congest part, which is:

Rvictim
depart = (1− ϵ)C +

C

N + 1
(6)

The flow model is used to analyze the selection of K value.
Fig. 8(b) shows the timing diagram. As can be seen from
the figure, the min(Rvictim

depart) and the max(Rburst
depart) can be

distinguished by C/Kspfc. We can get

(1− ϵ)C +
C

N + 1
>

C

Kspfc
>

C

N + 1
(7)

And just by simplifying, we can get this

N + 1 > Kspfc >
N + 1

(1− ϵ)(N + 1) + 1
(8)
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