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Abstract— With the prevalence of broadband network and
wireless mobile network accesses, distributed interactive applica-
tions (DIAs) such as online gaming have attracted a vast number
of users over the Internet. The deployment of these systems,
however, comes with peculiar hardware/software requirements
on the user consoles. Recently, such industrial pioneers as Gaikai,
Onlive, and Ciinow have offered a new generation of cloud-based
DIAs (CDIAs), which shifts the necessary computing loads to
cloud platforms and largely relieves the pressure on individual
user’s consoles. In this paper, we aim to understand the existing
CDIA framework and highlight its design challenges. Our mea-
surement reveals the inside structures as well as the operations
of real CDIA systems and identifies the critical role of cloud
proxies. While its design makes effective use of cloud resources
to mitigate client’s workloads, it may also significantly increase
the interaction latency among clients if not carefully handled.
Besides the extra network latency caused by the cloud proxy
involvement, we find that computation-intensive tasks (e.g., game
video encoding) and bandwidth-intensive tasks (e.g., streaming
the game screens to clients) together create a severe bottleneck
in CDIA. Our experiment indicates that when the cloud proxies
are virtual machines (VMs) in the cloud, the computation-
intensive and bandwidth-intensive tasks may seriously interfere
with each other. We accordingly capture this feature in our
model and present an interference-aware solution. This solu-
tion not only smartly allocates workloads but also dynamically
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assigns capacities across VMs based on their arrival/departure
patterns.

Index Terms— Cloud-based distributed interactive application,
interaction latency, task interference.

I. INTRODUCTION

W ITH unmatched system flexibility, distributed inter-
active applications (DIAs) have become increasingly

popular in recent years. By providing diverse interactions
among users, such applications as massive multiplayer online
gaming, live messaging, and shared whiteboard have attracted
a vast number of users over the Internet. Take online gaming
as an example. It is reported in [1] that nowadays each
US household on average owns at least one dedicated game
console or PC for game playing, where 62% of them have
played interactive games with others. The global markets of
these DIA systems will also expand from 58.7 billion in 2011
to 83 billion in 2016, growing at a 7.2% compound annual
rate [2]. Yet, to support superior interactions, DIAs often have
peculiar demands on user consoles. The specialized consoles
with high-performance hardware unavoidably increase user
cost and greatly limit the penetration of DIAs to ubiquitous
end users.

To bring true play-as-you-go into reality, industrial pioneers
such as Gaikai [3], Onlive [4] and Ciinow [5] have suggested a
new generation of DIAs based on cloud computing platforms.
This cloud-based distributed interactive application (CDIA)
effectively shifts the hardware/software requirements as well
as the necessary computing loads to cloud proxies, and thus
has attracted an increasing amount of attention form both
service providers and end users. In particular, Sony Computer
Entertainment (SCE) acquired Gaikai for 380 million USD
on July 2, 2012, putting Gaikai as a key function in its next
generation game console, PlayStation 4 [6]. Its competitor,
Microsoft, also announced that the Gaikai-like CDIA functions
will also play a major role in their new game console Xbox
One [7]. Moreover, such industry leaders as AMD and Nvidia
are also entering the market of CDIA services [8]. AMD’s
investment in CiiNow gives it a means of competing with rival
Nvidia’s GeForce Grid cloud gaming platform. In addition
to cloud gaming, CDIAs can also take the form of the live
notebook environments (e.g., Jupyter [9]) or a dashboard with
live interactive graphical widgets (e.g., web applications based
on R’s shiny package [10]). These CDIAs also shift the
software requirements to the cloud, and offload the compiling
and parsing workloads to high-performance machines, i.e.,
cloud proxies.
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Nowadays, CDIA remains in its infancy with plenty of
unknown issues. In this paper, we take a first step towards
understanding the CDIA framework and highlight its design
challenges. Our measurement reveals the inside structure as
well as the operations of real CDIA systems and identifies
the critical role of cloud proxies. While this design makes
effective use of cloud resources to mitigate client’s workloads,
it may also significantly increase the interaction latency among
clients if not carefully handled. In both DIA and CDIA
systems, the interaction latency is the most essential problem
even when there is no limitation on the availability of server
capacities [11] [12]. The increasing latency will unavoidably
reduce the applicability of CDIA systems.

In detail, our analysis reveals that the deployment of
cloud proxies adds extra communication hops between clients.
To make the matter worse, the processing latency at the
cloud proxy is also surprisingly high. While the use of the
high-performance cloud platforms is expected to be highly
efficient, we find that the computation-intensive tasks (e.g.,
game video encoding) and the bandwidth-intensive tasks (e.g.,
streaming game screens to clients) together create a severe
bottleneck in CDIAs. Our experiment indicates that when
the cloud proxies are virtual machines (VMs) in the cloud,
the computation-intensive and bandwidth-intensive tasks may
seriously interfere with each other if not handled carefully.
An increase of traffic load will greatly slow down the CPU
benchmark of cloud VMs. In the case of CDIA, when the
cloud proxies are used to stream game screens to users, the
computation-intensive operations, such as game processing
and message forwarding, will also be invoked and prolong the
interaction latency. The large number of CDIA users further
aggravates this issue with mutual-interference, leading to poor
user experiences. For example, Diablo 2 in USEast realm
has over 5 million users across 20 servers. The maximum
acceptable latency of this Role Playing Games (RPG) is from
100 to 500 ms [13]. However, when we deploy these systems
on CDIA, their latency can easily exceed 600 ms even when
we assume that the network latency is as small as zero.

Such interference however does not exist in conventional
physical machines or to a much lower degree. Therefore,
the existing load assignment solutions in the DIA system are
mainly focused on the optimization of stand-alone workloads,
without considering their interference in the VM environment.
To address this problem, we provide a model and consider
an interference-aware solution that not only smartly allocates
workloads but also dynamically assigns capacities across dif-
ferent VMs. Moreover, this model is also enhanced to cap-
ture user’s arrival/departure patterns. The evaluation indicates
that the proposed enhancement can successfully handle user
dynamic while providing a bounded interaction latency.

The rest of this paper is organized as follows. Based on the
measurement of Section II, we examine the latency issues in
CDIA in Section III. Section IV reveals the task interference
on cloud proxies and Section V provides a model to mini-
mize the interaction latency. Our model is then extensively
examined in Section VI. Section VII provides the solution
to consider user’s arrival/departure dynamic. Section VIII
presents the related work and Section IX concludes the paper.

II. CLOUD-BASED DIA: BACKGROUND AND FRAMEWORK

From the industrial perspective, CDIAs can bring immense
benefits by expanding user bases to the vast number of less-
powerful devices that support thin clients only, particularly
smartphones and tablets. As an example, the recommended
system configuration for Battlefield 3, a highly popular first-
person shooter game, is a quad-core CPU, 4 GB RAM, 20 GB
storage space, and a graphics card with at least 1GB RAM
(e.g., NVIDIA GEFORCE GTX 560 or ATI RADEON 6950),
which alone costs more than $500 USD. The newest tablets
(e.g., Apple’s iPad with Retina display and Google’s Nexus 10)
cannot even meet the minimum system requirements that
need a dual-core CPU over 2.4 GHz, 2 GB RAM, and a
graphics card with 512 MB RAM, not to mention smartphones
of which the hardware is limited by their smaller size and
thermal control. Furthermore, mobile terminals have different
hardware/software architectures from PCs, e.g., ARM rather
than x86 for CPU, lower memory frequency and bandwidth,
power limitations, and distinct operating systems. Therefore,
the traditional console game model is unfeasible for these
devices, which in turn become targets for such CDIA systems
as Gaikai and Onlive. Different from existing DIAs, CDIAs
utilize the powerful and elastic service capacity offered by
cloud computing to mitigate the hardware/software require-
ments on user consoles. In particular, Gaikai and Onlive deploy
the game clients/consoles on cloud platforms and only stream
the game screen/interactions to end users.

To understand how CDIAs work in detail, we take Gaikai
as a case study. Since 2011, it has emerged as one of the
most popular cloud-based online gaming systems with over
100 million subscribers. It not only provides free PC game
demos but also powers high quality gaming experiences onto
smartphones, tablets and Internet TVs [14].

Our experiments have conducted traffic measurement and
analysis from the edge of four networks, which are located
in four different countries (United States, Canada, China and
Japan) in two distinct continents. We used traffic analysis,
shared library and system call interception techniques to
analyze various aspects of the Gaikai protocol. We also applies
a packet level analysis to understand the communications
between our clients and cloud proxies. In particular, we mon-
itor Gaikai’s online gaming service with clients from different
network locations and capture their traffic from/to the Gaikai
servers. We first examine the details in the control messages,
look into the packet payloads and identify the information,
such as the domain names, of Gaikai’s basic components. After
that, we carefully analyze the data traffic to further understand
the functions of these components. To avoid possible bias, we
apply classic analysis tools (e.g., ISP lookup) that are widely
adopted in the existing reverse engineering studies [15]. Note
that some online games are designed to utilize one of the user
clients as the server to enable interactions. We therefore take
advantage of this feature and capture the server-side traffic to
better understand the related protocols.

Through analyzing the captured traffic, we illustrate
Gaikai’s basic framework/protocol in Figure 1. We can see
that there are two major components on the server side of
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Fig. 1. Basic Framework of Gaikai.

Gaikai (marked as grey boxes in the figure). The first part
is Amazon EC2-based [16] load-balancers,1 and the second
part is the Limelight-based game proxy servers [17]. Both
Amazon and Limelight are leading cloud service providers
with Xen virtualization [18]. Gaikai applies both platforms to
accomplish different functionalities and utilizes their widely
geo-distributed instances to push these functions closer to the
users.

When a user selects a game on Gaikai (Step 1 in Figure 1),
an EC2 virtual machine (VM) will first deliver the Gaikai
game client to the user (in Step 2). After that, it forwards the
IP addresses of the available Limelight game proxies to the
users (in Step 3). The user will then use one game proxy to
run the game (in Step 4). To ensure smooth game playing, this
selected game proxy uses a packet train measurement [19] to
estimate the available bandwidth to the users. This is identified
by our packet-level analysis, which shows that the game proxy
sends back-to-back packets with empty payload to test the
available bandwidth. Note that the game proxy starts the
game only when the available bandwidth can well-support
an FPS (frames per second) around 60 for video streaming.
After that, the game proxy starts to run the game and the
game screen will be streamed back to the user via UDP
(in Step 5 and Step 6). For multiplayer online games, these
game proxies will also forward user operations to the game
servers (mostly deployed by game developers) and send the
related information/reactions back to users (in Step 7). It is
easy to see that such a CDIA system can remarkably relieve
the hardware/software requirements on the user side, given
that now the games are running on the cloud platforms. This
change enables users to play hard-core games over much less
powerful devices, e.g., over smartphone, tablets, or even digital
TVs, as long as they are multimedia- and network-ready.

We have also measured other CDIA platforms, and have
found that Gaikai’s framework is representative, which is
not surprising given it as a very natural extension to the
conventional DIA with cloud assistance.

1Based on our measurement, they also have other functions beside load-
balancing. We call them load-balancers because Gaikai marks them with “LB”
in their domain names.

Fig. 2. Path of client interaction.

III. INTERACTION LATENCY OF CDIA:
ISSUES AND CHALLENGES

The CDIA framework offers great opportunities for both
users and service providers. Similar to the conventional DIA
systems, its service performance is highly depending on users’
interaction latency [12]. In particular, the CDIA systems, such
as the online cloud gaming applications, need to collect user
actions, transmit them to the cloud proxy, process the action,
render the results, encode/compress the resulting changes to
the game-world, and stream the video (game scenes) back to
the player. To ensure interactivity, all of these serial operations
must happen in the order of milliseconds. The interaction
latency is thus essential even when there are no limitations
on the availability of server capacities [11].

Figure 2 illustrates the interaction pathes in both DIA and
CDIA frameworks, where L is the set of clients, S is the set
of servers, and C is the set of cloud-based proxies. To better
compare the performance of DIA and CIDA design, we will
first focus on the latency between clients and servers (e.g.,
between l1 and s1). It is easy to see that such a latency consist
of two parts in the CDIA systems: First, the network latency
between clients and servers; Second, the processing latency
on cloud proxies. We will provide a step-by-step discussion
to understand these two parts in the following subsections.

A. Network Latency Analysis

To clarify the extra network latency in CDIA design, we
carry out a real-word experiment from Planet-lab. We use a
server in our campus to emulate the game server in CDIA.2

We select 588 Planet-lab nodes (the maximum number of
nodes that we can access) to run as CDIA clients and emulate
the CDIA framework by using the server and these clients
to connect Gaikai’s cloud proxies. We have found 28 cloud
proxies during the measurement of Gaikai,3 and therefore
use the IP addresses of these proxies in this experiment.
We first measure the RTTs between 588 Planet-lab clients and
28 Gaikai cloud proxies and then the RTTs between the server
and these cloud proxies. The sum of these two latencies can be
used to calculate the client-server RTTs in this CDIA system.
To provide a fair comparison, we also measure the direct RTTs
between the server and the Planet-lab clients as the baseline
(the case of conventional DIA).

2We have observed similar results over 50 servers that are located in
different places.

3The total number of Gaikai’s cloud proxy is unknown to the general public.
These sampled cloud proxies are used to estimate the network latency in such
a system.
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Fig. 3. Time cost between user and server (DIA v.s. CDIA).

Fig. 4. Average user-server latency in CDIA.

Figure 3 compares the client-server RTT in both DIA and
CDIA. We can see that most (over 80%) users in DIA have
quite low client-server latency (less than 60 ms), while the
average latency is much worse if we put them into CDIA, as
shown in Figure 4. The worst case in Figure 4 shows 90%
users have an interaction latency over 200 ms. This is hardly
acceptable for smooth interaction because the processing laten-
cies are not yet considered in this experiment. It is known that
adding extra nodes in any overlay network may unnecessarily
lead to longer path length given that triangle inequality does
not hold in the Internet [20]. Hence, there is indeed space to
reduce the latency beyond naive proxy deployment.4

B. Processing Latency Analysis

So far, we have only considered the network latency in the
CDIA framework. It is easy to see that the cloud proxies will
also bring extra processing latency to the interaction. We now
closely examine this latency and identify its impacts.

To focus exactly on the interaction between clients and
cloud proxies, we select a single player game where a player
(client) does not need to communicate with the game server
and other players. The player simply sends the operations to
the cloud proxy and the proxy then streams the responding
game screen back to the player. Since the RTT between the
player and the cloud proxy can be directly measured, we only
need to obtain the response time,5 which, after subtracting

4The 588 PlanetLab nodes are applied in both DIA and CDIA experiments
to provide fair comparison. Since some real-world interactive applications,
such as Diablo 2, may divide their users into realms, we also investigate the
case using a subset of PlanetLab nodes from one realm (e.g., USEast). The
results remain consistent to Figure 3.

5The response time is the latency that the player waits until the result of
her/his operations is returned. For example, if the player clicks the button
“option" at time ti and the option menu displays at time tj , the response
time can be calculated as tj − ti.

Fig. 5. Average latency of user’s action.

the RTT, gives the processing latency at the cloud proxy. The
detail of this experiment is as follows.

We first select an action button in the game The Witcher 2:
Assassins of Kings; in particular, the “map" button. We click
this button and start to record the game screen at 100 FPS
(frames per second). This sampling rate already exceeds the
normal game play which is around 60 to 70 FPS. We then
check the video file frame-by-frame until we find the frame
where the map is displayed. We run this experiment for mul-
tiple times under different RTTs. These RTTs are controlled
by the traffic shaping tool TC [21]. To better understand the
processing overhead at the cloud proxy, we also record the
response time on a local game console. We use the same
game on both Gaikai and the local console to provide a fair
comparison.

As we can see from Figure 5, the local console general
needs 80 ms to open the map for the players with very small
standard deviation. Note that the RTT is zero in this case
because the game is locally rendered. When we run this game
remotely on Gaikai, the response time elevates to more than
300 ms. The overhead (in terms of the processing latency) on
the Gaikai proxy is thus approximately 220 ms.6 When we
consider the interactive latency between different users, there
will be, unfortunately, two proxies in their interactive path.
This means the interactive latency can easily exceed 600 ms.
It is worth noting that the studies on traditional gaming
systems have found that different styles of games have differ-
ent thresholds for maximum tolerable delays [13], [22]–[24].
These thresholds can be further adjusted according to the
user feedback and operating experience, this is because that
indeed the slower the game is, the less delay influences the
user rating [25]. However, latency as high as 600 ms will not
be acceptable for most online gaming applications as shown
in Table I.

IV. INTERFERENCES BETWEEN COMPUTATION-INTENSIVE

AND BANDWIDTH-INTENSIVE TASKS

It is surprising to see that the cloud proxies can introduce
such a high processing latency in CDIA. This is unlikely
caused by video encoding only since many CDIA service
providers have claimed that their video encoding latency is

6To avoid measurement bias, we also test actions that make different changes
to the in game world, for example, small character movements. The results
remain consistent with Figure 5.
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TABLE I

DELAY TOLERANCE IN TRADITIONAL GAMING

Fig. 6. Increase of CPU benchmark running time (on EC2 small instance).

indeed very small within 10 ms. We therefore further explore
its underlying reasons in this subsection.

The cloud proxy on Gaikai is different from a local
game console. It is a virtual machine (VM) running both
computation-intensive tasks (for example, rendering the game)
and bandwidth-intensive tasks (for example, streaming the
game screen to the players) at the same time. Since these tasks
cannot be decoupled into different VMs, it is necessary to see
if they introduce extra overheads on the cloud proxy. Note
that currently most cloud service providers usually provide
the instances with custom optimization for DIA’s specific
needs [26] as well as the DIA’s completely control over the
instances [27], [28]. In other words, DIAs are usually assigned
dedicated cloud instances. Thus, in this paper, we do not
consider the interferences among different concurrent DIAs
on the same instance.

Since the Limelight platform can hardly be tested by
individual users, we run the standard CPU benchmark created
by a tool called sysbench [29] on EC2 instances (their cloud
platforms are quite similar in terms of Xen-based cloud
virtualization). We use network tool iPerf [30] to adjust the
traffic load on the instance and check the time cost of running
the benchmark. To provide a fair comparison, we also do
the experiment on local servers (non-virtualized servers) as
a baseline. Figure 6 shows a comparison between an EC2
small instance and our local server. In this experiment, the
EC2 small instance has 1.7 GB memory, 1 EC2 compute
unit (Intel Xeon series, 1 virtual core with 1 EC2 compute
unit), and 160 GB instance storage with 32-bit platform. Our
local server also has similar hardware configuration that is
comparable to the EC2 small instance. From this figure, we
can see that the traffic load on the non-virtualized server only
slightly increases the running time of the CPU benchmark,
e.g., 250 Mbps traffic load will only increase the running time
by 20%. However, for the virtualized EC2 small instance,
this traffic load will double the running time of the CPU
benchmark with very small standard deviation (the detailed

Fig. 7. Increase of CPU benchmark running time (on EC2 large instance).

TABLE II

CPU BENCHMARK RUNNING TIME UNDER DIFFERENT TRAFFIC LOADS

ON VIRTUALIZED EC2 SMALL INSTANCE

data can be found in Table II). We have also tested this on
EC2 large instances with multiple cores. The large instance
has 7.5 GB memory, 4 EC2 computation units (Intel Xeon
E5-2676 v3, 2 virtual cores and each with 2 EC2 computation
units), 850 GB instance storage with 64-bit platform and very
high I/O performance. Our local server, on the other hand, has
weaker hardware configuration, particularly the CPU capacity.
As shown in Figure 7, we can see that the traffic load on
large instances still brings remarkable overheads to the system.
Although the result is better than that of small instances, the
traffic load will still remarkably slow down the running time
of the CPU benchmark especially when comparing with the
non-virtualized baseline.

It is easy to see that the CDIA cloud proxies are indeed in
the same situation as these EC2 instances. The traffic load can
significantly slow down the game running and unavoidably
leads to a high processing latency. Yet, such a problem is
rarely seen on the non-virtualized local game consoles or cloud
proxies, or to a much lower degree.

V. LATENCY MINIMIZATION IN CDIA

Given the importance of interaction latency, there have been
significant studies on latency minimization for conventional
DIAs, mostly focusing on latency directly between client
pairs [31] [32] [12]. Unfortunately, the existence of cloud
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proxies prevents them from being used in CDIAs, not to
menton the task interference on the cloud proxies. In this
section, we will revisit the latency modeling problem in these
new contexts. We first consider a basic model to optimize the
network latency. After that, this model will be further enhanced
to capture the task interference on the cloud VMs.

A. Basic Model of CDIA Latency

To ensure responsive interactions, previous studies have
suggested that reducing the average latency is not enough,
because any fast users would suffer when they interact with
long latency users [33] [34]. Our objective is thus to minimize
the maximum latency between all client pairs that are bridged
by cloud proxies. We focus on network latency here and will
address processing latency in the next two sections.

S = {s1, s2, . . . , sm} denotes the set of m servers and
L = {l1, l2, . . . , ln} denotes the set of n user clients. Let
C = {c1, c2, . . . , co} be the set of o cloud proxies. Each
client in L will be assigned to a cloud proxy and a server
in order to send operations and receive updates from other
clients. An assignment A is a mapping from L to C and S,
where for each client l ∈ L, cA(l) ∈ C denotes the assigned
cloud proxy of client l and sA(l) ∈ S denotes the assigned
server of client l.

For clients li and lj , the communication should go through
their assigned cloud proxies and servers in CDIA. Specifically,
if li issues an operation to lj , the following steps should be
taken so that lj can see the effect of this operation. First,
li sends the operation to its assigned cloud proxy cA(li).
cA(li) will then forward this operation to server sA(li) that is
also assigned to li; After that, if lj is assigned to a different
server sA(lj), server sA(li) should forward the operation to
server sA(lj); Then sA(lj) executes the operation and delivers
the resultant state update to lj’s cloud proxy cA(lj); Finally,
cA(lj) will generate the game screen and stream the display to
client lj . Let D(u, v) be the path latency between two nodes
that are not directly connected and d(u, v) be the link latency
between two neighbor nodes. To be consistent with the existing
DIA models [12], we assume that D(u, v) = D(v, u) and
d(u, v) = d(v, u). The latency between client li and its server
sA(li) can be calculated as:

D
(
li, sA(li)

)
= d

(
li, cA(li)

)
+ d

(
cA(li), sA(li)

)
(1)

We can therefore obtain the total interaction latency
between li and lj as follows:

D(li, lj) = D
(
li, sA(li)

)
+ D

(
lj, sA(lj)

)

+ d
(
sA(li), sA(lj)

)
· I[

sA(li) �=sA(lj)
] (2)

where d
(
sA(li), sA(lj)

)
denotes the latency between server

sA(li) and sA(lj), and I[·] indicates whether li and lj are
assigned to different servers (1: yes; 0: no). Given the inter-
action latency between li and lj , our objective is to find an
assignment A to minimize U(A), the maximum interaction
latency among all client pairs:

minimize U(A) = max
li,lj∈L

{
D(li, lj)

}
(3)

Fig. 8. Curve fitting for Equation (4) (on EC2 small instance).

This min-max latency can be optimally found when we
convert it into a longest path problem in directed acyclic graph
(DAG). The details are presented in Appendix A of the online
supplementary material.

B. Enhanced Model to Capture Task Interference

In this part, we will further extend our model to consider
the impact of traffic load on different cloud proxies. It is
worth noting that CDIA offers elastic service capacity at cloud
proxies. The cloud proxy capacity can be dynamically adjusted
to meet user demands. Therefore, we denote P as the cloud
proxy capacity set where P = {p1, p2, . . . , po}; pi ∈ P refers
to the amount of resource that is assigned to cloud proxy ci

(bandwidth capacity in this case).7 Based on our measurement,
we find that the NPV (Net Present Value) function [35] can
be borrowed to capture the relationship between virtualization
latency (processing latency caused by traffic load on VMs) and
traffic load,8 we therefore compute the virtualization latency
of cloud ci as:

r(pi) =
a

bpi−qA(ci)
(4)

where a indicates the latency when the cloud proxy is fully
loaded (without remaining bandwidth). Parameter b controls
the skewness of the relationship between load and latency
where b ∈ (1, +∞). Note that different VMs may have
different a and b. For example, in Figure 8, a is around 105
and b is around 1.04.

Given a load assignment A and user li, we denote pA(li) as
the resource assigned to cloud proxy cA(li). For a given set of
servers, S = {s1, s2, . . . , sm} and clients L = {l1, l2, . . . , ln},
the problem becomes how to use a set of cloud proxies
C = {c1, c2, . . . , co} to connect these clients and servers, with
load assignment A and resource assignment P , to minimize
the maximum interaction latency between all client pairs:

minimize U(A, P )

= Max
li,lj∈L

{
D(li, lj) + r(pA(li)) + r(pA(lj))

}
(5)

7We assume that one cloud proxy can serve multiple clients. Although using
dedicated VMs reduces interference and improves the Quality of Experience
(QoE), it dramatically increases the cost taking into account the large amount
of users. Moreover, since we focus on the interference between computation-
intensive tasks and bandwidth-intensive tasks, this interference still exists in
the dedicated VM solution.

8This function has been widely used to quantify the relationship between
cash and price/cost, which resembles our case when we try to purchase more
cloud resources to reduce the virtualization cost on VMs.
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Fig. 9. Transform G into G∗
A.

s.t.∀i = 1, 2, . . . , o, qA(ci) ≤ pi (6)
o∑

i=1

pi ∗ Cost(ci) ≤ K (7)

where K refers to the total budget, which we assume can at
least serve all the clients in the system.

It is easy to see that the virtualization latency makes the
problem harder. If we assign client li to cA(li), it will not only
assign traffic load to cA(li) but also affect the performance
of other clients who have also been assigned to this cloud
proxy. Assuming the cloud proxy capacity is given, this
client assignment problem can therefore be transformed into a
0− 1 Multiple Knapsack problem with a non-linear objective
function, which is known to be NP-hard [36].

By exhaustively searching along all the possible combi-
nations of A and P , the optimal solution can be achieved.
However, the practical effectiveness of this search is limited
considering the real-time user demands in CDIA systems. We
thus propose a bi-level heuristic, which divides the optimiza-
tion problem into two stages: load assignment and resource
assignment. In the load assignment stage, we assume that all
the cloud proxies are fully loaded (the virtualization latency is
therefore equal to a in Equation (4)) and find the optimal load
assignment A by Algorithm 5 (in Appendix A). After that, we
construct a subgraph GA based on the existing graph G and
assignment A. As shown in Figure 9, we then split the node
ci into two virtual nodes (c′i and c′′i ) and use their link weight
to refer to the virtualization cost on ci. We denote G∗

A as the
resulting graph and further apply a greedy algorithm to find
the resource assignment P in G∗

A. As shown in Algorithm 1,
this greedy algorithm iteratively assigns resource to the cloud
proxies on the longest path. The algorithm stops when the
remaining budget is not enough. In the next section, we
will show that this bi-level heuristic achieves near-optimal
performance in practical settings.

VI. PERFORMANCE EVALUATION

We now evaluate the performance of our solution via
extensive trace-based simulations in MATLAB. The network
latency (measured in Section IV) and the processing delay
(measured in Section VI) will both serve as the inputs of our
evaluation. We first examine the performance of our optimal
client assignment when there is no task interference.9 After
that, we investigate the performance of the interference-aware
client assignment algorithm in the virtualized environment.

9This will be the case when the system is deployed on non-virtualized cloud
platforms.

Algorithm 1 ResourceProvisioning()
1: Get G∗

A from A;
2: R← K − C;
3: while (true) do
4: path∗ = LongestPath(G∗

A);
5: Get ci, cj from path∗;
6: if R ≥ max(Cost(ci), Cost(cj)) then
7: if r(pi)−r(pi+1)

Cost(ci)
≥ r(pj)−r(pj+1)

Cost(cj)
then

8: R← R− Cost(ci);
9: pi ← pi + 1;

10: else
11: R← R− Cost(cj);
12: pj ← pj + 1;
13: end if ;
14: else if R ≥ min(Cost(ci), Cost(cj)) then
15: if Cost(ci) ≤ Cost(cj) then
16: w ← i;
17: else
18: w ← j;
19: R← R− Cost(cw);
20: p(cw)← p(cw) + 1;
21: end if ;
22: else
23: break;
24: end if ;
25: end while;

Fig. 10. Optimal client assignment only considering the networking latency.

We start with a CDIA system that consists of 20 clients,
5 cloud proxies and 5 servers. The renting cost of cloud
proxies are referenced from the instance price list of Amazon’s
On Demand instances [16]. Figure 10 presents the perfor-
mance of our optimal client assignment when there is no task
interference (the processing latency is a default value of 80 ms
at the cloud proxies). It is easy to see that the smart client
assignment greatly reduces the interaction latency. Without
optimization, the maximum client interaction latency can be as
high as 700 ms. Our approach, on the other hand, can reduce
the maximum latency to less than 500 ms. It is also worth
noting that the renting price is linearly related to the client
population. This indicates a good scalability of our approach.

It is not surprising to see that the optimal client assign-
ment can achieve such a significant gain when there is no
task interference. Figure 11 further explores the case when
the optimal assignment can hardly be archived in the task
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Fig. 11. Interference-aware client assignment.

Fig. 12. Interaction latency across client pairs (with different budgets).

Fig. 13. Interaction latency across client pairs (different # of clients).

interference environment. We can see that task interference
optimization is critical for CDIAs. The maximum interaction
latency can be larger than 580 ms if we focus on it only.
Fortunately, our interference-aware algorithm can achieve a
near-optimal (with the difference within 5 ms) latency that
greatly reduces the interaction latency.10 It is worth noting
that the interaction latency can be further reduced and become
closer to the optimal results when we have more budget to
purchase more capacities at the cloud proxies.

Figure 12 takes a closer look at the interaction latency
between individual clients. We can see that all clients can
benefit from the total budget increase. To be more specific,
when the budget is equal to 5 USD/hour, less than 30%
clients can have an interaction latency less than 400 ms. If we
increase the budget to 15 USD/hour, more than 95% clients
can interact with each other with a latency below 400 ms. The
difference between the fastest and the slowest clients is also
quite small, around 150 ms. Figure 13 further shows the cases

10The optimal base-line is obtained by brute-force searching.

Fig. 14. Adjusting parameter a (VM’s maximum processing latency).

Fig. 15. Adjusting parameter b (skewness of the relationship).

with different number of CDIA clients. We can see that for
a given budget, our algorithm scales well with an increasing
number of clients. Note that the total budget also bounds the
total capacity of the cloud proxies. We thus cannot add more
clients in Figure 13.

To understand the virtualization latency on different types
of VMs, we investigate the case with different parameter
inputs in Equation (4). Figure 14 presents the case when
the maximum processing latency (parameter a for the cloud
proxies) is changed from 85 ms to 125 ms. We can see that
the interaction latency increases linearly with a. On the other
hand, Figure 15 presents the case when virtualization latency
and traffic load have more skewed relationships.11 Based on
these two figures, we can find that a good VM should have a
small a and a large b. The maximum processing latency should
be small when the VM is fully loaded (with a small a). In other
words, adding idle resources on the VM ought to significantly
reduce such a processing latency (with a large b).

Figure 16 further presents the CDF of the interaction latency
across 200 random selected clients and all the 588 clients12

in our measurement, respectively. It is easy to see that 80%
clients can achieve the interaction latency within 300 ms.
The interaction latencies between most (70%) client pairs are
between 200 ms and 250 ms. It is also worth noting that the
total budget in this case is relatively high up to 100 USD
per hour. This is because we are using the pricing list of
Amazon’s On Demand instances. Choosing other types of
platforms/instances, such as the Reserved instance may further
reduce this cost.

11Note that different a, b pairs in these two figures can present different
cloud instances. For example, we use a = 105 and b = 1.04 to capture the
features of EC2 small instances in our simulation.

12All the clients that we have used in our measurement in Section IV.
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Fig. 16. Interaction latency across 200 and 588 clients.

VII. SYSTEM SCALING WITH USER DYNAMIC

The above model for the first time considers the task
interference in classic CDIA systems. The related analysis can
be applied to understand its budget-QoS relationship [37]. For
example, how much money can archive what level of min-max
interaction latency across how many users. In this section, we
will further examine the system scaling issues with the arrival
and the departure of clients. When a client arrives/departs
the system, we need to minimize the maximum interaction
latency with a bounded budget (in Equations (5), (6) and (7)).
To better decide when we need to acquire/release extra cloud
resource, we introduce a threshold ξ (ξ ≥ Tmax) to denote
user’s delay tolerance in different CDIA systems, where Tmax

is the maximum interaction latency across all clients. As we
have discussed in Table I, the configuration of ξ is related to
the type of different CDIA applications. This threshold adds
the following new constraint to Equation (5):

U(A, P ) ≤ ξ (8)

Based on this new constraint, we then discuss our design to
handle the client arrival/departure-aware step-by-step.

A. Handling Client Arrival and Departure

For any two clients li, lj ∈ L, to emphasize the simultaneous
consideration of communication and computation, we denote
T (li, lj) as the interaction latency between client li and lj , then
we have Tmax = max {T (li, lj)}. As to a new arriving client
	l, 	T denotes the maximum interaction latency between
	l and the other clients, i.e., 	T = max {T (	l, li)|li ∈ L}.
Since 	T depends on the mapping from C to 	l, we define
the min-max interaction latency across all proxies as	Tmin =
min {	T (ci)|ci ∈ C}.

Based on Equations (5), (6), (7) and (8), Algorithm 2 gives
the proxy assignment as well as the resource management
approaches when a new client 	l joins the system. Note that
in Step 2 of Algorithm 2, we calculate the expected processing
time as

r∗(ci) =

⎧⎨
⎩

a

bpi−q(ci)
, pi = q(ci)

a

bpi−q(ci)−1
, pi > q(ci)

. (9)

The details of Steps 7 and 12 of Algorithm 2 are also given
in Algorithm 3, in which CP denotes the cost performance of
proxies. By expanding Equation (4) into a continuous function,

Algorithm 2 ClientArrival()
1: for all ci that ci ∈ C do
2: Calculate the expected processing time r∗(ci) when

c(	l)← ci;
3: 	T (ci) = max{r∗(ci) + D(	l, lj)}, lj ∈ L;
4: end for;
5: Get 	Tmin = min {	T (ci)|ci ∈ C};
6: if 	Tmin > ξ then
7: OnlineResourceProvisioning();
8: else
9: 	c = {ci|	T (ci) = 	Tmin, ci ∈ C};

10: Calculate Tmax when c(	l) = 	c;
11: if Tmax > ξ then
12: OnlineResourceProvisioning();
13: else
14: c(	l)←	c;
15: if p(c(	l)) = q(	l) then
16: p(c(	l)) = p(c(	l)) + 1;
17: end if ;
18: end if ;
19: end if ;
20: q(c(	l)) = q(c(	l)) + 1;
21: return c(	l);

we calculate CP as the differential coefficient of pi, i.e.,

CP (ci)=diff(
r(pi)

pi · Cost(ci)
, pi)=

−bq(ci)−pi(1 + pi log b)
pi

2
.

(10)

It is worth mentioning that when 	Tmin > ξ, the interac-
tion latency of the newly joined client becomes the bottleneck.
In this case, we need to add more cloud resources on the
proxies. To this end, we add Algorithm 3 to increase the
resources on the proxies. This cyclic iterative algorithm is
designed to clarify: 1) which proxy should be used to handle
the new client, 2) whether we should add more resources to
this proxy, and 3) how many resources should be added.

On the other hand, Algorithm 4 is designed to handle the
client departure, where path∗ denotes the longest path before
client 	l departs, Tmax and T ∗

max are the maximum interac-
tion latency before and after client departure, respectively. We
therefore summarize Theorem 2, of which the proof is detailed
in Appendix D of the online supplementary material.

Note that according to Theorem 2, the client departure will
not increase the maximum interaction latency. Hence, it is
unnecessary to acquire proxy resources when considering the
cost equality in Steps 6 and 10 of Algorithm 4.

B. Performance Validation

In this section, we aim to evaluate the performance of our
resource provisioning design with user dynamic. As shown in
Figure 17, we consider two typical patterns, Stable and Flash-
Crowd [38] [39], in our evaluation. In particular, Stable means
the number of clients is changing randomly between 30 to 50.
Flash-Crowd, on the other hand, means the number of clients
periodically increases from 5 to 50 and then decreases from
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Algorithm 3 OnlineResourceProvisioning()
1: 	p← 1, target← 0, flag ← 1;
2: Sort C by ascendant order of Cost(ci);
3: while (flag) do
4: for all ci that ci ∈ C do
5: c(	l)← ci;
6: Get the client l′ that has the maximal interaction delay

with 	l, then get cj = c(l′);
7: if CP (ci) > CP (cj) then
8: pj ← pj +	p;
9: Calculate Tmax, i.e., the maximal interaction delay

among all clients;
10: if Tmax ≤ ξ then
11: target← cj , flag ← 0, c(	l)← cj ;
12: else
13: pj ← pj −	p;
14: end if ;
15: end if ;
16: if (flag) then
17: pi ← pi +	p;
18: Calculate 	T (ci), i.e., the maximal interaction delay

between 	l and the other clients;
19: if 	T (ci) ≤ ξ then
20: target← ci, flag ← 0, c(	l)← ci;
21: else
22: pi ← pi −	p;
23: end if ;
24: end if ;
25: end for;
26: if (flag) then
27: 	p←	p + 1;
28: end if ;
29: end while;
30: return c(	l), 	p, target;

Algorithm 4 ClientDeparture()

1: q(c(	l)) = q(c(	l))− 1;
2: p(c(	l)) = p(c(	l))− 1;
3: path∗ = LongestPath(G∗

A);
4: Get cu, cv from path∗;
5: if CP (cu) ≥ CP (cv) then
6: if Cost(cu) < Cost(c(	l)) then
7: p(cu) = p(cu) + 1;
8: end if ;
9: else

10: if Cost(cv) < Cost(c(	l)) then
11: p(cv) = p(cv) + 1;
12: end if ;
13: end if ;

50 to 5 during a short period of time. These two patterns
refer to typical “easy-to-handle” and “hard-to-handle” user
demands, respectively.

Figure 18 shows the maximum interaction latency when
user’s delay tolerance is set to 450 ms (a typical RPG game).

Fig. 17. Workload patterns.

Fig. 18. Maximum interaction latency over time (ξ = 450 ms).

Fig. 19. Total cost over time (ξ = 450 ms).

As we can see in the figure, our proposed online algorithm
can successfully bound the latency under both Stable and
Flash-Crowd dynamics.13 Figures 19 and 20 further present
the change of system cost. It is easy to see that the cost is
less than 15 USD per hour (less than 3 cents/hour per user).
Such a cost can be further reduced when we increase user’s
delay tolerance. In particular, Figure 21 shows that the latency
can be further reduced to less than 5 USD per hour (less
than 1 cent/hour per user) when users’ delay tolerance is set
to 650 ms. Although the interaction latency will be slightly
increased, the maximum value is still bounded within 650 ms.
As a summary, Figure 22 shows the relationship between cost
and latency. With different configurations of ξ, our online
protocol can always bound the maximum interaction latency
with reasonable cost. It worth mentioning that since we
dynamically manage resource when handling client arrival and

13The system’s maximum interaction latency is highly related to the number
of clients in the system. Such jitter may also affect the QoE on different clients.
The related QoE optimization is, however, out of the scope of this paper.
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Fig. 20. Maximum interaction latency over time (ξ = 650 ms).

Fig. 21. Total cost over time (ξ = 650 ms).

Fig. 22. Relationship between latency and cost.

departure, node state is updated in real time. Thus, when facing
the fail-over (e.g., VM failure and migration), with the fast
recovery capability of the cloud service provider, the proposed
online protocol is capable to maintain the on-demand optimal
allocations.

To illustrate the effectiveness, we compare the performance
of our design and a Power-of-Two [40] strategy. Power-of-Two
is a well-known solution to Supermarket Model, where in a
supermarket a customer joins the server with shorter queue
from two randomly sampled servers. Power-of-Two is an
efficiency strategy, which can achieve a near-optimal waiting
time for the customers. Because of its simplicity and effective-
ness, Power-of-Two has been extensively researched [41]–[43]
and widely used [44], [45]. In this simulation, Power-of-Two
serves as a baseline. When a new client arrives, Power-of-
Two randomly samples two cloud proxies, and then assigns
the one with the smaller maximum interaction latency to the
client. Meanwhile, Power-of-Two increases resource on the
selected proxy. Under both stable (ST) and flash crowd (FC)

Fig. 23. Maximum interaction latency (ξ = 450).

Fig. 24. Total cost (ξ = 450).

workload patterns when ξ = 450 ms, Figures 23 and 24
compare the maximum interaction latency and total cost of our
solution (OUR) and Power-of-Two (PoT), respectively. As we
can see, Power-of-Two induces larger maximum interaction
latency as well as higher cost. Power-of-Two can hardly
select the cloud proxy with minimum maximum interaction
latency because of randomness. Besides, without considering
the price/performance ratio when increasing resource, Power-
of-Two tends to spend more money than our solution in
operation.

VIII. RELATED WORK

The origin of Distributed Interactive Applications (DIAs)
can be traced back to 1983 when a United States research
program initiated the SIMNET project [46] to train soldiers
in battlefield tactics. Since then, an increasing number of
academic, military and commercial DIA systems have been
developed and documented. Nowadays, despite the increase of
processing powers at participating clients and the availability
of greater communication bandwidth, minimizing the interac-
tion latency remains one of the most fundamental challenges
in the DIA framework. Many studies have shown that the
latency is particularly problematic when the network delays are
comparable to the interaction time or speed [47]. Such studies
suggested that the interaction latency should be bounded
for real-world DIAs [48]. For example, the typical latency
values to maintain real-time interaction fall between 40 and
300 ms [49]. Gutwin [33] investigated the latency effects
on two types of user interactions: movement prediction and
moving a shared object. This study showed that both gaming
performance and user strategy will be greatly affected by
interaction latencies higher than the expected range.

To minimize the interaction latency in DIAs,
Webb et al. [50] proposed a nearest server assignment
to reduce the client-server latency. Ta and Zhou [51] proposed
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a two-phase solution for large-scale DIAs. The study by
Cronin et al. [31] further discussed the server placement
problem to enhance user’s interactivity. Vik et al. [32]
explored the spanning tree problems in DIAs for latency
reduction. Zhang and Tang [12] revisited the problem and
proposed a distributed-modify-assignment approach to adapt
to the dynamics of client participation and network conditions.
A recent study from Lee et al. [52] presents Outatime, a
speculative execution system for mobile cloud gaming that is
able to mask up to 120 ms of network latency.

For cloud computing, there have been a series of works
measuring the performance of public or private cloud ser-
vices from diverse aspects, including computation, storage,
and networking services [53]–[56]. There are also many
studies addressing application designs that leverage cloud
resources [57]–[63]. For example, Wu et al. [64] explored
the use of cloud for Video-on-Demand applications [65], [66].
Huang et al. [67] provided an open-source cloud gaming sys-
tem GamingAnywhere. Extensive experiments are performed
to understand the video quality for both mobile and desktop
clients. However, the deployment of enterprise cloud-based
distributed interactive applications, which have emerged very
recently, remains a mystery to the general public. Our study
takes an initial step towards understanding this new generation
of DIAs, in terms of its design, performance, and potential
challenges.

IX. CONCLUSION AND FURTHER DISCUSSION

In this paper, we examined the framework design and
latency optimization in cloud-based distributed interactive
applications through real system measurement and analysis.
Our study identified the unique features as well as the fun-
damental design challenges in CDIA. However, there are still
many open issues that can be further explored in this new-born
system.

First, to better mitigate the interference between the
computation-intensive and bandwidth-intensive tasks, we are
working on the analysis of TCP/UDP flows on different types
of VMs. Our preliminary result shows that VM hypervisors
(also known as virtual machine managers such as Xen, KVM
and VMware) and VM total capacities play important roles
for the interference. On the other hand, except for the Ama-
zon EC2, other representative cloud service providers such
as GCE [26], IBM Cloud [68], Rackspace [69], Microsoft
Azure [70], and AliCloud [27] have also played an important
role in promoting the rapid development of CDIA. Our future
work also includes the comparison between different cloud
service providers regarding network performance.

Second, we are currently investigating the efficiency by
directly migrating some DIA protocols/optimizations into the
CDIA framework. This analysis helps to better enjoy the
benefits of cloud computing while minimize the corresponding
overheads. These investigations not only improve the overall
performance of the CDIA framework, it also helps to better
understand the development of many other cloud-based sys-
tems with similar design frameworks.

Third, handling real-world scaling issues is also an impor-
tant part of our future work. The solution proposed in this

paper requires global knowledge about the system state such
as path latency and workload distribution. This may potentially
affect the scalability of the solution. To mitigate this challenge,
our on-going work is to build a hadoop2-like [71] [72]
distributed information management models to collect global
information, which enhances the efficiency and robustness of
the system in a large-scale real-world environment.
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