
SNACS: Social Network-Aware Cloud Assistance
for Online Propagated Video Sharing

Haitao Li†, Yanfang Le†, Feng Wang‡, Jiangchuan Liu†, Ke Xu∗
† Simon Fraser University, Email: {haitaol, yanfangl, jcliu}@sfu.ca
‡ The University of Mississippi, Email: fwang@cs.olemiss.edu
∗ Tsinghua University, Email: xuke@mail.tsinghua.edu.cn

Abstract—The deep penetration of Online Social Networks
(OSNs) has made them as major portals for video information
sharing. Propagated through chains of friends, the coverage of
OSN-shared videos can be much broader with stronger micro-
and macro-dynamics. Given that the contents are still hosted
by external Video Sharing Sites (VSSes), such distinct access
patterns from OSN users have created significant new challenges
to VSSes. In this paper, we present SNACS, a cost-effective social
network-aware cloud assistance for video sharing. The SNACS
module sits between VSSes and an OSN, and is managed by the
OSN to improve its users’ video access experience using both
centralized cloud resources and edge servers. Given the strong
dynamics of the access patterns, we are particularly interested
in the content management and update strategies in the SNACS’
implementation. Motivated by real world data traces, we show
that conventional cache replacement can be quite inefficient in
this context. We then develop optimal offline algorithms with
minimized cache misses and replacements, which also motivate
an online solution that makes effective use of the video sharing
patterns in the OSN. Our design has been extensively evaluated
and its superiority has been validated under diverse network and
user configurations.

I. INTRODUCTION

The deep penetration of Online Social Networks (OSNs),
e.g., Facebook and Twitter, has made them major portals for
information sharing. It is known that a significant portion
of the accesses to such conventional video sharing sites
(VSSes) as YouTube are now coming from OSN users. Earlier
measurement based on YouTube data has found that between
April 2009 and March 2010, 25% of views on YouTube
come from social sharing [1]. The statistics published by
YouTube showed that, as of January 2011, more than 500
tweets per minute containing a YouTube link, and over 150
years worth of YouTube video is watched by Facebook users
every day; till June 2012, the numbers have increased to 700
tweets and 500 years [2]. According to comScore’s latest
statistics in September 2013 [3], Facebook ranked No.2 in
terms of the number of viewers, and ranked No.3 in terms
of the number of video views. Besides Facebook or Twitter,
we have seen similar trends in other OSNs; for example, in
RenRen [4], the biggest Facebook-like OSN in China and
Tencent Weibo [5], a large Twitter-like OSN in China. It has
been shown that more than 54 million unique RenRen users
have participated in video viewing and 20 million participated
in sharing, generating 12.4 million views, and 1.64 million
shares every day [4].

Traditionally, VSS videos are mainly discovered through
search engines, front pages, and related videos. The OSNs
however offer quite different sharing mechanisms, where the
video links are propagated through chains of friends. The
coverage of such OSN-shared videos can be much broader
with much faster propagation speeds. It also leads to more
micro- and macro-dynamics in the access pattern, as a super
user with a great number of friends can easily trigger a surge of
accesses [5], and in the long run, a video often has a series of
peaks in term of user access. Given that the video contents are
still hosted by VSSes, such distinct access patterns from OSNs
have created significant challenges to VSS service providers,
particularly for resource provisioning.

There have been pioneering works on joint design
and optimization for both VSSes and OSNs with shared
information [5][6][7]. In the real market, however, VSS and
OSN operators are not necessarily close collaborators, nor the
VSSes are to be urgently and completely re-engineered for
OSN shared videos given that the demands from traditional
users remain strong. On the other hand, for OSN operators,
building their own video storage and distribution services is
not necessarily the best business model, either, not to mention
the complexity and cost involved in joint design. Instead, we
believe that, as an OSN knows best about the video sharing
patterns from its users, it should provide necessary assistance
for its users to access the external VSSes, which in turn will
also mitigate the impact to the VSSes.

To this end, we develop SNACS (social network-aware
cloud assistance for video sharing), which provides a cost-
effective enhancement for video accesses from an OSN. The
SNACS module sits between VSSes and an OSN, and is
managed by the OSN to improve its users’ experience in
retrieving videos from the VSSes. It utilizes both centralized
cloud resources (e.g., Amazon S3) and edge servers (e.g.,
Amazon CloudFront) to collectively serve video accesses
from the OSN, which otherwise cannot be well served
by the external VSSes. Given the strong dynamics of the
user access patterns, we are particularly interested in the
content management and update strategies in the SNACS’
implementation. Motivated by the data traces from our real
world measurement, we show that the conventional cache
replacement for video objects can be quite inefficient in
SNACS. We then develop an optimal offline replacement
algorithm that generates minimum misses in this new context.

2

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Video index

R
en

R
en

 V
ie

w
s/

 T
ot

al
 V

ie
w

s

Fig. 1. Distribution of fraction of RenRen
views over the total views.

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

Day

N
or

m
al

iz
ed

 v
ie

w
s

pe
r

da
y

RenRen
56

Fig. 2. Overall video popularity evolution
(normalized by maximum values of daily
views).

0 3 6 9 12 15 18 21 24
0

1000

2000

3000

4000

5000

Hour

V
ie

w
s

pe
r

ho
ur

RenRen
56

Fig. 3. Video popularity evolution of a
single video in one-day period.

We further offer guidelines and extend the algorithm to
minimize replacements among the solutions of the minimum
misses. The optimal offline solutions not only provide a
benchmark for comparison but also motivate the design of an
online replacement algorithm, which makes effective use of
the video sharing patterns in the OSN. Our design has been
extensively evaluated and its superiority has been validated
under diverse network and user configurations.

The rest of the paper is organized as follows. We present
background and motivation in Section II. Section III proposes
our framework and discusses major design issues. We
develop optimal offline algorithms in Section IV, and an
online algorithm in Section V, respectively. The results of
performance evaluations are presented in Section VI. Finally,
we conclude the paper in Section VII.

II. BACKGROUND AND MOTIVATION

There have been significant data-driven measurement and
modelling studies on the videos shared within OSNs, e.g.,
tracking social cascades of YouTube links over Twitter [8],
video clip sharing on Twitter’s Vine [9], and video popularity
distribution and propagation pattern in Tencent Weibo, a
Twitter-like OSN in China [5]. Our earlier works have
examined video propagation patterns over RenRen, a
Facebook-like OSN in China [4], which leads to the design of
a synthetic traffic generator for video requests from OSNs [10].

Our work is motivated by these studies. To further
understand the distinct characteristics of video request patterns
from OSNs as compared with traditional video accesses and
their impact to resource provisioning, we closely collaborate
with 56.com, one of the most popular VSSes in China to
analyze its server access logs. The logs record video requests
within the 56.com website as well as requests from external
OSNs. Our analysis of server access logs from 56.com website
shows that among all the video requests, over 36% of them
are from OSNs, most notably from RenRen. For individual
videos, however, the ratio of requests from RenRen to the total
requests varies significantly, as shown Fig. 1. The Pearson

correlation coefficient1 between video views in RenRen and
the total views is 0.59, which is statistically insignificant.
In other words, while statistical histories have often been
used to predict the video popularity, it can hardly predict the
percentage of the requests from OSNs for a newly uploaded
video.

We also examine how the popularity evolves for videos
shared by both 56.com and RenRen. Fig. 2 compares the
overall video popularity evolutions over 5 weeks. We can
see that the views from RenRen users exhibit much stronger
dynamics, with more peaks when compared to the overall
views in 56.com. Fig. 3 shows how the popularity evolves
for a single video in a smaller time scale. We find that,
in OSNs, there are super users with a large number of
friends or followers, and such users, once propagating a video,
can trigger a significant number of follow-up accesses. This
can lead to a peak of accesses even long after the release
of the videos, in which stage the accesses from traditional
VSSes users have long decayed. As such, today’s VSSes,
even equipped with state-of-the-art prediction and resource
provisioning modules, can still experience frequent under-
provisioning [7].

A series of pioneering works have offered service
enhancements of social video sharing by joint design and
optimization for both VSSes and OSNs [7][5]. As video
services are critical to social network users, OSN operators
do have strong motivation to offer better service quality to their
users. Yet whether they fully disclose the social information
to external VSS providers remains questionable in the current
market, and building their own video content services is not
necessarily the best practice, either. On the other hand, the
accesses from traditional VSS users remain strong (over 50%),
and there is no immediate need for a VSS to re-engineer its
services. Therefore, we need a new framework which works
effectively without integrating OSN and VSS into a unified
system. Considering that OSN has the best knowledge of its
video requests and the propagation patterns, we suggest that

1It has been widely used for measuring the strength of linear dependence
between two variables. The range is from -1 to 1, where a value greater than
0 indicates positive correlation, and less than 0 indicates negative correlation.

3

the OSN should take the initiative to offer assistance to its
users accessing videos. In turn, it will also benefit external
VSSes given a large portion of accesses from the OSN are
absorbed by OSN servers.

III. SNACS APPROACH

Motivated by the above ideas, we propose a new framework
called SNACS, shortened from social network-aware cloud
assistance for video sharing. The SNACS module sits between
VSSes and an OSN, and is managed by the OSN to improve
its users’ experience in retrieving videos from the VSSes.
It utilizes cloud resource to serve video accesses within the
OSNs that otherwise cannot be well served by external VSSes.
Fig. 4 offers a detailed view of the work flow in SNACS.
An OSN user will initially request video data from the VSS
servers. According to the feedback of the downloading speed,
the video request may redirect to the OSN-operated content
cloud if it cannot be well served by VSSes. As illustrated in
Fig. 5, the cloud service for content (e.g., videos) delivery
usually consists of an origin server and a distributed delivery
network which includes multiple edge servers distributed in
different geographical locations. Initially, a cloud customer
should apply an origin server to store its video files, and
choose several edge locations to serve its user requests. When
the videos are ready to be delivered, they will be first uploaded
to the origin server, and then copied to the edge locations. Take
Amazon’s Cloud as an example, to delivery video content
globally, it suggests Amazon S3 as the origin server, and
Amazon CloudFront as the distributed delivery network.

To implement SNACS, we need to consider three critical
issues, including selecting the right edge locations for each
request, reducing the number of misses (which corresponds to
good user experience on watching videos), and running at a
low cost. The cost to use content cloud service consists of three
parts (1) charges for storing objects with original servers (e.g.,
Amazon S3), (2) charges for data size that transfers between
original servers and edge locations (e.g., CloudFront), and (3)
charges for serving data from edge locations. The storage is
charged by usage time with a per unit time rate; and let Ps

denote the unit storage price of storing objects in cloud origin
servers. The last two are by traffic volume on a per byte rate;
and let Pe be the unit data size price of serving objects from
edge locations, and Pc be the unit data size price of copying
objects to edge locations. Given a sequence that has a length
of time T , the cost during time T can be formulated as

Cost = Sz · Ps · T + Bc · Pc + Be · Pe (1)

where Sz is the storage size of the original server; Bc is the
size of video objects copied from original servers to edge
locations; Be is the size of videos served from edge locations.
Given the time T and a fixed storage size, Sz ·Ps · T is fixed.
As Amazon’s CloudFront has already offered edge locations
selection algorithms that are known to be effective [11], we
thus need to minimize the number of misses and replacements,
where the former is closely related to the user experience as
well as improving the cost-efficiency of the cloud assistance,

and the latter can further reduce the overall cost, particularly
the second part of the cost in Eq. 1.

IV. OPTIMAL OFF-LINE ALGORITHM

In this section, we propose off-line solutions that assume
the user requests are known a priori and show that they can
yield optimal results, which then motivates our design of an
online algorithm in the next section.

A. Scheduling with Minimum Miss Rate

We start from proposing a scheduling algorithm that
minimizes the miss rate and proving its optimality. We then
extend the algorithm to further minimize the replacement rate
in the next subsection. It is worth noting that our problem is
different from the classic miss and replacement problem [12],
since in our scenario, even a miss happen, we may not always
do the replacement as in the classic problem. For example,
we assume the request sequence is ”A B C B A”. The
storage is of size 2 and initially empty. When a miss happens,
the optimal solution (denoted as SFF for Farthest-in-Further
scheduling [12]) for the classic problem will always take in the
missed video to replace the video in the storage whose next
request occurs furthest in the future request sequence, which
leads to 4 misses and 2 replacements for the aforementioned
example. Yet we can easily find the optimal solution for our
problem is 3 misses and 0 replacement, if we do not update
C into the storage when its request misses. This shows that
the solution for the classic problem does not work well in our
scenario. To this end, we propose a new algorithm SOPT M

as shown in Algorithm 1 to address this new problem.

Algorithm 1 SOPT M

1: if current request to video d misses then
2: search the rest request sequence until each video vi

currently in the storage and d occur at least once;
3: if ∃ vi such that dist[d]< dist[vi] then
4: find the video v in the storage that maximizes dist[v];
5: replace v for video d;
6: else
7: do no replacement;
8: end if
9: else

10: do no replacement;
11: end if

Let dist[x] denote the distance from the current position to
the position where the first request to video x occurs after
the current position. We also define a reduced scheduling
algorithm if in the algorithm, a replacement can only happen
when a request misses (although when a request misses,
a replacement may not always happen.). We thus have the
following two lemmas:

Lemma 1. For any giving scheduling algorithm S, there
exists a reduced version S̄ of S, where S̄ is a reduced
scheduling algorithm that replaces at most as many videos
as the scheduling algorithm S does.

4

User Requests

Content Cloud

Video Servers

Under-provisioned videos
Requests that are well-served by VSSRequests that are poorly served by VSS Optimize the under-provisioned videos

VSS Network OSN Network

Well-provisioned videos Poor feedbacks
Good feedbacksRequestsRequests

Design Principle: Utilize VSS resources first and optimize the poorly served requests with content cloud operated by OSN Requests
OSN-operated

Fetch videos from VSS
Fig. 4. Workflow of SNACS

Edge

location

Edge

location

Edge

location

Edge

location

Original

Server

3

1

2

3

2

Fig. 5. System model of content cloud

Proof: We prove the lemma by constructing S̄ as follows:
each time when S replaces a video d that has not been
requested into the storage, we can defer the replacement of
video d until d is actually requested. Hence, the number of
replacements by S̄ is at most as many as S.

Lemma 2. Let S be a reduced scheduling algorithm that
makes same decisions as SOPT M through the first j requests
in the request sequence, for a number of j. Then there
is a reduced scheduling algorithm S′ that makes the same
decisions as SOPT M through the first j + 1 requests, and
incurs no more misses than S does.

To prove that there must exist such a reduced scheduling
algorithm S′, we should construct S′ by trying to get the
storage content back to the same state as S as quickly as
possible, while not incurring more misses. If the storages of
S and S′ are the same, we can finish the construction of S′ by
just making it behave exactly same as S afterwards. Due to the
space limitation, we omit the detailed proof and it can be found
in our technical report [13]. The optimality of our SOPT M

algorithm can then be shown by the following theorem:

Theorem 1. SOPT M incurs no more misses than any other
schedule S and hence is optimal in term of achieving the
minimum miss rate in our problem.

Proof: To prove that the scheduling algorithm SOPT M

is optimal, we begin with an optimal schedule S∗, and use
Lemma 2 to construct a schedule S1 that agrees with SOPT M

through the first step. We then continue applying Lemma 2
inductively for j = 1, 2, 3, · · · ,m, producing schedules Sj

that agree with SOPT M through the first j requests. Each
scheduling algorithm incurs no more misses than the previous
one. We then have Sm = SOPT M , since it agrees with it
through the whole sequence.

B. Minimize Miss Rate and Replacement Rate

Although SOPT M minimizes the miss rate, we find it
may not always minimize the replacement rate. For example,
assume the video request sequence is “A B C B C A”, and the
storage size is two and initially empty. SOPT M will put video

C into the storage at the third request by replacing A, and it
will lead to 4 misses and 1 replacement. While a better way
could be 4 misses and 0 replacement if there is no replacement
when the third request to C misses in the storage. To further
reduce the cost for cloud assistance (according to Eq. 1), it is
necessary to find a solution which minimizes the replacement
rate while guarantees a minimum miss rate.

To this end, a naı̈ve approach is to use the exhaustive search
on the scheduling decision tree, where for each request in the
request sequence, we need to make decisions such as whether
to do replacement and if so, which video in the storage should
be replaced out and which video should be taken in. However,
even some of the exhaustive search branches can be filtered out
by using our SOPT M as a bound on the miss rate, the solution
space can still be very large. To this end, we first introduce
two rules that can help improve the optimality of SOPT M

for the replacement rate, which, together with SOPT M , will
also lead to the design of a much more efficient guided search
algorithm to be discussed later. The two rules are as follows:

Rule 1 If a miss for requesting video d happens, and for
each video v currently cached in the storage, we have
dist[d] ≥ dist[v], then there is no replacement for d.

Rule 2 If there is a miss and a replacement is required, then
only replace the video v in current storage such that
dist[v] ≥ dist[v′] for any video v′ in current storage.

We then have the following two lemmas:

Lemma 3. Given a scheduling algorithm S, if Rule 1 is broken
at least once, then there always exists a scheduling algorithm
S′ that never breaks Rule 1 and incurs no more misses and
replaces than S does.

To prove Lemma 3, we can assume that when a miss for
requesting video d happens, S breaks Rule 1 and replaces
video f for d. To construct S′, we still try to have S′ agrees
with S in the storage content as quickly as possible. We can
then finish the construction of S′ by setting S′ = S thereafter.
Note that, after requesting d misses, S and S′ are slightly
different in that S has video d and S′ has video f . We can
then use an approach similar to the proof for Lemma 2 to

5

prove this lemma. Due to the space limitation, we omit this
proof as well as the proofs for Lemma 4 and Theorem 2. The
detailed proofs for Lemma 3, Lemma 4 and Theorem 2 can
be found in [13].

Lemma 4. Let S be a minimum-miss scheduling algorithm and
agrees with Rule 2 through the first j requests. There exists
a scheduling algorithm S′, which agrees with Rule 2 through
the first j + 1 requests and incurs the same number of misses
and no more replacements than S.

Algorithm 2 SOPT MR

1: if reach the end of the request sequence then
2: compare the current schedule with the best schedule

found till now and keep the better one;
3: else
4: if current request to video d misses then
5: search the rest request sequence until each video vi

currently in the storage and d occur at least once;
6: if ∃ vi such that dist[d]< dist[vi] then
7: recursively handle next request with SOPT MR;
8: // enforce Rule 2
9: find the video v in storage that maximizes dist[v];

10: replace v for video d;
11: recursively handle next request with SOPT MR;
12: else
13: // enforce Rule 1
14: do no replacement;
15: recursively handle next request with SOPT MR;
16: end if
17: else
18: do no replacement;
19: recursively handle next request with SOPT MR;
20: end if
21: end if

Lemma 3 tells that by enforcing Rule 1, in Algorithm
SOPT M , we can not only achieve minimum miss rate,
but also incur no unnecessary replacements. Lemma 4 tells
that when Rule 2 is enforced in Algorithm SOPT M , if
a replacement is necessary, replacing by Rule 2 can still
keep the solution optimal in terms of replacement rate while
ensuring the minimum miss rate. Therefore, by incorporating
SOPT M and the two rules, we can design an efficient guided
search (denoted by SOPT MR as outlined in Algorithm 2)
that only explores the branches potentially leading to the
optimal solution on both miss rate and replacement rate,
while intelligently cutting off all the others. We then have
the following theorem:

Theorem 2. SOPT MR incurs no more replacements than any
other schedule S that has minimum miss rate and hence is
optimal in term of achieving the minimum replacement rate
over all the minimum miss rate solutions.

V. ONLINE SCHEDULING

Different from the offline scheduling algorithm for which
the optimality on the miss rate and replacement rate is of
the first importance, the online scheduling implementation
requires that the solution is simple and highly efficient yet
achieving reasonably good performance and only based on
the information that the system currently has, i.e., not relying
on the future information as the offline algorithm does.

For the classic miss and replacement problem, LRU
(Least Recently Used) is a well accepted implementation
that approximates the optimal offline scheduling algorithm
SFF . Thus one straightforward solution is to directly apply
LRU to our problem. However, like SFF , LRU also has the
same limitation for solving our problem, i.e., it always does
replacement when a miss happens. In addition, LRU simply
replaces the least recently used item when a miss occurs,
and hence fails to consider the specific features of online
social video sharing. Yet one major principle that we can still
learn from LRU is that it actually uses historical statistics
to approximate the future request sequence used in SFF .
Therefore, in this section, we will first discuss how we can
approximate future user requests in our problem. We will then
propose our online scheduling algorithm that can successfully
incorporate what we have learned from the optimal offline
scheduling algorithm discussed in section IV.

A. OSN-based Future Request Approximation

To incorporate the lessons learned from the offline optimal
algorithm, for each video v currently cached in the storage
and the missed video d, we need to know dist[v] and dist[d].
In other words, we need to know how soon each of these
videos will be requested in the future. Thus, we need to predict
the popularity of these videos based on the information in
the OSN. There are a number of studies [14][7] to address
this problem. Yet most of them are based on a relatively
large time scale, say, one hour or even one day. To afford a
finer time granularity which is essential to our online solution,
we develop an efficient approximation solution based on the
approach proposed in [14].2

The approximation solution works as follows: we first
search backwards within previous K video requests and
identify those users who recently issue the requests for the
videos currently cached in the storage as well as for the missed
video. If a user decides to share the video after watching the
requested video, we then look at its neighbors in the OSN
and count those who have not requested this video. We also
maintain the popularity of this user. In particular, for each
video previously shared by this user, we count the number
of neighbors who actually viewed the video and divide it by
the total number of neighbors. The popularity of this user is
thus the average value on all the videos previously shared by

2Note that our focus here is on how to use a highly efficient prediction
solution to effectively approximate the future user requests for our online
implementation. While proposing an algorithm with better predication results
for OSNs is very important and can be useful to our solution, it is generally
orthogonal to the problem studied here.

6

this user. For each video, we calculate the sum for each user
who requests this video by adding the number of the potential
viewers of this user weighted by the popularity of this user.
We then use the reciprocal value of this sum to approximate
how soon this video will be requested in the future. We call
this reciprocal value as the approximation value. Note that
the rationale of this approximation is that, if a video is very
popular in the OSN, i.e., there are a large number of OSN users
who tend to request it (which is different from a large number
of users who have viewed and shared it), then it is likely that
this video will be requested soon in the near future.

B. Incorporate Offline Optimal Solution

Algorithm 3 SOSN MR

1: if current request to video d is not in the storage then
2: search the request sequence backwards for K requests;
3: calculate the approximation value for each video vi

currently in the storage and for the missed video d;
4: if ∃ vi such that approx[d]< approx[vi] then
5: find video v in the storage that maximizes approx[v];
6: replace v for video d;
7: else
8: do no replacement;
9: end if

10: else
11: do no replacement;
12: end if

In this subsection, we will combine what we have learned
from the optimal offline solution and this approximation
solution into our online scheduling algorithm. Recall that,
from the design of optimal offline scheduling algorithm, we
have learned the following lessons: (a)When a video request
misses, a replacement may not always happen. Especially
when the situation in Rule 1 happens, we should never do
the replacement; (b)When a replacement must be done, we
should always do the replacement according to Rule 2. With
the approximation solution, we can now interpret Rule 1 as
follows: if the approximation value of the missed video is
larger than that of any video currently in the storage, there is
no replacement for the missed video. Similarly, Rule 2 can be
interpreted as follows: if there is a miss and a replacement
is required, we should replace the video with the largest
approximation value in current storage.

Based on these interpretations, we propose our online
scheduling algorithm for OSN video sharing, called
SOSN MR, as shown in Algorithm 3, where approx[x]
denotes the approximation value of the video x. Compared to
the aforementioned straightforward solution using LRU, our
solution still achieves similar simplicity and efficiency. More
importantly, it fully exploits the specific features of online
social video sharing and successfully incorporates what we
have learned from the optimal offline solution, improving both
user experiences and cost-efficiency through the assistance of
cloud.

VI. PERFORMANCE EVALUATION

We have conducted extensive trace-based simulations to
evaluate our solutions for SNACS. To this end, we collected
the traces of video requests in the RenRen OSN over three
months. We find the video requests show a strong daily [10],
[15] pattern and thus choose a trace in a typical one-day
period (April 19th, 2011) for our simulations, which contains
19, 473, 512 requests and involves 278, 922 unique videos.

A. Comparison of Offline Algorithms

2 4 6 8 10 12 14 16 18 20
500

600

700

800

900

Storage size (percentage of total videos)

M
is

se
s

S
FF

S
OPT_M

S
OPT_MR

(a) misses

2 4 6 8 10 12 14 16 18 20
0

200

400

600

800

Storage size (percentage of total videos)

R
ep

la
ce

m
en

ts

S
FF

S
OPT_M

S
OPT_MR

(b) replacements

Fig. 6. Comparison between offline algorithms

To evaluate our offline algorithms SOPT M and SOPT MR,
we also implement the optimal offline solution SFF for
the classic miss and replacement problem. Fig. 6 shows the
results on the miss number and the replacement number3. It
is clear that both SOPT M and SOPT MR outperform SFF

for solving our problem. In particular, although SFF is the
optimal solution for the classic miss problem, by allowing no
replacement, our SOPT M and SOPT MR can achieve less
number of misses (Fig. 6(a)), which becomes even observable
as the storage size decreases. This result further confirms with
our theoretical analysis on optimality.

3In worst case, each offline algorithm may traverse the whole trace to find
if a video is requested in the future and thus causes enormous time to finish.
To this end, we shrink the trace to a subset by randomly sampling 10% of
the requests in the April 19th trace.

7

2 4 6 8 10 12 14 16 18 20
0

2000

4000

6000

8000

10000

Storage size (percentage of total videos)

M
is

se
s

LRU
S

OSN_MR

S
OPT_M

(a) misses

2 4 6 8 10 12 14 16 18 20
0

2000

4000

6000

8000

10000

Storage size (percentage of total videos)

R
ep

la
ce

m
en

ts

LRU
S

OSN_MR

S
OPT_M

(b) replacements

Fig. 7. Online algorithms vs. The optimal algorithm

In term of replacement number (Fig. 6(b)), our SOPT M

and SOPT MR perform even much better than SFF , by
successfully reducing the replacement number for 75% to
85%. One interesting observation is that for the replacement
number, SOPT M performs very close to SOPT MR. This
further demonstrates the effectiveness of our Rule 1 and Rule 2
derived in Section IV-B, since these two rules are also reflected
in SOPT M implicitly.

B. Online vs. Offline

We next compare the performance of our online
implementation SOSN MR with the offline solution. As
SOPT M performs close to the optimal offline algorithm
SOPT MR and is more efficient in running time, we thus use
SOPT M for this comparison. In addition, we implement LRU
to represent the classic online replacement algorithms. The
results on miss number and replacement number are shown
in Fig. 7. It is clear that our SOSN MR outperforms LRU and
stays close to SOPT M , especially in term of the replacement
number. This is because our solution can well approximate
the video popularity and the user requests in the future with
the information from OSNs, and LRU always replaces the
least recently requested video when a miss occurs.

Another observation comes from comparing the miss
number and replacement number together. Unlike LRU, which
performs bad on both the miss number and replacement

number, SOSN MR incurs fewer replacements than SOPT M

at a cost of slight increase in the miss number. Therefore, it
is interesting to further investigate such tradeoff between miss
rate and replacement rate as a future work.

C. Impacts on Served Ratio and Cost of OSN

2 4 6 8 10 12 14 16 18 20
0.7

0.75

0.8

0.85

0.9

0.95

Storage size (percentage of total videos)

S
er

ve
d

ra
tio

LRU
S

OSN_MR

(a) performance

0 5 10 15 20
3600

3800

4000

4200

4400

4600

4800

Storage size (percentage of total videos)

C
os

t (
U

S
$)

LRU
S

OSN_MR

(b) cost

Fig. 8. Comparison between online algorithms
Besides the miss number and replacement number, we

also investigate the impacts on the cost by using the cloud
assistance. To this end, we adopt a typical setting as used
in [7]. We assume each video has same file size denoted as
Fz . Then the storage size can be represented as the number
(denoted as Ns) of stored videos in the cloud. The size of
the object that is copied to edge locations can be represented
as the product of the number of edge locations (Ne) and the
number (Nr) of video replacements in the cloud. The size of
videos served from edge locations can be represented as the
number (Nh) of hit requests by the cloud. The cost in Eq. 1
can be rewritten as Eq. 2.

Cost = Ns ·Fz ·Ps · T +Nr ·Fz ·Ne ·Pc +Nh ·Fz ·Pe (2)

According to Amazon pricing model, we set Pe=$0.12 per
GB, Ps=$0.08 per GB per month, Pc=$0.02 per GB and we
set K=5, Fz=20MB. We also conduct simulations under other
parameter settings and the results generally follow a similar
trend.

Fig. 8 shows the results on the served ratio (the fraction
of the video requests from the OSN that are well served by

8

5 10 15 20 25 30 35 40 45 50
0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of unserved requests by VSSes

S
er

ve
d

ra
tio

VSS−only OSN−only SNACS

(a) performance

5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5
x 10

4

Percentage of unserved requests by VSSes

C
os

t (
U

S
$)

VSS−only OSN−only SNACS

(b) cost

Fig. 9. Comparison between three architectures

VSS or OSN servers over the total requests from the OSN)
and the money spent by the OSN. Again our SOSN MR still
outperforms LRU especially when the storage size is small.
Moreover, compared to LRU, our SOSN MR can also greatly
reduce the total costs by 5% to 15%.

Besides comparing under the SNACS framework, we also
conduct simulations to compare our general SNACS solution
with the VSS-only and OSN-only solutions. The VSS-only
solution, which is the current development architecture in real
life, assumes that all the video requests from OSNs are served
by VSSes. The OSN-only solution, following the idea in [7],
assumes all the video requests from OSNs are served by the
video servers operated by the OSN. We vary the percentage
(5% to 50%) of daily requests that are unserved by VSSes
due to under-provisioning, and examine how the served ratio
and cost change. Fig. 9 shows the results. It shows that
while both OSN-only and SNACS can significantly improve
the user experience, SNACS achieves the similar performance
with much less cost, thus providing a more viable option for
OSNs to improve the user experience more cost-efficiently in
practice.

VII. CONCLUSION

In this paper, we proposed the SNACS framework for
the OSN to cost-effectively enhance its video viewing

experience by leveraging content cloud service. Given the
strong dynamics of the video access patterns in the OSN, we
were particularly interested in the content management and
update strategies in the SNACS’ implementation. We showed
that conventional cache replacement strategies can be quite
inefficient in SNACS. We then developed an optimal offline
replacement algorithm that generates minimum misses in
this new context. We further offered guidelines and extended
the algorithm to minimize replacements among the solutions
with minimum misses. The optimal offline solutions not only
provide a benchmark for comparison but also motivate the
design of an online replacement algorithm, which makes
effective use of the video sharing patterns in the OSN. The
superiority of our design was confirmed by the trace-driven
simulations.

VIII. ACKNOWLEDGEMENT

Jiangchuan Liu’s research is supported by an NSERC
Discovery Grant and an NSERC Strategic Project Grant. Feng
Wang’s research is supported by a Start-up Grant from the
University of Mississippi, MS. Ke Xu’s research is supported
in part by NSFC Project (61170292, 61472212).

REFERENCE
[1] T. Broxton, Y. Interian, J. Vaver, and M. Wattenhofer, “Catching a viral

video,” in Processings of ICDM, Sydney, Australia, 2010.
[2] “http://www.youtube.com/t/press statistics,” [Online; accessed on

January 10, 2011 and June 10, 2012].
[3] comScore, “http://ir.comscore.com/releasedetail.cfm?releaseid=860971,”

[Online; accessed on 28-July-2014].
[4] H. Li, J. Liu, K. Xu, and S. Wen, “Understanding Video Propagation in

Online Social Networks,” in Processings of IWQoS, Coimbra, Portugal,
2012.

[5] Z. Wang, L. Sun, X. Chen, W. Zhu, J. Liu, M. Chen, and
S. Yang, “Propagation-Based Social-Aware Replication for Social Video
Contents,” in Processings of ACM Multimedia, Nara, Japan, 2012.

[6] Z. Wang, L. Sun, C. Wu, and S. Yang, “Enhancing internet-scale
video service deployment using microblog-based prediction,” IEEE
Transactions on Parallel and Distributed Systems, 2014.

[7] Y. Wu, C. Wu, B. Li, L. Zhang, Z. Li, and F. C. Lau, “Scaling social
media applications into geo-distributed clouds,” in Processings of IEEE
INFOCOM, Orlando, FL, USA, 2012.

[8] S. Scellato, C. Mascolo, M. Musolesi, and J. Crowcroft, “Track Globally,
Deliver Locally: Improving Content Delivery Networks by Tracking
Geographic Social Cascades,” in Processings of WWW, Hyderabad,
India, 2011.

[9] L. Zhang, F. Wang, and J. Liu, “Understand instant video clip sharing
on mobile platforms: Twitter’s vine as a case study,” in Processings of
NOSSDAV, Singapore, 2014.

[10] H. Li, H. Wang, J. Liu, and K. Xu, “Video requests from online social
networks: Characterization, analysis and generation,” in Processings of
INFOCOM mini-conference, Turin, Italy, 2013.

[11] D. Rayburn, “Comparing CDN Performance: Amazon CloudFront’s Last
Mile Testing Results,” Frost & Sullivan, Tech. Rep., 2012.

[12] J. Kleinberg and Éva Tardos, Algorithm Design. Addison-Wesley, 2005.
[13] “SNACS: Social Network-Aware Cloud Assistance for Online

Propagated Video Sharing,” Tech. Rep., 2014, [Online; https://
s3-us-west-2.amazonaws.com/technical-report/SNACS.pdf].

[14] H. Li, X. Ma, F. Wang, J. Liu, and K. Xu, “On Popularity Prediction
of Videos Shared in Online Social Netowrks,” in Processings of ACM
CIKM, San Francisco, CA, USA, 2013.

[15] H. Li, H. Wang, J. Liu, and K. Xu, “Video Sharing in Online Social
Network: Measurement and Analysis,” in Processings of NOSSDAV,
Toronto, ON, Canada, 2012.

