
SCIENCE CHINA
Information Sciences

May 2023, Vol. 66 152105:1–152105:16

https://doi.org/10.1007/s11432-021-3545-0

c© Science China Press 2023 info.scichina.com link.springer.com

. RESEARCH PAPER .

Towards real-time ML-based DDoS detection via
cost-efficient window-based feature extraction

Haibin LI1, Yi ZHAO1*, Wenbing YAO1, Ke XU1,3* & Qi LI2,3

1Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China;
2Institute for Network Sciences and Cyberspace, Tsinghua University, Beijing 100084, China;

3Beijing National Research Center for Information Science and Technology (BNRist), Beijing 100084, China

Received 15 December 2021/Revised 20 March 2022/Accepted 4 July 2022/Published online 17 April 2023

Abstract Distributed denial of service (DDoS) detection is still an open and challenging problem. In par-

ticular, sophisticated attacks, e.g., attacks that disguise attack packets as benign traffic always appear, which

can easily evade traditional signature-based methods. Due to the low requirements for computing resources

compared to deep learning, many machine learning (ML)-based methods have been realistically deployed to

address this issue. However, most existing ML-based DDoS detection methods are highly dependent on the

features extracted from each flow, which incur remarkable detection delay and computation overhead. This

article investigates the limitations of typical ML-based DDoS detection methods caused by the extraction of

flow-level features. Moreover, we develop a cost-efficient window-based method that extracts features from

a fixed number of packets periodically, instead of per flow, aiming to reduce the detection delay and compu-

tation overhead. The newly proposed window-based method has the advantages of well-controlled overhead

and wide support of common routers due to its simplicity and high efficiency by design. Through exten-

sive experiments on real datasets, we evaluate the performance of flow-based and window-based methods.

The experimental results demonstrate that our proposed window-based method can significantly reduce the

detection delay and computation overhead while ensuring detection accuracy.

Keywords DDoS attack, machine learning, feature extraction, detection delay, cost-efficiency

Citation Li H B, Zhao Y, Yao W B, et al. Towards real-time ML-based DDoS detection via cost-efficient window-

based feature extraction. Sci China Inf Sci, 2023, 66(5): 152105, https://doi.org/10.1007/s11432-021-3545-0

1 Introduction

The Internet, delivering vast information and other resources, has been changing the world. Services and
applications deployed on the Internet, such as email, banking, and e-commerce, significantly facilitate our
daily life. Meanwhile, the Internet suffers serious security problems, such as various network attacks [1].
In particular, distributed denial of service (DDoS) attacks exhaust resources and disrupt services on the
Internet with a large volume of packets. To avoid being detected, some DDoS attackers attempt to mimic
benign traffic, making it challenging to detect them [2, 3]. Traditional DDoS detection methods cannot
effectively detect those new and complex attacks.

Traditional detection methods, in most cases, focus on a specific type of attack, for example, transmis-
sion control protocol (TCP) SYN flood or domain name system (DNS) amplification attack [4–6]. Despite
high detection accuracy on a single attack form, they fail to capture other attacks with different attack
patterns. As an emerging trend, machine learning (ML) has been applied to detect DDoS attacks [7–9].
ML algorithms are able to automatically identify attacks by leveraging knowledge learned from data of
attack traffic, which greatly improves the detection performance. Thus, ML-based techniques for DDoS
protection have also been adopted by industry [10]. Note that the referred ML-based techniques in this
paper refer to ML-based methods that rely on feature extraction, rather than deep learning (DL)-based
methods that can automatically learn features from the data instead of handcrafted feature extraction.
In fact, DL models have high requirements for equipment, such as high-performance computing and

*Corresponding author (email: zhao yi@tsinghua.edu.cn, xuke@tsinghua.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-021-3545-0&domain=pdf&date_stamp=2023-4-17
https://doi.org/10.1007/s11432-021-3545-0
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-021-3545-0
https://doi.org/10.1007/s11432-021-3545-0


Li H B, et al. Sci China Inf Sci May 2023 Vol. 66 152105:2

large-scale data support, which makes it difficult for current network equipment to achieve realistic de-
ployment of DL models. Compared to DL models, ML models usually have lower complexity and lower
requirements for computing resources, which enables the chance to deploy ML models on network devices
for DDoS detection.

However, the deployment of ML-based DDoS detection on network devices still encounters the follow-
ing challenges. First, the computing resources of network devices are usually limited for running ML
models, given that the devices have to ensure enough resources for the normal operation of their orig-
inal network functions at the same time. Thus, the resource consumption of running ML-based DDoS
detection models should be kept as low as possible, which is a challenging requirement. Second, reducing
resource consumption of ML-based DDoS detection while maintaining the compatibility with different
ML algorithms is a challenging task. It is inevitable that when one ML algorithm cannot detect DDoS
attacks with satisfactory accuracy, other ML algorithms should be used to replace it. Thus, the design
of a cost-efficient approach cannot be achieved by simply optimizing the efficiency of some specific ML
algorithms. The cost-efficient approach must be carefully designed to reduce the detection cost while not
affecting the use of arbitrary ML algorithms. Third, maintaining the overall accuracy performance of ML
models with reduced resource consumption is also a challenging problem.

In this article, we systemically investigate existing ML-based DDoS attack detection methods. Because
big DL-based models cannot easily fit into common network devices with constrained computing resources,
most of the deployed common intelligent methods in the real world tend to utilize light-weight and easy-
to-deploy ML-based algorithms, such as decision tree (DT) [11], random forest (RF) [12], and naive Bayes
(NB) [13]. For machine learning, feature engineering is an important step because it determines whether
the models can be trained on significant and effective information. Based on our investigation, we find that
many ML-based DDoS detection methods extract flow-level features in feature engineering. To extract
flow-level features, a typical procedure is to first hash (or aggregate) each packet into a corresponding flow
defined by the 5-tuple in the packet header, i.e., protocol type, IP source address, source port number,
IP destination address, and destination port number. Then, it computes feature values from each flow.
Although feature extraction by flow-based method keeps detailed flow information, it incurs remarkable
detection delay and computation overhead on the detection device due to the complex flow-tracking
procedure. Furthermore, common network devices such as a gateway or home routers, have limited
memory and computing resources. While deploying ML-based attack detection models on such devices,
the run-time computation overhead of the ML models must be carefully controlled at a low level, so that
the devices are able to run the ML model to detect attacks even when processing high-bandwidth traffic
at the same time (e.g., under DDoS). To scale to high bandwidth scenarios, the delay of feature extraction
for ML models should also be kept low in order to achieve real-time detection of attacks. Motivated by
the aforementioned considerations, we focus on the following question: is it possible to further reduce
the detection delay and computation overhead without using flow-level features, while achieving ensured
detection accuracy?

To answer the question, we develop a novel window-based (a.k.a., win-based) feature extraction method
that effectively reduces detection delay and computation overhead, while detecting DDoS attacks effec-
tively with the same existing ML algorithms. To better deploy ML-based DDoS detection methods to
resource constrained network devices, we aim to make the proposed method simple for deployment and
effective for attack detection, with the advantages of well-controlled overhead, wide support of common
routers, and accuracy preserving. By leveraging information within an interval (i.e., a detection window),
the proposed method feeds the ML model with features extracted from a fixed number of packets among
all flows periodically, instead of calculating features of individual flows, thus avoiding the detection de-
lay and computation overhead of the flow-based method. To validate whether the proposed win-based
method can achieve higher detection efficiency while ensuring detection accuracy, we conduct extensive
experiments using multiple real DDoS attack datasets in offline and online (i.e., real-time) modes. Our
experiments evaluate the performance of multiple typical ML-based DDoS methods with win-based and
flow-based features. The comprehensive comparison results demonstrate the overall effectiveness of our
proposed win-based feature extraction method in terms of accuracy and efficiency. Moreover, we discuss
research directions of ML-based DDoS detection.

The contributions we make in this article are as follows:
• We systematically investigate typical ML-based DDoS detection schemes using flow-level features,

and summarize detection delay and computation overhead problem of flow-based methods. We make
meaningful exploration on the trade-off between cost and accuracy for ML-based DDoS detection.



Li H B, et al. Sci China Inf Sci May 2023 Vol. 66 152105:3

• We propose a novel window-based feature extraction method for real-time ML-based DDoS detection.
In addition to effectively reducing detection delay and computation overhead, the proposed win-based
method is fully compatible with various ML-based methods, showing its capability of addressing the
challenges of deploying ML-based DDoS detection models.

• Extensive experiments on real datasets demonstrate that our win-based method achieves compre-
hensive advantages in cost-efficiency and accuracy retention, as well as broad compatibility, which can
further promote the deployment of ML methods in existing resource-constrained network equipments in
the real world.

2 Background

In this section, we briefly introduce the problem of DDoS attack and detection. In particular, we elaborate
on the methodology of typical ML-based DDoS detection by investigating existing studies, and summarize
our observations.

2.1 DDoS attack and detection

DDoS attacks can be classified as semantic and brute-force ones [14]. Semantic attacks exploit the
vulnerabilities, and bugs of protocol or software implemented at the victim side to consume resources.
TCP SYN flood attack is an example of semantic attacks, in which the attacker exploits the weakness
in the TCP three-way handshake to fill up the connection queue of the victim. Brute-force attacks flood
the victims’ machines with a tremendous number of legitimate packets that exhaust targeted resources.
For example, a large number of zombie computers in a botnet send seemingly legitimate DNS requests
simultaneously to a victim to overwhelm its resources. For semantic attacks, they can possibly be
mitigated by modifying the vulnerable protocols or fixing the bugs. While for brute-force ones, there
might be no such vulnerabilities or bugs to fix for mitigation, and additional mitigation strategies are
required for defense. Note that semantic attacks and brute-force attacks may share some similarities, e.g.,
a large volume of traffic, and excess consumption of resources. Both semantic and brute-force attacks
aim to make services unavailable by disrupting them or impeding legitimate requests. Attackers usually
conduct attacks by manipulating bots to flood a target, in which cases responses to benign requests are
disturbed or even suspended.

Existing DDoS detection methods can be categorized as either signature-based or anomaly-based meth-
ods. Signature-based methods are able to capture known attacks with high detection accuracy but are
unable to work on unknown attacks. Anomaly-based methods analyze malicious or uncommon patterns
of behavior by applying statistical and machine learning techniques to a large amount of data, rather than
simply identifying particular signatures. They are effective in learning common patterns and capable of
detecting unknown or suspicious behavior according to the features extracted from existing data, which
differs from traditional methods that rely heavily on the domain knowledge of security experts.

2.2 ML-based DDoS detection

With regard to ML-based DDoS detection methods, there are usually three phases, namely, preprocessing
phase, the training and validation phase, and the testing phase. The first phase prepares training data,
the second adjusts parameters of the ML model, and the last checks the model’s validity. These three
phases are illustrated in Figure 1.

The preprocessing phase includes the following procedures: data collection that collects and labels
data, feature extraction that extracts features from collected data, and feature selection that selects key
features for detection.

• Data collection: Data (i.e., network traffic) in networks are captured at different locations like routers
and victim servers [15]. Traffic sniffers can be deployed according to the network topology. Many tools
such as pcap and wireshark, are used to capture packets.

• Feature extraction: Feature extraction relies on the knowledge of security experts, and the extracted
features used in the detection can directly affect the accuracy. In general, most of the ML-based DDoS
detection schemes extract features based on flows, such as [16–19]. For example, Wang et al. [18] extracted
the same 41 features as the KDD Cup 99 dataset. Typical flow-based features include the number of
packets per second, byte rate, and average packet size. Symbolic features are usually converted to



Li H B, et al. Sci China Inf Sci May 2023 Vol. 66 152105:4

Preprocessing phase

Training

set

Feature

vectors

Selected

feature

vectors

Data

collection

Feature

extraction

Feature

selection

Testing

set

Training and validation phase

ML

algorithm
Self

validation

Classification

model

Testing phase Prediction

Figure 1 (Color online) Workflow of typical ML-based DDoS detection.

numeric forms, and then normalized into the same range in order to guarantee unbiasedness. The feature
extraction delay is significant, especially for data containing a large number of flows.

• Feature selection: Feature selection aims to reduce computation overhead, memory consumption,
as well as the impact of feature noises. There are several approaches to selecting features. Barati et
al. [17] introduced a genetic algorithm (GA), and tested combinations of flow-based features by the GA
fitness function. In their experiments, they selected the five most efficient features out of the original 43
flow-based features based on classification accuracy. Osanaiye et al. [16] analyzed four feature selection
methods and tested them with three machine learning algorithms.

The training and validation phase adapts the ML model’s parameters and chooses hyper-parameters
such as the number of trees in RF and the maximum depth of DT through a validation set randomly
picked from training sets. Training and detection delay varies with different ML algorithms. DT, NB,
and Bayes network (BN) usually have less delay than support vector machine (SVM), and ensemble
learning methods. The testing phase utilizes the model trained in the previous phase to do classification
or prediction on the testing samples containing features extracted from the testing set.

2.3 Detection delay and overhead

Detection delay and overhead are two important problems in online ML-based DDoS detection. In this
paper, we use detection delay (or detection latency) to refer to the duration from the time when packets
are collected to the time when the detection result is given. Detection overhead refers to the computing
resources (e.g., CPU and memory) consumed by the detection procedure. Reducing detection delay and
overhead is crucial for ML-based DDoS detection, especially when deploying the ML models in resource-
constrained network devices.

Optimizing feature extraction is vital for addressing the problem of detection delay and overhead.
Once the ML model is trained, it can be deployed at the detection point (e.g., network devices or
destination servers) for online detection. During the process of online detection, the collected packets will
first go through the preprocessing phase for feature extraction, and then go through the testing phase
for model inference in order to do classification or prediction. Both the feature extraction and model
inference can lead to detection delay and overhead. Optimizing the detection efficiency can be achieved
by either improving the efficiency of feature extraction or improving the efficiency of model inference.
However, improving the efficiency of model inference needs to optimize the specific ML algorithm, and the
optimization will lose effectiveness when a new algorithm is needed to replace the old one. An alternative
is to optimize the efficiency of feature extraction, which is the focus of our work.

We investigate the commonly used flow-based feature extraction method and find that it still needs
further improvement. The flow-based method is a classic method for feature extraction. A flow is
identified by 5-tuple, which contains the key information of the network connection establishment between
any hosts. Analyzing network traffic based on 5-tuple is intuitive and has become a tradition. Many
existing ML-based DDoS schemes use flow-based features, in which the packets have to be aggregated
into flows before feature extraction. For example, Ref. [19] used the following flow-level features: average
of packets per flow (APf), average of Bytes per flow (ABf), average of duration per flow (ADf), etc.
Calculating flow-level features requires tracking flow identities and computing feature values for every



Li H B, et al. Sci China Inf Sci May 2023 Vol. 66 152105:5

Training

Training dataset

Win-based feature

extraction

Feature selection

Training

Realtime detection

Win-based

sniffer

Raw traffic unit

Feature extraction

Types of

selected features

Trained model

Prediction

Figure 2 (Color online) Our proposed ML-based realtime DDoS detection framework.

single flow. However, the number of flows passing a single network device could be very large, whether in
normal traffic or DDoS traffic, which leads to non-negligible overhead for calculating flow-level features,
and consequently causes non-negligible detection delay and overhead. What’s worse, in DDoS scenarios,
numerous zombie computers in a botnet may send packets simultaneously towards the victim, resulting in
an explosion of flows on the network devices near the victim side. In that case, the calculation of flow-level
features for numerous flows will cause a heavy burden on the DDoS detection devices, where the flow-
based feature extraction might become the bottleneck of ML-based DDoS detection. In addition, when
deploying ML-based DDoS models on resource-constrained network devices, we have to make sure that
the running of ML models will not overwhelm the resources for maintaining the normal network function
of the network device. Thus, a cost-efficient feature extraction approach is crucial for deploying ML-based
DDoS detection models, while the flow-based feature extraction cannot fully meet the requirements of
the task.

In summary, by investigating typical existing ML-based DDoS detection methods, we have the following
key observations. ML-based methods are becoming a new trend in DDoS detection, showing the capability
of ML-based methods for detecting DDoS attacks. However, the traditional flow-based feature extraction
method still incurs significant detection delay and overhead, which is not conducive to the rapid detection
of attacks and the stable operation of the detection device (e.g., routers) especially under the heavy
pressure of DDoS. It is necessary to reduce latency such that ML methods can achieve better detection
efficiency while maintaining detection effectiveness.

3 Reducing delay and overhead with win-based feature extraction

In this section, we explain the details of the proposed win-based feature extraction method which aims for
reducing detection delay and computation overhead. We first introduce our proposed ML-based realtime
DDoS detection framework, then elaborate on the design of the win-based method, and finally summarize
the core characteristics of the proposed method.

Most existing ML-based DDoS detection methods are highly dependent on the features extracted from
flows, which incurs significant detection delay and computation overhead. The root cause of the detection
latency is that the commonly adopted flow-based feature extraction requires tracking flows, which is very
time-consuming. To address the issue and reduce the detection overhead, we propose a new feature
extraction method that extracts features according to a constant number of packets without respect to
flow types and traffic situations. The intuition behind it is that DDoS packets share similarities without
regard to the flow types, and ML models can be trained to distinguish whether a bunch of continuous
packets in the packet stream contain attacks, making win-based DDoS detection practical.

We design an ML-based real-time DDoS detection framework shown in Figure 2. The training module
is responsible for constantly learning patterns from the training data, and the real-time detection module
is responsible for dynamically detecting attacks from the real-time network traffic. Note that both the



Li H B, et al. Sci China Inf Sci May 2023 Vol. 66 152105:6

N pkts/1 s N pkts/1 s

Flow 1 Flow 2 Flow 3 Flow n

FV 1 FV 2 FV 3 FV n

W pkts

Window FV

(a) (b)

Figure 3 (Color online) Flow-based (a) and win-based (b) methods. The win-based method does not distinguish different flows

while the flow-based one does.

trained model and types of features in the real-time detection module can be dynamically updated. The
key difference between our framework and traditional approaches is that we use a win-based feature
extraction method in both training and real-time detection. Especially, to make the detection fast and
scalable, we design a win-based sniffer which captures a fixed number of packets in a preset time window.

Our proposed win-based feature extraction method is illustrated in Figure 3(b), and the flow-based
method is shown in Figure 3(a). In the win-based method, a fixed number (W , i.e., window size) of
continuous packets are periodically (e.g., every one second) gathered and analyzed. For each period,
all W gathered packets in the window are treated as a unit that is converted into one feature vector,
regardless of which flow each packet belongs to. Specifically, compared with the flow-based method, our
proposed win-based method only generates one feature vector from W continuously captured packets for
each period, instead of assembling all N packets into flows and extracting a range of feature vectors for all
flows for the period. Obviously, with reduced complexity, the win-based method is effective in reducing
the CPU overhead, memory consumption, and latency.

The intuition behind the win-based method is that characteristics of DDoS attacks are observable at
the traffic level (without distinguishing flow identity), making features of the whole traffic a possible
substitute for flow-level features. Note that by “traffic level”, we mean taking all packets together as a
whole, regardless of their flow identity. In order words, the win-based method just regards all packets as
a whole and samples a fixed number of packets from the whole traffic to calculate the feature values. In
more detail, when DDoS attacks happen, the feature statistics of the whole traffic will be changed by the
significant impact of DDoS attacks. In that case, the feature statistics of the whole traffic will present
some anomalous pattern that differs from its normal state. It will be possible for machine learning to
distinguish between the normal state of the whole traffic and the state when it is under a DDoS attack,
by learning from the feature statistics of the whole traffic. Our proposed win-based method is designed
to extract the feature statistics from samples of the whole traffic. Note that the win-based method is
quite different from the flow-based method, especially for how it views the network traffic. The flow-
based method looks into the details of each flow (identified by 5-tuple in the packet header, i.e., protocol
type, IP source address, source port number, IP destination address, and destination port number),
while the win-based method takes all the traffic as a whole to extract features without the process of
distinguishing flows. Obviously, the win-based method is more efficient than the flow-based method. The
overall computation overhead and detection delay of ML models will hopefully be reduced by replacing
the flow-based method with the win-based method in the feature extraction phase. This replacement
does not require additional changes in subsequent stages (training and validation). Thus, the use of the
win-based method can also keep the compatibility with ML algorithms in the training and validation
phase.

The win-based feature extraction method has the following characteristics: well-controlled overhead,
wide support of commodity routers, and preserved accuracy.

• Well-controlled overhead. The overhead of extracting a set of predefined features from data is
controlled by parameter W , with smaller W leading to smaller overhead. Note that W should be selected
carefully, because selecting a W that is not too big while containing enough information is the key to
reducing overhead and preserving detection accuracy (experiments on the impact of W is explained in
Subsection 5.3). Once the value of W is determined, the amount of packets to be processed in a fixed
time window remains stable and the overhead of feature extraction is fully under control, even in extreme
cases when the traffic rate changes dramatically under DDoS attacks.



Li H B, et al. Sci China Inf Sci May 2023 Vol. 66 152105:7

• Wide support of commodity routers. The win-based method does not involve complex sampling
techniques or consume lots of computing resources, making it possible to deploy the method in resource
constrained network devices such as home routers and gateway routers.

• Preserved accuray. Even though the win-based method is simple to implement and cost-efficient,
it can preserve the accuracy of DDoS detection, which will be explained in the results of extensive
experiments in Section 5.

Besides flow-based and our proposed win-based methods, there are some other feature extraction
methods in literature, such as extracting features directly from all packets captured periodically [15], or
extracting features from sampled packets obtained by other sampling techniques. Extracting features
directly from all packets captured periodically suffers from the overhead caused by increased traffic rate
which is especially serious and overwhelming when a DDoS attack happens, similar to the case of the
flow-based method that also uses all captured packets. Sampling techniques such as systematic sampling,
1-out-of-N sampling, and uniform probabilistic sampling studied in [20], can also improve performance.
However, those techniques sample one packet out of every N packets, which means the number of sampled
packets can still be very large under a preset parameter N when a huge traffic burst occurs under a DDoS
attack. In our method, the number of processed packets per second (time window) is a constant W , while
that of aforementioned sampling techniques will linearly grow with the traffic rate. When a DDoS attack
is launched, the traffic rate will increase sharply, which will lead to a sharp increase in the overhead of
packet processing for those sampling techniques, while the overhead of our method remains unaffected
because the window size W is irrelevant to the traffic rate. Thus, our proposed method is more suitable
for the DDoS detection in resource-constrained devices, where servers or routers need to run the detection
module while busy handling overwhelming traffic pressure caused by the attack.

We also note that some Routers on the Internet usually capture packets based on timeout and max-
packets parameters, e.g., [21, 22], in which cases our win-based method is directly supported.

Given the simplicity and versatility of our proposed win-based method, the remaining question is
whether detection accuracy will be preserved, which we will analyze in Sections 4 and 5.

4 Comparison with typical schemes

In this section, we comprehensively review multiple typical ML-based DDoS detection schemes in liter-
ature and compare our newly proposed method with them, as shown in Table 1 [7–9, 15–19, 23–31]. We
select and analyze representative ones from numerous related DDoS detection schemes to illustrate key
points, not aiming to cover all the studies. The comparison includes the following aspects.

• Detection mode: Online (or real-time) detection mode captures attacks immediately after packet
collection, while the offline mode requires additional static analysis after finishing data collection. Off-line
mode belongs to post-incident investigation or detection, which cannot detect attacks immediately while
they are happening. Online detection is more powerful with the ability to detect attacks in real time,
and also more challenging in system design and implementation.

• Detection location: Detection location refers to the place that ML-based models are deployed. De-
tection deployed in the destination server (denoted as dst) is widely adopted in the existing schemes,
since the victim side can provide more attack information to achieve high detection accuracy. In con-
trast, detection deployed in the middle of the network or intermediate network (denoted as mid) can
detect and respond to DDoS attacks in advance before the attack packets arrive at the protected server,
which is a significant advantage in many scenarios. However, detection deployed in the middle of the
network also incurs additional processing overhead at routers, which is the challenge that our proposed
win-based method aims to address. The deployment location should be determined according to the
actual situation and requirements, and the proposed win-based method is compatible with both locations
due to its cost-efficiency.

• Attack types: This column indicates the attack types detected in the respective schemes. As illus-
trated in Table 1, each scheme detects specific attack types in its experiments. Common attack types
include TCP SYN flood, Internet control message protocol (ICMP) flood, DNS amplification, user data-
gram protocol (UDP) flood, and bandwidth consuming attacks. Most of the attacks are semantic ones,
exploiting some weakness in certain protocols, such as TCP SYN flood and DNS amplification. Some of
them are brute-force ones, such as computing resource consuming and bandwidth consuming attacks.



Li H B, et al. Sci China Inf Sci May 2023 Vol. 66 152105:8

Table 1 Comparison of typical ML-based DDoS detection schemes

Scheme Detection mode Detection Attack type Acc/DR (%) ML algorithm

[16] offline dst Neptune, Land, Pod, 99.81 DT, OneRa),

Smurf, Teardrop BN, RF, NB

[7] online dst ICMP flood, TCP SYN flood, 97 DT

UDP flood

[18] offline dst ICMP flood, TCP SYN flood, 99.8 (DR) DT, BN

UDP flood, Smurf

[8] offline dst DDoS attacks on Cloud 99 SVM, NB, RF

computing environment

[23] offline dst UDP flood, HTTP 98.63 MLPb), NB,

flood, Smurf, SIDDOS RF

[17] online dst Computing resource consuming, 99.98 MLP

bandwidth consuming

[15] online dst TCP SYN flood >96 RBF

or UDP/ICMP based attacks

[24] online dst Ping/Faked – MLP

UDP/Http flood

[9] online dst TCP SYN flood – NB, DT, RF

[25] online mid/dst DDoS attacks in 89–92 SMOc), NB,

SIP ecosystems DT, RF

[19] online – ICMP flood, TCP SYN 99.11 (DR) SOMd)

flood, UDP flood

Ours online + offline mid/dst DNS amplification, TCP SYN flood, 99.82 Bagginge), NB, IBKf), DT,

Bandwidth consuming MLP, BN, OneR, RBF, RF, SMO

a) One rule (i.e., OneR) [26], a classification algorithm based on rule generation and selection.

b) Multilayer perceptron (i.e., MLP) [27], a supervised learning algorithm.

c) Sequential minimal optimization (i.e., SMO) [28], a fast algorithm for training support vector machines.

d) Self-organizing map algorithm (i.e., SOM) [29], an unsupervised machine learning technique.

e) Bootstrap aggregating (i.e., Bagging) [30], a machine learning ensemble meta-algorithm.

f) Instance-based learning with parameter K (i.e., IBK) [31], an implementation of k-nearest neighbor algorithm in Weka tool.

• Acc/DR: Results of average accuracy (or detection rate) are obtained from those typical schemes.
Note that Refs. [18, 19] used DR (detection rate, which is equivalent to Recall) as the basic metric to
measure the effectiveness of their classifier, while other studies used accuracy (a.k.a., Acc) as the basic
metric. The experimental result of accuracy for our proposed method is also given.

• ML algorithms: This column lists the machine learning algorithms used in each respective scheme.

As is shown in Table 1, detection at the victims (i.e., dst) is more commonly used. Our proposed
method is compatible with both locations. DT, RF, NB and radial basis function (RBF) [32] are popular
algorithms used in different studies. The detection accuracy is very high in nearly all the studies, except
in session initiation protocol (SIP) ecosystems, which indicates there still exist challenges in particular
scenarios. Our newly proposed method achieves relatively high accuracy (99.82% on average) based on
experiments with ten ML algorithms, details of which will be explained in Section 5.

5 Performance evaluation

In this section, we aim to answer the following questions by conducting extensive experiments on real
DDoS attack datasets.

• How does the win-based method compare to the flow-based method when using different ML algo-
rithms for DDoS detection?

• How does window size affect the performance of the win-based method?

• How does the win-based method compare to the flow-based method when evaluated with different
attack types? Does the win-based method effectively reduce feature extraction delay in online detection?

We conduct three experiments to answer the above questions, respectively. The first experiment
(i.e., Figures 4 and 5 in Subsection 5.2) is done in an offline mode, and the second (i.e., Figure 6
in Subsection 5.3) and third (i.e., Table 3 in Subsection 5.4) experiments are conducted in an online



Li H B, et al. Sci China Inf Sci May 2023 Vol. 66 152105:9

Table 2 Description of selected features

Feature name Description

pkt-rate Number of packets per second

byte-rate Number of bytes per second

avg-id Mean value of the id field in IP header

std-id Standard deviation of id field in IP header

avg-ttl Mean value of the ttl field in IP header

std-ttl Standard deviation of the ttl field in IP header

avg-pkt-size Average packet size

std-pkt-size Standard deviation of packet size

avg-src-num Mean value of source port number (TCP or UDP)

std-src-num Standard deviation of source port number (TCP or UDP)

avg-dst-num Mean value of destination port number (TCP or UDP)

std-dst-num Standard deviation of destination port number (TCP or UDP)

avg-seq-num Mean value of sequence number (TCP)

std-seq-num Standard deviation of sequence number (TCP)

avg-ack-number Mean value of acknowledge number (TCP)

std-ack-number Standard deviation of acknowledge number (TCP)

avg-win-size Mean value of window size (TCP)

std-win-size Standard deviation of window size (TCP)

(real-time) mode by replaying the traffic data with the tcpreplay tool in a simulation network through
Mininet, where we capture the packets at the entrance of the victim’s subnet for attack detection.

5.1 Experiment setup

5.1.1 Datasets and selected features

We use real trace datasets containing both benign and attack traffic for evaluation, with each dataset
containing one type of DDoS attack. The first dataset contains a TCP SYN flood attack, the second
dataset contains a DNS amplification attack, and the third dataset contains an attack that consumes
bandwidth resources. The selected three types of DDoS attacks are frequently launched by real-world
attackers.

To provide comprehensive feature information, we select 18 features that are frequently used for DDoS
detection in literature, as shown in Table 2. The full feature set includes packet rate, byte rate, and
mean values and standard deviations of eight fields in the headers of packets. These fields include ID,
TTL, Length, in the IP packets, source port number and destination port number in UDP or TCP
packets, sequence number, acknowledge number, and window size in the TCP packets. If some fields
are not contained in captured packets, they are set to default values (zeros). Obviously, features such as
packet rate and byte rate are probably more useful for detecting DDoS attacks. The reason for using the
mean values and standard deviations of fields in headers of network and transport layers is, intuitively,
the distribution of these fields may be different between certain anomalous traffic and benign traffic.
Note that even though the original feature sets used for comparing win-based and flow-based methods
are identical with the same feature names, the calculated feature values will be quite different for both
methods because the calculation is conducted with different scopes. The flow-based method calculates
features from each flow, while the win-based method just regards all packets as a whole and samples a
fixed number of packets to calculate the feature values.

To make a fair comparison between win-based and flow-based methods, we do not manually filter out
insignificant features for each method by predefined human knowledge or fine-tune the parameters of ML
models to their best performance. Instead, we just provide the model with the full feature set from which
significant features will be selected by the feature selection algorithm (i.e., Chi-square) in an automatic
way, and leverage the default parameters of the Weka tool (Waikato environment for knowledge analysis,
a software with a collection of machine learning algorithms for data mining tasks) to do the training and
then observe the detection performance. The Weka tool, in which all the parameters are set to default
values, is used for evaluation. What we want to see is the performance of each method on average without
hard fine-tuning, which reflects the basic effectiveness of each method in a relatively fair manner. As a
supplement, we also give the performance comparison of the algorithms after parameter tuning.



Li H B, et al. Sci China Inf Sci May 2023 Vol. 66 152105:10

Ten-fold cross validation is applied in each experiment. The initial dataset is divided into 10 subsets,
one for testing and the rest for training. Each subset is validated once, and we measure the average
results of 10 runs.

5.1.2 Metrics

We evaluate the results by metrics including Accuracy, Precision, Recall, false positive rate (FPR), feature
extraction time (FET), training latency (TL), detection latency, and memory usage.

Most of existing methods used different evaluation metrics for performance measurement, making
the comparison unpractical. For a fair comparison, we use multiple frequently adopted metrics for
comprehensive evaluation.

• Accuracy reflects the overall effectiveness of the classification.

Accuracy =
TP+ TN

TP + TN+ FP + FN
.

• Precision is the correct rate of the detected positive (attack) samples.

Precision =
TP

TP + FP
.

• Recall indicates the ability of the classifier to detect positive (attack) samples out of all real positives.
It is also called DR in some related studies.

Recall =
TP

TP + FN
.

• FPR reflects the wrongly classified negative (normal) samples.

FPR =
FP

FP + TN
.

• FET is defined as the time cost for extracting the feature vectors.
• TL is defined as time for training an ML model.
• DL is defined as duration from the time when raw packets are collected to the time when the

detection result is given.
• Memory usage measures the resource consumption of an algorithm. We use the time tool to measure

the memory usage.

5.2 Performance comparison with different ML algorithms

In the first experiment, we compare the performance between win-based and flow-based methods using
different ML algorithms. This experiment is done in an offline mode. We provide both methods with the
same feature set and conduct the feature selection automatically by Chi-square algorithm with default
parameters in the Weka tool. An overview of the performance comparison between the win-based and
flow-based methods on six metrics is given in Figure 4 (note that J48 shown in the figure is a classification
algorithm based on a decision tree).

Figure 4(a) shows that the accuracy differences between win-based and flow-based methods are less
than 0.5% for most algorithms except for RBF and SMO. The default parameters set by Weka tool
may not be good enough for RBF and SMO, which leads to a big accuracy gap for both algorithms.
By re-adjusting parameters in further experiments, we find the accuracy gap can be narrowed close to
0.5%, showing that win-based method is comparable to flow-based method in terms of accuracy, with
only a small difference. Figure 4(b) shows that the precision of the two methods is very close to each
other for most ML algorithms except for NB. The precision of flow-based method with NB algorithm
is really bad using default parameter set by Weka tool. Just like the parameter adjustment we have
done in improving the accuracy for RBF and SMO, we find that using the kernel estimator can help
the flow-based NB model obtain a comparable precision of 99.9%, which shows that both methods are
almost evenly matched in precision. From Figure 4(c), we can see that the recall of win-based methods
is superior to the flow-based ones for most ML algorithms. This indicates that there are more attack
samples not detected in flow-based methods than win-based ones.



Li H B, et al. Sci China Inf Sci May 2023 Vol. 66 152105:11

 97

 97.5

 98

 98.5

 99

 99.5

 100
B

N

B
ag

g
in

g

IB
K

J4
8

M
L

P

N
B

O
n
eR

R
B

F

R
F

S
M

O

A
cc

u
ra

cy
 (

%
)

(a)

Win-based
Flow-based

 65

 70

 75

 80

 85

 90

 95

 100

B
N

B
ag

g
in

g

IB
K

J4
8

M
L

P

N
B

O
n
eR

R
B

F

R
F

S
M

O

P
re

ci
si

o
n
 (

%
)

(b)

Win-based
Flow-based

 95

 96

 97

 98

 99

 100

B
N

B
ag

g
in

g

IB
K

J4
8

M
L

P

N
B

O
n
eR

R
B

F

R
F

S
M

O

R
ec

al
l 

(%
)

(c)

Win-based
Flow-based

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

B
N

B
ag

g
in

g

IB
K

J4
8

M
L

P

N
B

O
n
eR

R
B

F

R
F

S
M

O

M
em

o
ry

 u
sa

g
e 

(M
B

)

(d)

Win-based
Flow-based

 0.001

 0.01

 0.1

 1

 10

 100

 1000

B
N

B
ag

g
in

g

IB
K

J4
8

M
L

P

N
B

O
n
eR

R
B

F

R
F

S
M

O

D
et

ec
ti

o
n
 l

at
en

cy
 (

s)

(e)

Win-based
Flow-based

 0

 1

 2

 3

 4

 5

 6

B
N

B
ag

g
in

g

IB
K

J4
8

M
L

P

N
B

O
n
eR

R
B

F

R
F

S
M

O

T
ra

in
 l

at
en

cy
 (

s)

(f)

Win-based
Flow-based

Figure 4 (Color online) Performance comparison by using typical ML algorithms (under default parameters) with win-based and

flow-based methods. (a) Accuracy; (b) Precision; (c) Recall; (d) memory usage; (e) detection latency; (f) training latency.

As shown in Figure 4(d), win-based method has a distinct advantage in memory usage with much lower
values (less than half of the memory usage for flow-based method), outperforming flow-based method for
all tested ML algorithms. Figure 4(e) shows that win-based method costs less than one-tenth of the
detection latency (with a focus on measuring the model inference part in the first experiment) of flow-
based method for all tested ML algorithms. Figure 4(f) shows that the training latency of win-based
method is much lower than that of flow-based method, significantly reducing training time. Specifically,
the memory usage of win-based method is kept at a very low level, only about 120 MB on average.
The average detection latency is 46 ms for win-based method and 764 ms for flow-based method, with
a difference of 16 times. Train latency, 0.9 s on average for the flow-based method, is 3 times that of
the win-based one (e.g., 0.3 s). The experiments demonstrate the significant performance improvement
achieved by win-based methods.

To comprehensively evaluate both methods, we also conduct performance comparison for win-based
and flow-based methods based on fine-tuned parameters. We optimize the parameters of ten machine
learning algorithms, and compared the best performance obtained by the ten algorithms under the flow-
based method and the win-based method. As shown in Figure 5, parameter tuning improves the Accuracy,
Precision and Recall of each ML algorithm to varying degrees, whether it is used with win-based or flow-
based method. In particular, there are some significant improvements achieved by parameter tuning,
such as the Accuracy of SMO with win-based method (increased from 97.2% to 99.7%), Precision of NB
with flow-based method (increased from 69.3% to 99.9%), and Recall of SMO with win-based method
(increased from 95.8% to 99.9%). In general, the performance of win-based and flow-based method for
those ten ML algorithms is approximately on the same level and very close to each other. For accuracy,
win-based method lags behind flow-based with a gap smaller than 0.6%. For Precision, the gap is smaller
than 0.7%. For Recall, win-based method achieves better results than flow-based method by 0.1% to
3.2% for most of the evaluated algorithms. The experiment of performance comparison based on fine-
tuned parameters further demonstrates that the performance for accuracy metrics of win-based method
is comparable to that of flow-based method.

We also calculate the FPR for both methods. We note that the mean FPR of win-based method is
0.88%, which is worse than 0.06% of the flow-based one. In spite of the difference, the FPR of win-based
method remains at a low level and acceptable. The gaps between the two methods in accuracy and FPR
are reasonable, because the fact win-based method is much simpler and uses fewer packets to produce
features than flow-based method.

By comparison with flow-based method, we find that win-based method achieves comparable perfor-



Li H B, et al. Sci China Inf Sci May 2023 Vol. 66 152105:12

 97

 97.5

 98

 98.5

 99

 99.5

 100

B
N

B
ag

g
in

g

IB
K

J4
8

M
L

P

N
B

O
n
eR

R
B

F

R
F

S
M

O

A
cc

u
ra

cy
 (

%
)

(a)

Win-based
Flow-based

 70

 80

 90

 100

B
N

B
ag

g
in

g

IB
K

J4
8

M
L

P

N
B

O
n
eR

R
B

F

R
F

S
M

O

P
re

ci
si

o
n
 (

%
)

(b)

Win-based
Flow-based

 95

 96

 97

 98

 99

 100

B
N

B
ag

g
in

g

IB
K

J4
8

M
L

P

N
B

O
n
eR

R
B

F

R
F

S
M

O

R
ec

al
l 

(%
)

(c)

Win-based
Flow-based

Figure 5 (Color online) Performance comparison of ML algorithms (after tuning parameters) used with win-based and flow-based

methods. (a) Accuracy; (b) Precision; (c) Recall.

F
la

se
 p

o
si

ti
v
e 

 r
at

e 
(%

)

6

5

4

3

2

1

0

Window size Window size

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

100.0

99.5

99.0

98.5

98.0

97.5

A
cc

u
ra

cy
 (

%
)

SYN

DNS

Bandwidth

SYN

DNS

Bandwidth

(a) (b)

Figure 6 (Color online) Performance tuning by varying the window size. (a) FPR; (b) Accuracy.

mance in Accuracy, FPR, Precision and Recall in most cases. Even though the win-based method is a
little behind flow-based method in some metrics when applying specific algorithms, its performance still
remains at good and acceptable level, showing its competence of detecting DDoS attacks. Notably, win-
based method achieves significant reduction in memory usage, detection latency, and training latency,
showing remarkable improvement in reducing overhead.

5.3 Impact of window size

The second experiment presents how window size affects the accuracy and FPR of the detection in the
win-based method. The experiment is conducted in online mode.

We explore the impact of the window size with random forest algorithm, which is a commonly used
classifier. The result is shown in Figure 6. As shown in Figure 6, the accuracy drops down and the FPR
rises up with the increase of the window size in the experiment with the first dataset. In the experiments
with the second and third datasets, the accuracy and FPR are more stable than those with the first
dataset, and the accuracy and FPR tend to be better with the increase of the window size. One possible
explanation for the difference is that the distributions of the attack traffic in those datasets are different.
In the first dataset, the attack traffic is sparse, which results in that the performance of random forest
algorithm becomes unstable when window size varies. The fluctuation of the number in the other two
datasets is much smaller than the first one. On the whole, the accuracy remains at a high level and FPR
remains at a low level when window size varies.

As illustrated in Figure 6, we can see that the FPR is relatively low, and the accuracy is averagely
high when the window size is 200. Note that this value is also used as default window size in the first
and the third experiments.

5.4 Performance comparison on different attack types

In the third experiment, we compare the win-based and flow-based methods on different attack types by
conducting an online experiment. As is illustrated in Table 3, the first dataset is used to evaluate the
performance on the attack type of TCP SYN flood, the second dataset is used to evaluate the performance



Li H B, et al. Sci China Inf Sci May 2023 Vol. 66 152105:13

Table 3 Comparison of two methods on different attack types with RF algorithm (online detection)

Dataset No. Attack type Method Accuracy (%) FPR (%) FET (s)

1 TCP SYN flood
win-based 99.60 0.000 1.82

flow-based 99.85 0.303 45.29

2 DNS amplification
win-based 99.78 0.435 8.44

flow-based 100.00 0.000 151.25

3 Bandwidth consuming
win-based 99.05 0.483 19.40

flow-based 99.99 0.001 541.31

on the attack type of DNS amplification, and the third dataset is used to evaluate the performance on
the attack type of bandwidth consuming.

The metrics we compare include Accuracy, FPR, FET. As detection latency is defined as the duration
from the time when raw packets are collected to the time when the detection result is given, it means
that detection latency consists of two parts: the time for online feature extraction time and the time
for model inference (i.e., prediction or classification). Our proposed win-based method is intentionally
designed to reduce the time of feature extraction rather than the time of model inference, so we focus
on measuring the improvement of FET achieved by the win-based method, which is also the key factor
that enables the reduction of the overall detection latency. Note that the results of FET in Table 3 are
calculated as the accumulated feature extraction time for the whole detection period of each dataset.

In the win-based method, the window size is set as 200 which is a parameter that works well in the
second experiment, and packets within the window are captured every 0.5 s. In the flow-based method,
in order to guarantee that there are enough packets in a flow, the number of packets captured is 50000
before each feature vector is generated, which is much more than that of the win-based method.

The results in Table 3 illustrate that the accuracy and FPR with the win-based method are close to
those with the flow-based method regardless of the attack types. The number of packets captured with
the flow-based method is far more than that with the win-based method, which leads to the increase in
the processing overhead of the flow-based method. The accumulated FET of the flow-based method is
nearly 18 times to 28 times higher than that of the win-based method, which indicates that the win-based
method greatly reduces FET and contributes greatly to the reduction of the overall detection latency in
online detection. The FETs of the win-based method remain stable and keep at a very low level.

The experimental results demonstrate that the win-based method is able to reduce the FET while well
maintaining good accuracy and low-level FPR, when compared to the traditional flow-based method.
The win-based method reduces the number of packets that have to be captured and handled to an
appropriate level while keeping the ability of distinguishing the pattern of DDoS traffic, so that the
computation overhead and detection overhead are effectively reduced with ensured accuracy.

6 Discussion of future directions

Based on our observation, there are several open issues in ML-based DDoS detection, in particular, model
update, identifying features, and adapting DL models for attack detection.

Model update: Training a model is a resource-intensive and time-consuming task, while attack
detection is time-sensitive. However, the model update is obviously necessary when sophisticated, well-
organized and new DDoS attacks emerge. Algorithms like J48, a type of decision tree, are not applicable to
model extension. To better respond to dynamic attacks, incremental updating methods, e.g., incremental
learning (IL), is necessary for DDoS detection. IL methods do not need to completely rebuild the model,
with the potential of continuously extending the current model’s knowledge with new data at a relatively
low cost, which is promising and worth further studying in the DDoS detection scenario.

Identifying features: The features of ML models are usually manually selected and hard-coded
based on expertise. When a new type of attack occurs, the ML algorithm needs adaption by experts
and new features have to be constantly added to the original system, which results in increase of the
system complexity. Operators should frequently retrain the model, otherwise detection accuracy cannot
be ensured. According to our study, common ML-based methods for DDoS detection are mostly built
upon manually selected features, which heavily depends on expert knowledge. It is meaningful to develop
methods that are capable of discovering new features automatically from raw data instead of using several
known ones for detection. Even though some representation learning techniques, or neural networks such



Li H B, et al. Sci China Inf Sci May 2023 Vol. 66 152105:14

as CNN (convolutional neural network) can take raw data as input and learn features from data, the
effectiveness of those techniques for learning meaningful features from network traffic data and detecting
DDoS attacks remains unclear. Still, training these neural networks consumes lots of resources, impeding
feasible deployment. Related questions still call for further research.

Adapting DL models for attack detection: DL models perform better than traditional machine
learning algorithms in many tasks (e.g., digital recognition [33], emotion recognition [34], and friendship
inference [35]), while DL also requires more computing resources to train and execute. Many network
gateways and router devices, do not have enough computing resources (memory, processing power) for
training and deploying DL models. How to give full play to the potential of DL in DDoS attack detection,
is a valuable question worth studying. One challenge lies in how to design low-cost DL models that
is resource compatible for deployment in resource constrained devices. Ref. [36] made initial efforts in
designing a light-weight neural network-based online NIDS using Autoencoder, which shows the potential
of this research direction. Furthermore, due to the lack of interpretability, DL models may be vulnerable
in adversarial environments [33, 34, 37]. How to strengthen the robustness of DL models with objective
constraints in the field of DDoS attack detection is a valuable direction.

7 Related work

DDoS has been one of the hot research topics for a long time [38]. A lot of DDoS variants have been
reported, such as flooding (e.g., SYN, ICMP), amplification (e.g., DNS), and other DDoS attacks based on
different protocols [14]. The academic community has come up with numerous DDoS defense proposals,
such as traffic scrubbing which is widely adopted by industry 1), spoof detection [39], IP traceback [40],
blackholing [41], mitigation with programmable switches (P4) [42,43], and game-theoretic deterrence [44].
In addition, some researchers propose next-generation network architectures that are designed to enhance
the ability to defend against DDoS, such as SCION [45] and SAVI [46]. Ref. [47] categorized the existing
DDoS flooding attacks and provided a comprehensive survey of defense mechanisms.

With the popularity of machine learning, lots of efforts have been made in studying DDoS detection by
machine learning, and our work falls into the ML-based DDoS detection category. Selected related studies
of ML-based DDoS detection have been analyzed in Table 1 and a comprehensive comparison among them
has been made in Section 4. Each of those studies makes efforts to detect one or several types of DDoS
attack by applying different ML algorithms on collected traffic data, and by using typical machine learning
steps such as feature extraction, model training, and testing. Ref. [8, 16, 18, 23] detected attacks in an
offline mode, and Ref. [7,9,15,17,19,24,25] could be used for online DDoS detection. Ref. [19] presented
a lightweight method for DDoS attack detection based on traffic flow features using NOX/OpenFlow.
Ref. [9] proposed an approach for SYN flood attack mitigation based on supervised learning classification
methods. Different from those studies, our work focuses on reducing feature extraction overhead by
proposing a win-based feature extraction method, aiming to make real-time ML-based DDoS detection
more scalable and easier for deployment on common resource-constrained network devices.

8 Conclusion

This article systematically studies various ML-based DDoS detection methods using flow-based features.
We observe that the flow-based feature extraction method incurs remarkable detection delay and com-
putation overhead. To better adapt ML-based DDoS detection methods to resource constrained network
devices, we propose a new window-based method to reduce detection delay and computation overhead.
The proposed win-based method has the advantages of well-controlled overhead, wide support of com-
modity routers, and preserved accuracy. We evaluate and compare the proposed win-based method with
the commonly used flow-based method, by extensive experiments using ten typical ML algorithms on
real datasets. The experimental results show that the win-based method effectively improves efficiency
with reduced detection delay and computation overhead while ensuring detection accuracy, which can
further promote the deployment of ML-based DDoS detection methods in real-world resource constrained
network devices. We also analyze the impact of window size and demonstrate the effectiveness of the

1) Akamai cloud security for DDoS protection. 2021. https://www.akamai.com/us/en/products/security/ddos-protection-

service.jsp.



Li H B, et al. Sci China Inf Sci May 2023 Vol. 66 152105:15

win-based method under different attack datasets. Moreover, we discuss the challenges and research
directions in this area.

Acknowledgements This work was supported in part by China National Funds for Distinguished Young Scientists (Grant No.

61825204), National Natural Science Foundation of China (Grant Nos. 61932016, 62132011, 62202258), Beijing Outstanding Young

Scientist Program (Grant No. BJJWZYJH01201910003011), China Postdoctoral Science Foundation (Grant No. 2021M701894),

China National Postdoctoral Program for Innovative Talents, and Shuimu Tsinghua Scholar Program.

References

1 Antonakakis M, April T, Bailey M, et al. Understanding the mirai botnet. In: Proceedings of the 26th USENIX Security

Symposium (USENIX Security), 2017. 1093–1110

2 Zheng J, Li Q, Gu G, et al. Realtime DDoS defense using COTS SDN switches via adaptive correlation analysis. IEEE Trans

Inform Forensic Secur, 2018, 13: 1838–1853

3 Wang C, Miu T T N, Luo X, et al. SkyShield: a sketch-based defense system against application layer DDoS attacks. IEEE

Trans Inform Forensic Secur, 2017, 13: 559–573

4 Xiao B, Chen W, He Y, et al. An active detecting method against SYN flooding attack. In: Proceedings of the 11th IEEE

International Conference on Parallel and Distributed Systems (ICPADS), 2005. 709–715

5 Kambourakis G, Moschos T, Geneiatakis D, et al. Detecting DNS amplification attacks. In: Proceeding of International

Workshop on Critical Information Infrastructures Security, Berlin, 2007. 185–196

6 Sun C, Liu B, Shi L. Efficient and low-cost hardware defense against DNS amplification attacks. In: Proceedings of IEEE

Global Telecommunications Conference (GLOBECOM), 2008. 1–5

7 Chen Y W, Sheu J P, Kuo Y C, et al. Design and implementation of IoT DDoS attacks detection system based on machine

learning. In: Proceedings of IEEE European Conference on Networks and Communications (EuCNC), 2020. 122–127

8 Wani A R, Rana Q P, Saxena U, et al. Analysis and detection of DDoS attacks on cloud computing environment using machine

learning techniques. In: Proceedings of Amity International Conference on Artificial Intelligence (AICAI), 2019. 870–875

9 Degirmencioglu A, Erdogan H T, Mizani M A, et al. A classification approach for adaptive mitigation of SYN flood attacks:

preventing performance loss due to SYN flood attacks. In: Proceedings of IEEE/IFIP Network Operations and Management

Symposium, 2016. 1109–1112

10 Radware. DDoS protection & DDoS mitigation solutions. 2021. https://www.radware.com/solutions/ddos-protection/

11 Safavian S R, Landgrebe D. A survey of decision tree classifier methodology. IEEE Trans Syst Man Cybern, 1991, 21: 660–674

12 Biau G. Analysis of a random forests model. J Mach Learning Res, 2012, 13: 1063–1095

13 Rish I. An empirical study of the naive Bayes classifier. In: Proceedings of IJCAI Workshop on Empirical Methods in Artificial

Intelligence, 2001. 41–46

14 Mirkovic J, Reiher P. A taxonomy of DDoS attack and DDoS defense mechanisms. SIGCOMM Comput Commun Rev, 2004,

34: 39–53

15 Karimazad R, Faraahi A. An anomaly-based method for DDoS attacks detection using RBF neural networks. In: Proceedings

of the International Conference on Network and Electronics Engineering (ICNEE), 2011. 44–48

16 Osanaiye O, Choo K K, Dlodlo M. Analysing feature selection and classification techniques for DDoS detection in cloud.

In: Proceedings of Southern Africa Telecommunication, 2016. 198–203

17 Barati M, Abdullah A, Udzir N I, et al. Distributed denial of service detection using hybrid machine learning technique.

In: Proceedings of International Symposium on Biometrics and Security Technologies (ISBAST), 2014. 268–273

18 Wang W, Gombault S. Efficient detection of DDoS attacks with important attributes. In: Proceedings of International

Conference on Risks and Security of Internet and Systems (CRiSIS), 2008. 61–67

19 Braga R, Mota E, Passito A. Lightweight DDoS flooding attack detection using NOX/OpenFlow. In: Proceedings of IEEE

Local Computer Network Conference (LCN), 2010. 408–415

20 Korczynski M, Janowski L, Duda A. An accurate sampling scheme for detecting SYN flooding attacks and portscans.

In: Proceedings of IEEE International Conference on Communications (ICC), 2011. 1–5

21 Huawei. HUAWEI: configuring the device to capture packets. 2021. https://support.huawei.com/enterprise/en/doc/

EDOC1100112354/bd0e10ad/configuring-the-device-to-capture-packets

22 Cisco. Cisco: configure packet capture on Cisco SCE 8000. 2021. https://www.cisco.com/c/en/us/support/docs/

service-exchange/service-control-operating-system-software/200464-Packet-caputre-on-Cisco-SCE-8000.html

23 Alkasassbeh M, Al-Naymat G, Hassanat A, et al. Detecting distributed denial of service attacks using data mining techniques.

Int J Adv Comput Sci Appl, 2016, 7: 436–445

24 Seufert S, O’Brien D. Machine learning for automatic defence against distributed denial of service attacks. In: Proceedings

of IEEE International Conference on Communications (ICC), 2007. 1217–1222

25 Tsiatsikas Z, Geneiatakis D, Kambourakis G, et al. Realtime DDoS detection in sip ecosystems: machine learning tools of

the trade. In: Proceedings of International Conference on Network and System Security (NSS), 2016. 126–139

26 Holte R C. Very simple classification rules perform well on most commonly used datasets. Machine Learn, 1993, 11: 63–90

27 Ruck D W, Rogers S K, Kabrisky M, et al. The multilayer perceptron as an approximation to a Bayes optimal discriminant

function. IEEE Trans Neural Netw, 1990, 1: 296–298

28 Zeng Z Q, Yu H B, Xu H R, et al. Fast training support vector machines using parallel sequential minimal optimization.

In: Proceedings of IEEE International Conference on Intelligent System and Knowledge Engineering (ISKE), Xiamen, 2008.

997–1001

29 Vesanto J, Alhoniemi E. Clustering of the self-organizing map. IEEE Trans Neural Netw, 2000, 11: 586–600

30 Breiman L. Bagging predictors. Machine Learn, 1996, 24: 123–140

31 Reynolds K, Kontostathis A, Edwards L. Using machine learning to detect cyberbullying. In: Proceedings of IEEE Interna-

tional Conference on Machine Learning and Applications and Workshops, 2011. 241–244

32 Musavi M T, Ahmed W, Chan K H, et al. On the training of radial basis function classifiers. Neural Networks, 1992, 5:

595–603

33 Zhao Y, Xu K, Wang H Y, et al. Stability-based analysis and defense against backdoor attacks on edge computing services.

IEEE Network, 2021, 35: 163–169

34 Zhao Y, Xu K, Wang H Y, et al. MEC-enabled hierarchical emotion recognition and perturbation-aware defense in smart

cities. IEEE Internet Things J, 2021, 8: 16933–16945

https://doi.org/10.1109/TIFS.2018.2805600
https://doi.org/10.1109/TIFS.2017.2758754
https://www.radware.com/solutions/ddos-protection/
https://doi.org/10.1109/21.97458
https://doi.org/10.1145/997150.997156
https://support.huawei.com/enterprise/en/doc/EDOC1100112354/bd0e10ad/configuring-the-device-to-capture-packets
https://support.huawei.com/enterprise/en/doc/EDOC1100112354/bd0e10ad/configuring-the-device-to-capture-packets
https://www.cisco.com/c/en/us/support/docs/service-exchange/service-control-operating-system-software/200464-Packet-caputre-on-Cisco-SCE-8000.html
https://www.cisco.com/c/en/us/support/docs/service-exchange/service-control-operating-system-software/200464-Packet-caputre-on-Cisco-SCE-8000.html
https://doi.org/10.14569/IJACSA.2016.070159
https://doi.org/10.1023/A:1022631118932
https://doi.org/10.1109/72.80266
https://doi.org/10.1109/72.846731
https://doi.org/10.1023/A:1018054314350
https://doi.org/10.1016/S0893-6080(05)80038-3
https://doi.org/10.1109/MNET.011.2000265
https://doi.org/10.1109/JIOT.2021.3079304


Li H B, et al. Sci China Inf Sci May 2023 Vol. 66 152105:16

35 Zhao Y, Qiao M N, Wang H Y, et al. TDFI: two-stage deep learning framework for friendship inference via multi-source

information. In: Proceedings of IEEE INFOCOM, 2019. 1981–1989

36 Mirsky Y, Doitshman T, Elovici Y, et al. Kitsune: an ensemble of autoencoders for online network intrusion detection.

In: Proceedings of Network and Distributed System Security Symposium (NDSS), San Diego, 2018. 1–15

37 Zhao Y, Xu K, Li Q, et al. Intelligent networking in adversarial environment: challenges and opportunities. Sci China Inf

Sci, 2022, 65: 170301

38 Osterweil E, Stavrou A, Zhang L. 21 years of distributed denial-of service: current state of affairs. Computer, 2020, 53: 88–92

39 Jin C, Wang H, Shin K G. Hop-count filtering: an effective defense against spoofed DDoS traffic. In: Proceedings of ACM

Conference on Computer and Communications Security (CCS), 2003. 30–41

40 Song D X, Perrig A. Advanced and authenticated marking schemes for IP traceback. In: Proceedings IEEE International

Conference on Computer Communications (INFOCOM), 2001. 878–886

41 Dietzel C, Wichtlhuber M, Smaragdakis G, et al. Stellar: network attack mitigation using advanced blackholing. In: Pro-

ceedings of International Conference on emerging Networking Experiments and Technologies (CoNEXT), 2018. 152–164

42 Zhang M, Li G, Wang S, et al. Poseidon: mitigating volumetric DDoS attacks with programmable switches. In: Proceedings

of Network and Distributed System Security Symposium (NDSS), San Diego, 2020. 1–18

43 Liu Z, Namkung H, Nikolaidis G, et al. Jaqen: a high-performance switch-native approach for detecting and mitigating

volumetric DDoS attacks with programmable switches. In: Proceedings of USENIX Security Symposium (USENIX Security),

2021. 3829–3846

44 Li Y, Li H, Lv Z, et al. Deterrence of intelligent DDoS via multi-hop traffic divergence. In: Proceedings of ACM SIGSAC

Conference on Computer and Communications Security (CCS), 2021. 923–939

45 Zhang X, Hsiao H C, Hasker G, et al. SCION: scalability, control, and isolation on next-generation networks. In: Proceedings

of IEEE Symposium on Security and Privacy (S&P), 2011. 212–227

46 Wu J, Bi J, Bagnulo M, et al. Source address validation improvement (SAVI) framework. RFC7039. 2013. https://datatracker.

ietf.org/doc/html/rfc7039

47 Zargar S T, Joshi J, Tipper D. A survey of defense mechanisms against distributed denial of service (DDoS) flooding attacks.

IEEE Commun Surv Tutorials, 2013, 15: 2046–2069

https://doi.org/10.1007/s11432-021-3463-9
https://doi.org/10.1109/MC.2020.2983711
https://datatracker.ietf.org/doc/html/rfc7039
https://datatracker.ietf.org/doc/html/rfc7039
https://doi.org/10.1109/SURV.2013.031413.00127

	Introduction
	Background
	DDoS attack and detection
	ML-based DDoS detection
	Detection delay and overhead

	Reducing delay and overhead with win-based feature extraction
	Comparison with typical schemes
	Performance evaluation
	Experiment setup
	Datasets and selected features
	Metrics

	Performance comparison with different ML algorithms
	Impact of window size
	Performance comparison on different attack types

	Discussion of future directions
	Related work
	Conclusion

