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Abstract—Enterprise networks have become increasingly impor-
tant with the rising number of users accessing their services,
which consequently brings challenges in various aspects. Though 
OpenFlow, the promising scheme for enterprise network control, 
can provide fine-grained and flow-level control in networks, yet it
still has a few undesirable designs in security, scalability and 
performance. Inspired by many excellent OpenFlow-included 
studies, we in this paper, propose SuperFlow, a reliable, control-
able and scalable architecture for large-scale enterprise networks. 
It not only inherits the merits of OpenFlow, but also overcomes 
OpenFlow’s limitations by introducing many novel features, 
including the trustiness between hosts and users based on the 
compulsory authentication mechanisms, the flexible flow control-
ing upon the well-organized control-rule designing, the scalable 
architecture considerations in both controller load-balancing and 
management scales. The prototype experiments also prove that 
SuperFlow possesses these features with desirable performance. 

Keywords-Enterprise network; SuperFlow; OpenFlow; SAVI;
SDN 

I. INTRODUCTION

Enterprise networks usually refer to large company or 
campus networks which have at least thousands of users and 
more than tens of thousands of requests per second (RPS) on 
average. In a large-scale enterprise network, the number of 
users could reach more than 25,000, and hundreds of thousands 
of RPSs need to be processed every second[1]. Since the scale 
and RPS are very large in enterprise networks, it incurs many 
challenges regarding the network security, flow controlling and 
system scalability. Nevertheless, as a promising scheme for 
large enterprise network control, OpenFlow[2] has been ack-
nowledged by academic community and industry since it can 
take fine-grained and flow-level control in complex network 
scenarios and possesses the “central control and edged 
response” control pattern. It was also considered as the model 
of SDN (Software Defined Network) architecture,

As Fig.1 illustrates, the OpenFlow architecture is composed 
of three parts: the center controller, the edged layer3 OpenFlow 
switch and the communication protocol. For each outbound 
dataflow, the OpenFlow switch first matches its control rules to 
process. If it fails, then the switch will take the on-demand way 
to request control rules from the solo controller through the 
SSL-based secure channel. Thus, The whole network can get 
flow-level control by the center controller. Though the merit of 

this mode is that it not only simplifies network management, 
but also facilitates network programming, demerits still exist in 
the following aspects, which yet need to be improved. For 
example, 1) the single controller can easily become the system 
bottleneck; 2) the flow-based rule request/response mechanism 
may cause heavy pressure not only on the OpenFlow switches’
data-plane and control-plane, but also on the communication 
bandwidth between these switches and the controller; 3) 
forwarding delay for the packets without matched rules is too 
large; 4) this defect could be exploited by misbehaved users 
who can randomly forge a large number of spoofing packets to 
paralyze the network. In summary, these defects might 
potentially jeopardize network performance and even cause the 
whole system to collapse.
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Figure 1. The architecture of OpenFlow 

In this paper, we present SuperFlow, a reliable, controllable,
and scalable architecture for large-scale enterprise networks. 
As a result of improvement, SuperFlow overcomes limitations  
above in OpenFlow by introducing some novel features. First it
keeps the credibility for both hosts and users based on the 
SAVI[3] proposal and user compulsory certification mechanism.
Furthermore, it provides dynamic and scalable network control 
through a flexible control-rule designing and a network change 
adaption mechanism. Meanwhile, it also achieves controller’s
scalability via a load-balancing approach. At last, it considers 
the demand of global control to subsidiary subnets since this 
situation is very common in many networks. These features 
enable SuperFlow to satisfy current popular requirements in 
enterprise networks, and our contribution includes: 

2013 IEEE International Conference on High Performance Computing and Communications & 2013 IEEE International Conference

on Embedded and Ubiquitous Computing

978-0-7695-5088-6/13 $26.00 © 2013 IEEE

DOI 10.1109/HPCC.and.EUC.2013.169

1195

2013 IEEE International Conference on High Performance Computing and Communications & 2013 IEEE International Conference

on Embedded and Ubiquitous Computing

978-0-7695-5088-6/13 $31.00 © 2013 IEEE

DOI 10.1109/HPCC.and.EUC.2013.169

1195



� Based on the SAVI and other techniques, we design a 
series of mechanisms to keep the trustiness for both 
hosts and users. Meanwhile, we keep the security for 
vital control information through secure and unified 
communication interface. 

� We achieve the dynamic and scalable control through 
the dedicated designing of flexible control rule, well-
organized control rule description language and control 
rule conflict-proof mechanism 

� We also achieve the goal of system scalability from 
both sides of controller’s scalability and controlling-
scale’s scalability. We remove the bottleneck defection 
in the OpenFlow’s single controller by transforming it
into a DNS scalability issue, which already has many 
mature solutions. Moreover, considering the demand of 
large enterprises need a uniformly control to their sub-
institution’s networks, we establish a hierarchy for 
globally controlling of multiple allied sub-networks.  

� Last, after carefully analyzing the causes of perfor-
mance deterioration in OpenFlow, we make several 
important improvements to enhance the system 
performance. 

The rest of this paper is organized as follows: section II 
summarizes the related work and section III describes the 
design requirements and goals. In section IV, we presents the 
SuperFlow’s architecture in detail. The evaluation in section V 
demonstrates the efficacy and stability in our scheme. We draw 
the conclusion in the last section. 

II. RELATED WORK

We derived our work from many excellent related work 
that focuses on the topic of enterprise network control as well 
as IP source address validation.  

A. Enterprise Network Control  
Essentially, the data-flow control mechanism of OpenFlow 

is quite simple. At the initial stage, the flow table in the Open-
Flow switch is empty, and it takes the on-demand way to install 
control rules from the solo controller in the domain. When a 
packet arrives and mismatches any rules, the switch will 
encapsulate the whole packet and send it to the controller. The 
controller analyzes the packet, distributes the packet-related 
rules and redirects the packet to the switch. Thereafter, the 
switch installs rules and forwards the packet, and subsequent 
packets belonging to the same flow will be forwarded directly. 
Obviously, there is an efficacy problem on the on-demand 
request and response mechanism. Rob Sherwood et.al. set up a 
test-bed and evaluate the average forwarding delay in the first 
unknown packet, and the result shows that the new flow setup 
latency in OpenFlow reaches to 16.16ms[4]. Meanwhile, Devo-
Flow[5] characterizes the OpenFlow’s overhead in traffic 
control, which indicates that there is about one control packet 
for each two or three data packets, and there are only 275 flows 
per second that can be set up with a OpenFlow-supported
modern HP switch. However, this flow processing ability far  
from enough to satisfy the demand from large-scale enterprise 
and datacenter networks. For proving this, Tavakoli et.al. [6]

apply OpenFlow into datacenter network and estimate that a 

large datacenter consisting of 2 million virtual machines may 
generate 20 million flows per second, which suggests that 
OpenFlow is not qualified to the latency-sensitive datacenter 
network, and DevoFlow also shares the same view. 

In order to reduce the delay in the first unknown packet 
control, DIFANE[7] installs many “Authority Switches” to act 
as controller proxy, so that it can always keep packets in 
switch’s data-plane. The shortcomings of this mechanism at 
least include: 1) the architecture makes the system more 
complex; 2) each ingress switch only has to resort to its 
designated Authority Switch, which causes  the system hardly 
to adapt to the topology change because network dynamic will 
affect their communication reachability; 3) it still doesn’t
address the issue of global visibility of flow states and statistics. 

For the purpose of extending the solo centralized control 
server and neutralizing the performance bottleneck, Hyper-
Flow[8] tries to separate the control-plane from data-plane to 
achieve the controller scalability, while Maestro[9] and 
McNettle[10] exploit  the parallelism way of multi-thread 
programming or multi-core CPU hardware to realize it. 
Nevertheless, these plans are not practical enough to satisfy 
enterprise networks’ demand. Certainly, other novel ideas such 
as NOX[11], 4D[12], ForCES[13], I2RS[14], Tesseract[15],
Resonance[16], XORP[17] and Onix[18] influenced our thinking. 

B.  IP Source Address Validation 
In the aspect of the IP source address validation, the famous 

architecture of SAVA[19](Source Address Validation Archit-
ecture) can provide transparent network service to ensure that 
every packet can hold an authenticated source IP address. It 
consists of three levels, the Inter-AS, Intra-AS and first hop.  In 
each level of this hierarchical architecture, it can get different 
granularities of the authenticity, and one or more mechanisms 
[3,20, 21] are defined to solve this problem. In the user access 
subnet, SAVI proposal was approved by IETF to resolve this
issue. Following the SAVI specification, a normal layer2.5 
switch is named the SAVI Switch, which can filter spoofing 
packets by establishing the triangle relationship of IP address,
MAC address and uplink-port for each host. As to the binding 
relationship establishment and packets anti-spoofing fullfill-
ment, it is accomplished by the IP address assignment proto-
cols sniffing and the CPS protocol (Control Packet Snooping). 
Compared with the matured solution of uRPF[22] (unicast 
Reverse Path Forwarding), SAVI is more accurate because its 
effected point is the users’ access switch rather than the access 
router. Besides, although it is very common and practical, the 
access control lists (ACL) has been proved to be a double-
edged sword since it is error-prone and expertise required. At
last, solutions like ingress filtering[23], protocol or stack 
redesign[24], and IP source address encryption[25] all give us 
many inspirations.  

In short, though these studies have partially satisfied our 
requirements which will be introduced in the next section, to 
the best of our knowledge, a solution considering all these 
issues has not been proposed yet. 

III. THE REQUIREMENTS AND GOALS OF SUPERFLOW

We are running CERNET (China Education and Research 
Network) (native-IPv4)[26] and CERNET2(native-IPv6)[27], two 
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of the largest academic networks around the world which 
connect thousands of academic institutes and universities of 
China. We also cooperate with the largest Chinese ISP 
provider—China Telecomm. From daily network running 
practice, we summarize the requirements of enterprise 
networks as follows: 

A. Requirements and Goals 
Reliability: In the architecture of OpenFlow, its security 

only appears in the confidentiality of vital control information. 
However, we argue that the reliability in both network user and 
host is as important as the critical control information, since 
they are the network control foundation. Otherwise, control 
rules cannot work on the right users and hosts.  

Controllability: On the basis of hosts and users reliability,
system should ensure that each outbound flow can get its 
corresponding control. Because of the user mobility and data-
flow diversity, network control should be dynamic rather than 
static so that it can adapt to the changes in the network. Besides, 
control rule description should be readable and well-organized 
so that switches can easily interpret them into entries of rule 
table.  

Scalability: In order to process diversified application flow,
the rule should be scalable with multi-action, rather than the 
limited fixed actions. Most importantly, the scale of network 
control should be extensible to meet the requirements of global 
control for multiple subsidiary subnets. Under this situation, 
the cooperation mechanism without rule confliction to the 
branching controller and root controller  should be considered. 

Performance: The way of on-demand rule request and 
flow-based control incur extensive delay in the first unknown 
packet, therefore, the system should improve this to enhance its
performance.

In a word, our goal is to propose a reliable, controllable and 
scalable architecture for enterprise networks to meet their
requirements of reliability IP address and user identification,  
dynamic outbound flow-control and scalable control hierarchy 
with high-performance. 

B. Analytical Formulation  
Assuming in an enterprise network named D, we use the 

sets  ���� = {���	|���	 ∈ �},  ��� = {��	|��	 ∈ �} ,  
��� =
{���	|���	 ∈ �} ,  ����� = {����	|��	 ∈ �} ,  ������� =
{������	|������	 ∈ �} to represent the collection of user 
identity, IP address, hosts’ MAC address, uplink port of layer2 
switch for hosts accessing and flow control policy, respectively. 

If the packet format can be noted as the set of Packet 
={Version, Length, IPsrc, IPdst…}, then the packets from the 
host macj can be denoted as ���������� =
 ∪	�!

"  #����������
	 |���$ ∈ �% . Hence, packets sent out by all 

hosts in the network D can be notated as Packet� =
⋃ # Packet���'(���	 ∈ �}|)*+,|

	�! . 

Host reliability means that every host’s MAC address in 
its broadcast domain should be unique, that is, every element in 
the united collection  
��_����� = {(���	, ����$)|���	 ∈

���, ����$ ∈ �����} is unique, or we say the two sets of 

���  and �����  have the relationship of 1:1 reflection. 

Similarly, the united sets of  ��_
��� = {(��	, ���$)|��	 ∈
���, ���$ ∈ 
��� }  ,  ���_��� = {(���	, ��$)|���	 ∈ ����,
��$ ∈ ��� } express the relationship between the IP address and 
the host collections, and  also the relationship between the user 
identification and the IP address sets, respectively. Then, the IP 
address reliability stands for packets sent out from any host 
should bring with the IP source address belonging to the owner 
host, which is formulated as ∀packet	�Packet�, ∃(��23� ←
������	) ∈ {������}where mac$ = 56��23�, ��)78 �9. At last, 
the user reliability refers to each packet should be sent out 
from the user whose identity is matched with what he/she has 
claimed, that is, ∀packet	�Packet�, ∃(��23� ← ������	) ∈
{��:	;�} where uid$ = 5(��23�, ���_���).

Proposition 1: To achieve the system reliability related to host, 
IP source address and user identification reliability, the sets of  
�����, 
��� , ���, ����  should keep the relationship of 1:1 
reflection. In other words, every element in the collection 
���_��_
��_����� = {(���	, ��$, ���", ����<)|���	 ∈
����, ��$ ∈ ���, ���" ∈ 
���, ����< ∈ �����}  should be 
unique. 

Proposition 2:  In order to achieve the goal of system 
controllability, every flow should own corresponding policies 
to control, namely, each element in the set ������_���_���  =
 >(������	, ���$, ��")|������	 ∈ �������, ���$ ∈ ����, ��" ∈ ���

"? 
should be unique. 

IV. THE ARCHITECTURE OF SUPERFLOW

In this section, we depict SuperFlow’s architecture in detail. 

A. System Architecture 
Based on the analytical formulation in the previous section,

in order to get the system’s reliability, we need multiple 
network identities to map with each other. Since the SAVI 
switch can achieve the IP source address reliability, naturally, 
we deploy them into the access layer. Further, we need network 
users to authenticate them so as that the system can combine IP 
binding entries from the SAVI switches with users’ identities.  
Therefore, system can form the multiple identities mapping 
relationship from the aspect of global view, which also satisfies 
the requirements of user reliability and system reliability we 
mentioned. On the basis of system reliability, we need a layer3 
access switch to control users’ data-flows to realize our goal of 
system controllability. We named this kind of switch as 
SuperFlow switch, which has to accept the instructions from 
the central controller(s) to know how to deal with outbound
flows. Eventually, we build the whole architecture named 
SuperFlow, which is illustrated in Fig.2. In the server section of 
it, we have more than one controller to respond to numerous
flow-control requests from the SuperFlow switches. The 
scalability in these controllers have been considered through a 
load-balancing design. At the same time, controllers also 
possess a unified HTTPs and SOAP-based interface (Simple 
Object Access Protocol) to provide prompt and secure response 
to requests. In addition, databases are established to store the 
system’s vital data, like policies, rules, user account, etc. Since 
no change exists in the rest of parts, such as routers, hosts and 
firewall, it is thus evident that SuperFlow can facilitate retained 
network assets to the greatest degree.
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Figure 2. The architecture of SuperFlow 

B. System Reliability  
We believe that keeping the reliability of hosts and users is 

the foundation of the system, otherwise, policies cannot have 
effect on proper users and flows. SAVI has the ability of anti-
IP-spoofing in users’ access subnets. The SAVI management 
database (SMD) collects all of hosts binding data from SAVI 
switches via SNMP. But since SAVI only focus on the IPv6 
environment so far, we still progressively to perfect it so as to 
make it cover both IPv4 and dual-stack, as well as complex 
IPv4/IPv6 transition scenarios [28]. Meanwhile, keeping user 
reliability is also very important since a policy is usually 
associated with user-accounts instead of IP addresses. Thus, the 
system needs users to authenticate themself before accessing
network, which relies on the client software to send out their
authentication information to the controller through the security 
channel. Once the controller has verified these information, 
SMD will form the quintuple model of “IP, MAC address, 
uplink-port, user-id and access-time” by integrating these two 
kinds of authentication data, which is up to the standard of 
system reliability. In case of users exiting the network 
accidently, there is also an alive-keeping mechanism to keep 
the binding information correct which is implemented by the 
periodically hello message exchanging between end-hosts and 
controllers.

C. System Controllability 
� Control rule design and description 

In terms of rule granularity, we believe that the rules should 
combine both coarse and fine granularities, because part of 
them should be installed in advance into SuperFlow switches 
for some fixed control, while the rest should be installed based 

on requests for unknown flows control. Therefore, we divide 
rules into two categories: residential and temporary. The 
former one is basic and coarse-grained, and it will not change 
within a short period of time. In contrast, the latter is temporary 
and fine-grained, and it could be changed at any time.  

Further, We give an XML-based rule description language. 
Let’s check the scripts in figure 3. The first two rules in the 
residential rule set (row No.3 and No.4) indicate that the 
current switch should permit HTTP and DNS protocol packets, 
but drop any other packets since the third rule (row No.5) has 
higher priority. However, there is a special host who can access 
all resources because the last rule in the temporary rule set (row 
No.8) defines its properties and owns the highest priority. Thus, 
our rule description language supports multiple properties: 

Figure 3. An example of XML-based rule description language 

Different Timeout: Zero value for the timeout property means 
this rule will not disappear after the switch starts up. Any other 
positive values indicate the lifetime of these rules.  

Different Priorities: When a flow hits multiple rules, the one 
with the highest priority always takes in charge. These values 
are designated by network supervisor with system defined 
reasonable range. Different rules with different priorities can 
satisfy different demands from diverse application flows. 

Various Actions: Rule script supports not only various 
individual actions, but also their valid combinations, for 
instance, drop, forward, broadcast, sample, mirror, source 
routing, encapsulate, cache, payload encrypt, and forwarding & 
sampling 

Wildcard-Supported: Rules can support the wildcard to get a
trade-off between accuracy and performance, e.g., the field of 
Destination IP (DIP) in the last rule of fig.2 (row No.8) is filled 
by asterisk, which means this host can access any resources. 

Confliction-proof: Since different rules have different timeout 
values and priorities, SuperFlow can prevent rule conflictions 
from happening. Even if two rules with the same priority, the 
confliction resolution mechanism will resolve this (see table I).

� Control-rule installation and match 

SuperFlow switches takes the way of proactive and reactive 
to install control rules, that is, residential rules should be 
installed  at the moment of switch boot-up to achieve a general 
control ability, while others for detailed flows’ requests should 
be installed reactively. As to how SuperFlow switches deal 

1<Rd> <Rules>
2 <Residential Rules >
3 <Rule Timeout=“0” Priority=“100” Prot=”TCP” DPort=“80” Action=

“forward”/>
4 <Rule Timeout=“0” Priority=“100” Prot=”UDP” DPort=“53” Action=

“forward”/>
5 <Rule Timeout=“0” Priority=“1” Action=“drop”/>
6 </Residential Rules>
7 <Temporary Rules>
8  <Rule Timeout=“10” Priority=“999” SIP=“192.168.1.10” DIP=“*” 

Mask=“255.255.255.255”Action=“forward” CreateTime=“20120720
170101”/>

9 </Temporary Rules>
10 </Rules></Rd>
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with the first unknown packets, it slightly differs from Open-
Flow. If a packet misses any rule, the switch will cache it first, 
then deliver its summary (flow’s quintuple form) instead of the 
whole packet to the controller. Finally, the switch will install 
the rules and process the packet and its subsequent. 

� Cope with network dynamic 

SuperFlow can cope with network dynamics by means of 
monitoring both SNMP and OSPF protocols so as to learn the 
newest topology, and then to respond to network changes from 
the view of global network at fast speed. Once network change 
occurs, controllers will evaluate the affection and redistribute 
new rules to the corresponding switches. This mechanism is
more efficiency than the OpenFlow’s method that the switches 
periodically send message to each other. 

� Rule partition strategy and its Consistency 

Generally, network administrators will not give SuperFlow 
switches any specific rules directly. Instead, they will give con-
trollers policies like “only subnet A can visit the FTP server”, 
and “all the correspondence with destination IP TCP-1433 will 
be prohibited”. On the other hand, switches can only recognize 
the XML-based rule description language. Thus, controllers 
should convert the abstract policies into specific rules. Undoub-
tedly, controllers still need strategies to partition rules into 
many unique versions for each switch, as showed in Fig. 4. As 
the questions like how policies can be turned into rules, what 
kind of partition strategy should be held and how to keep the 
consistency when rules conflict happen, Table I answers them. 

Figure 4. The illustration of rule partition in controller 

TABLE I. THE PARTITION STRATEGY AND CONFLICT RESOLUTION

Phase Method

Policy/rule 
Requirment

The quintuple form of flow’s information (wildcard is 
available) and policy’s classification (residential or 
temporary), priority, start-time, live time.

Partition 
Strategy

by switch: different rule versions to different switches; 
by granularity: split into Temp. and Residential rules;
by priority: ordering according to rule priority

Conflict 
Resolution

Residential rule > Temporary rule;
high priority > low priority;
Policy from superior root controller > local policy

D. System Scalability 
� Controller’s scalability 

In our network management practice, for a campus network 
with 20K users, the average active number of IP/user is up to 
8K, while the average number of new flow request is up to 6K 
and the average total established flow is around 500K. 

However, according to the experiment we conducted based on 
our scheme, a commodity PC server can process less 3K 
requests per second. Hence, the controller should be scalable 
instead of solo. DevoFlow has also proved that a single 
controller is very likely to become the system’s bottleneck. We
achieve the controller’s scalability by designating controller’s 
domain name instead of their IP addresses to the switches. 
Then, we convert the issue of controller load-balancing into 
one of DNS load-balancing. Fig. 5 illustrates this consideration. 

Figure 5. The DNS load-balancing for controller scalability 

Meanwhile, in order to avoid frequent DNS requests which 
might result in performance deterioration, the switch will not 
repeat this DNS resolving within a period of time. Moreover,
we have a server for workload collector to detect all the 
controllers’ workload within a fixed interval, which can
enable/disable the corresponding DNS records according to 
their pressure-level. Since the interval of detecting controllers’
workload is more frequently than the switch’s DNS request, 
we do not need to synchronize them to achieve networking 
consistency, otherwise simultaneous DNS request will deterio-
rates system’s performance. 

� Controlling-scale’s scalability 

Given the fact that a company might own several subsidiary 
networks, we design a mechanism to cope with this situation. 
As illustrated in Fig. 6, for the purpose of universal control of 
these multiple subnets, all the independent branching network 
should be under the central control of the headquarters’ root 
controller. In this case, a global policy database in the head-
quarter must be built. When the root controller has a policy 
change or issue, it will distribute it to branching controllers 
through a HTTPs-based secure channel. Then, the branching 
controllers should place these policies into their local policy 
database with higher priority, so as to avoid the policy 
confliction. The communication protocol between them  takes 
the approaches of SOAP-based pull and TCP-based trap, which 
is very similar to the SNMP mode.

We also can expand this mode into multi-level control 
situation. If the notation (PD, FD) refers that all the flows in the 
network D has corresponding policies to handle, then N levels 
have N ∙ ⋃ {(��, A�)}"

��!  policies to manage, and the controller 
number can be denoted as ∑ ∑ |�$

	|"
$�!

C
	�! ,where |�$

	| means the 
controller number in the subnet of the ist level and jst column. 
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Figure 6. The illustration of two levels unified control for allied-networks 

E. System Security 
The principle of our designing in system security is that the 

transmission of the vital information through SSL secure 
channel, while traffic measurement packets are still delivered 
by UDP and other communications for coordination are still 
held by TCP. Since the unified SOAP-based web interface has 
a very close relationship with XML language, it can adapt with 
our switch configuration scripts and rule description language 
well, as what table II shows. 

TABLE II. THE SUMMARY OF COMMUNICATION MECHANISM

Phase Protocol

Other coordination communication TCP
Swtich plug-and-play
User authentication

Rule request/distribute
Communication between controllers 

SSL/HTTPS

Measurement statistic UDP

F. Summary 
In order to achieve more desirable goals, we introduce 

many new features and improve some drawbacks of OpenFlow, 
which will inevitably bring some costs. As to the whole cost of 
packet forwarding, let’s check their individual cost evaluation.   

Cost(OpenFlow) = Cost(rule request) + Cost(forwarding)
Cost(SuperFlow) = Cost(host′s IP binding) + Cost(user auth. )

+ Cost(IP spoofing filtering)
+ Cost(rule request) + Cost(forwarding)

Apparently, SuperFlow incurs more delays with more 
procedures than OpenFlow. However, we argue that the cost of 
IP binding and IP spoofing filtering procedures in SAVI switch 
can be ignored since the former just snoops the IP assignment 
protocol to establish the binding relationship, while the latter 
can achieve line rate. The user authentication procedure only 
repeats once. Though it is the same procedure of rule request, 
SuperFlow has some tradeoffs in rule designing and forwarding. 
Consequently, as proved by our evaluation the average packet 
forwarding delay in SuperFlow outperforms OpenFlow. There 
are more detailed comparisons between them in table III. 

TABLE III. THE COMPARISONS BETWEEN OPENFLOW AND SUPERFLOW

Comparisons OpenFlow SuperFlow
Rule installation Reactive Proactive & Reactive

Rule granularity Flow-based fine-grained fine-grained & coarse-
grained

Rule action Limited four types Multi-types
Rule description Complex & Unstructured Simple & Structured

Control 
mechanism for 

the first unknown 
packet

1. The switch encapsu-
lates the whole packet to
the controller.
2. The controller distri-
butes the rules with the 
packet.
3. The switch installs the 
rules and processes the 
packet according to the 
rules.

1. The switch caches 
the packet first, and 
then requests the rules 
from the controller 
with the packet’s quin-
tuple flow summary. 
2. The controller distri-
butes the rules.
3. Same with the third 
point of OpenFlow.

Path control for 
data-flows 

All the devices along the 
forwarding path will be 
distributed related rules

Not care, or use the 
source routing tech. to 
add the routing path 
into packet’s header.

Network 
dynamic 

adaptability

Periodically send
(receive) the topology
information to(from)

neighbor switches

Using SNMP&OSPF 
combined way to 
monitor the whole 
network dynamics 
with faster speed.

System 
Scalability None

Scalable in the rule 
action, controller’s
quantity and scale

Control interface SSL
Integration platform 

with HTTPs, TCP and 
UDP protocols

Rule confliction-
proof None Different group &

Different Priority etc.

V. EVALUATION

We have implemented the SuperFlow’s prototype and got it 
evaluated in a campus network.  

A. Prototype Implementation 
SuperFlow switch & SAVI switch: We use a commodity 

PC (Core i3-2120 3.3GHz CPU, 4G 1333Hz Memory, 500GB 
Hard-disk and one integrated 1Gbps network-card, Linux 
kernel 2.6.32) to act as the OpenFlow switch, which  installs 
another extra network-card (Intel EXPI9402PT) with total 
three gigabytes Ethernet interfaces. We create necessary 
databases in MySQL and establish a firewall based on the 
IPtable (iptables-1.4.11), as well as a Java-based application to 
communicate with controllers and to instruct the firewall to 
process flows. The controller’s DNS request interval we set as 
5 minutes. We take a commodity SAVI switch product(DCRS-
5980) to enable host binding function; DNS Load-balancing:
We set up two DNS servers and apply Windows DNS Service 
as our DNS load-balancing solution, which only needs to add 
the DNS records in the Forward Search Area; Database: We 
create all necessary databases in Microsoft Windows SQL 
Server, like Policy, Rule, Account, Devices, and etc. However, 
limited by the paper length, we will not list all the fields of 
these tables; Workload collector: it collects workload of CPU 
and memory in each controllers with a period of 1 minute, and 
informs the daemon application in DNS server to add or delete 
the proper DNS records; Controller: The communication 
interface in controllers is implemented by web services, which 
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includes necessary web-methods and facilities clients remotely 
invoke. The mainly web-methods are illustrated in Table IV. 

TABLE IV. THE MAINLY WEB-MEMHODS IN CONTROLLER

Function Proto. WebMethod
Switch 

Verification HTTPs //Return switch configuration script
String SwitchVeri(String MAC, String serialNo)

Rule request HTTPs
//Return rule description to switch
String RuleReq(String srcIP, String dstIP, int 
srcPort, int dstPort, int prot, string switchIP)

Sub-contr. 
request policy 

from root 
contr.

HTTPs
//Root controller distributes policies
boolean DownloadPolicy(String rootIP,string 
usrName, String password, String policy)

User 
Verification HTTPs

//Return verification result to host
Boolean UserVeri(String userName, String 
Password, String hostIP, String md5) 

B. Performance 
Our evaluation environment is a college campus network,

which owns about 27,000 network users and 20,000 cable slots. 
The average number of online users and the number of traffic 
loads in the core routers are about 3,000 and 600Mbps, 
respectively. The SuperFlow prototype was tested in a dormi-
tory building of this campus network which contains nearly 1K 
students, and our SuperFlow switch uplinks the buildings 
access router and downlinks many SAVI switches so as to 
provide Internet accessing services for these students.

Figure 7. The average delay of the different precedures  

First, we test the SuperFlow switch’s throughput with 
professional IAIA traffic generator, we can learn that the 
maximal forwarding throughput is about 350Mbps. But we
believe that taking the non-x86 hardware architectures will 
achieve much better performance, and in the future work we 
plan to use the NetFPGA[29] card to redevelop it. Then we 
carefully evaluate the time cost of each procedure which is 
showed in Fig. 7, we can learn that we have reduced 3% delay 
in flow-setup than OpenFlow. As the longest delay in the host 
binding procedure, it depends on the detailed IP address assign-
ment protocol since SAVI switch just listens the whole 
interactive courses, and in our experiment we take the DHCP. 

Further, we test the average forwarding throughput of 
SuperFlow switch with different number of traffic and rule 
combination, the result in Fig.8 tells us that the major 
constraint comes from the switch’s performance, instead of the 
number of control rules. Meanwhile, in order to investigate the 
impact from the flow number and packet field matching, we 

also evaluate the packet forwarding delay with various flows 
and matching properties in Fig.9, which states that it is the flow 
number rather than the matching items that is the major factor. 

Figure 8. The throughput of Superflow switch with different traffic and rules  

Figure 9. The packet forwarding delay with different number of flows  

Figure 10. The traffic of Superflow switch in seven days 

Figure 11. The CPU&Mem. load in SuperFlow and controller for seven days 

We put our  prototype running for seven consecutive days, 
the switch’s traffic status and the controller’s CPU/memory 
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workload are illustrated in Fig. 10, Fig. 11, respectively, which 
indicate that system works very steady. Fig. 12 depicts that the 
average flow-setup requests to the controller reduce sharply as 
time pass by, while the flow-setup number (the switch’s 
performance) climbs up rapidly to a steady status, which we 
believe it results from the rule accumulation/localization in the 
switch, as well as the fine- and coarse-grained combined rule 
property.  

Figure 12. The average number of flow setup and request per second in 
SuperFlow switch for seven days 

VI. CONCLUSION

Because of a large number of data-flows, policies and users, 
it brings enterprise networks with numerous challenges in 
various aspects. OpenFlow, serving as a classical example for 
the architecture of SDN, gives us lots of inspirations to over-
come these challenges. However, OpenFlow still exists some 
flaws in the aspect of scalability, efficiency and security. After 
a comprehensive investigation of the enterprise networks 
requirements, as an improvement of OpenFlow, we present a
new architecture named SuperFlow that offers distinctive
features include reliable identity to network hosts and users, 
scalable and dynamic control to data-flows, flexible system 
scalability in controller-numbers, rule-actions and controlling-
scales. We have implemented the prototype of SuperFlow and 
got it evaluated in a real campus network. The result has also 
proved its stability, controllability, scalability and efficiency,
which makes it satisfied the management and control 
requirements of large-scale enterprise networks.  
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