
IEEE/ACM TRANSACTIONS ON NETWORKING 1

FedPAGE: Pruning Adaptively Toward Global
Efficiency of Heterogeneous Federated Learning

Guangmeng Zhou , Qi Li , Senior Member, IEEE, Yang Liu, Yi Zhao , Member, IEEE, ACM,
Qi Tan , Su Yao , and Ke Xu , Senior Member, IEEE

Abstract— When workers are heterogeneous in computing
and transmission capabilities, the global efficiency of federated
learning suffers from the straggler issue, i.e., the slowest worker
drags down the overall training process. We propose a novel
and efficient federated learning framework named FedPAGE,
where workers perform distributed pruning adaptively towards
global efficiency, i.e., fast training and high accuracy. For fast
training, we develop a pruning rate learning approach generating
an adaptive pruning rate for each worker, making the overall
update time approximate to the fastest worker’s update time, i.e.,
no stragglers. For high accuracy, we find that structural similarity
between sub-models is essential to global model accuracy in
the distributed pruning, and thus propose the CIG_X pruning
scheme to ensure maximum similarity. Meanwhile, we adopt
the sparse training and design model aggregating of different
size sub-models to cope with distributed pruning. We prove the
convergence of FedPAGE and demonstrate the effectiveness of
FedPAGE on image classification and natural language inference
tasks. Compared with the state-of-the-art, FedPAGE achieves
higher accuracy with the same speedup ratio.

Index Terms— Federated learning, straggler issue, global effi-
ciency, distributed pruning.

I. INTRODUCTION

DEEP learning has made great progress in many fields
(e.g., computer vision and natural language processing).

It is generally agreed that the effect of the model is closely
related to the amount of data used for training. However, due to

Manuscript received 25 August 2022; revised 2 April 2023 and 23 July
2023; accepted 20 October 2023; approved by IEEE/ACM TRANSAC-
TIONS ON NETWORKING Editor Y. Liu. This work was supported in
part by the National Natural Science Foundation of China (NSFC) under
Grant U22B2031, Grant 61932016, Grant 62132011, and Grant 62202258;
in part by the National Science Foundation for Distinguished Young
Scholars of China under Grant 61825204; in part by the Beijing Out-
standing Young Scientist Program under Grant BJJWZYJH01201910003011;
in part by the China Postdoctoral Science Foundation under Grant
2021M701894; in part by the China National Postdoctoral Program
for Innovative Talents, Shuimu Tsinghua Scholar Program; and in part
by the Ant Group through the CCF-Ant Innovative Research Program
under Grant CCF-AFSGRF20210023. (Corresponding authors: Yi Zhao;
Ke Xu.)

Guangmeng Zhou, Yi Zhao, Qi Tan, and Ke Xu are with the Department
of Computer Science and Technology, Tsinghua University, Beijing 100084,
China (e-mail: zgm19@mails.tsinghua.edu.cn; zhao_yi@tsinghua.edu.cn;
tanq20@mails.tsinghua.edu.cn; xuke@tsinghua.edu.cn).

Qi Li is with the Institute for Network Sciences and Cyberspace, Tsinghua
University, Beijing 100084, China (e-mail: qli01@tsinghua.edu.cn).

Yang Liu is with Huawei, Shenzhen 518129, China (e-mail:
liuyang19@mails.tsinghua.edu.cn).

Su Yao is with the Beijing National Research Center for Information Sci-
ence and Technology (BNRist), Tsinghua University, Beijing 100084, China
(e-mail: yaosu@tsinghua.edu.cn).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TNET.2023.3328632, provided by the authors.

Digital Object Identifier 10.1109/TNET.2023.3328632

data privacy or the high cost of data migration (e.g., face recog-
nition data, mobile phone behavior data, and cross-domain
network traffic data), data cannot be collected centrally for
training in some scenes. As a new machine learning paradigm
to solve this problem, federated learning [1] has received
considerable attention. Instead of putting data to the model
location, federated learning pushes the model to the data
location.

In practical applications, workers of federated learning
are typically resource-constrained and thus heterogeneous in
computing and transmission capabilities (e.g., edge devices
are equipped with different computing chips and located in
different domains). Even with the same physical equipment,
the resource (e.g., memory and bandwidth) allocated to a
specific task is usually limited. In federated learning, the
bulk synchronous parallel (BSP) policy [2] 1 has been widely
applied, thus causing the straggler issue [3], [4]. More specifi-
cally, given the heterogeneity of workers, the slowest worker in
collaboration drags down the entire training process. The root
cause of the straggler issue is different capabilities workers
are required to do the same thing (e.g., training the same
size model). Thus different capabilities workers should train
models of different sizes.

Existing studies [5], [6], [7] introduce different sub-models
which are generated from a base model into federated learning.
In Helios [5] and HeteroFL [6], the worker takes the number
of parameters within its capabilities from the base model for
training. The difference is that for a given worker, Helios
changes the taken parameters every round, but HeteroFL
keeps the parameters the same. SplitMix [7] first divides the
base model into several sub-models and the worker randomly
selects the corresponding number of sub-models for training
each round according to its capability. However, the above
studies suffer from two limitations, i.e., unrealistic assumption
about known worker capabilities and lacking investigation
about tailoring sub-models for global accuracy.

Unrealistic assumption about known worker capabilities.
A key feature of federated learning is that the participants
come from different entities. To ensure the privacy and security
of each participant, the server cannot directly access the
capability information of each participant. Moreover, the capa-
bilities of participants may vary depending on the situation,
such as when a PC is also performing other tasks that consume
communication or CPU resources, or when a user’s phone
battery is low, they will have fewer resources to contribute to
the federated learning task. Therefore, it is crucial to model the
capabilities of participants when starting federated learning.
The sooner the appropriate sub-models are generated, the

1The server updates the global model until updates of all workers or at
least a certain number of workers have committed.

1558-2566 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2023 at 02:57:48 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0009-0006-6133-7434
https://orcid.org/0000-0001-8776-8730
https://orcid.org/0000-0003-3632-3381
https://orcid.org/0000-0002-9316-4578
https://orcid.org/0000-0001-5165-2787
https://orcid.org/0000-0003-2587-8517


2 IEEE/ACM TRANSACTIONS ON NETWORKING

higher speedups can be achieved. Therefore, worker capability
modeling needs to be fast and accurate with the limited
information available to the server.

Lacking investigation about tailoring sub-models for
global accuracy. Network pruning studies [8], [9], [10]
remove some parameters from the stand-alone base model
to obtain a sub-model and maintain its accuracy, which is
the most efficient way to achieve models of different sizes.
The above studies directly apply stand-alone network pruning
techniques for each worker. However, it only guarantees the
accuracy of the pruned local model, not the global model after
aggregation. Distributed workers prune their own models while
pursuing the accuracy of the aggregated global model on the
server, such a scenario, is referred to as distributed pruning.
The above studies are unaware of the challenge of distributed
pruning and neglect to investigate it.

Therefore, our key design goal is to speed up the
global training process with worker capability agnostic,
and ensure global accuracy under distributed pruning to
achieve superior global efficiency of federated learning.
In this paper, we propose a novel and efficient federated
learning framework named FedPAGE, pruning adaptively
towards global efficiency, i.e., fast training and high accu-
racy. It generates adaptive sub-models dynamically from the
global base model for workers via our customized pruning
scheme.

To speed up the global training process (fast training),
we develop a pruning rate learning approach. First, we collect
the only information that the server can observe, i.e., model
retention size and corresponding update time (time interval
between two adjacent updates received). Then, we model
worker capabilities by the Newton interpolation method.
Finally, we set the adaptive pruning rate depending on the
capacity gap between the worker and the fastest worker. Thus
all workers achieve approximately identical update time as
the fastest worker, i.e., no stragglers. To ensure global accu-
racy (high accuracy), we investigate the important principles
for global model accuracy in distributed pruning. Experi-
ments reveal that identical and constant are two essential
principles for global model accuracy because they ensure
maximum structural similarity between local models after
pruning. After introducing a well-established pruning principle
global, we propose the CIG-X pruning scheme tailored for
distributed pruning. In addition, we adopt the sparse training
and design model aggregating of different size local models
to cope with distributed pruning.

We conduct extensive experiments on multiple datasets (i.e.,
CIFAR, Tiny-ImageNet, MNLI and Digits) with different mod-
els (i.e., VGG16, ResNet50, and BERT). Moreover, we take
multiple data heterogeneity cases into account, including
Non-IID (independent and identically distributed) and cross
domains heterogeneity. Empirical results show that FedPAGE
outperforms state-of-the-art approaches to improve federated
learning efficiency under various settings. Besides, FedPAGE
can be combined with other approaches to achieve higher
speedups.

To summarize, we make the following contributions:
• We propose an efficient federated learning framework

FedPAGE, which performs customized distributed prun-
ing for workers to speed up the entire training process
while maintaining satisfactory accuracy.

• We propose a dynamic and adaptive pruning rate
learning approach that enables each worker’s update

time to achieve identical under worker capability
agnostic.

• We specify the concept of distributed pruning and its
challenge for the first time. To address the challenge,
we investigate and find the essential pruning principles
in distributed pruning and tailor a novel and efficient
pruning scheme CIG-X.

• We give the convergence analysis of FedPAGE. Further,
we analyze the impact of the pruning rate and make
comparisons with other federated learning algorithms.

• Extensive experiments show that FedPAGE exhibits
efficiency in various data-model settings and different
degrees of heterogeneous environments.

II. DEFINITION AND RELATED WORK

A. Definition of Federated Learning
Federated learning, a new machine learning paradigm,

is closely related to distributed machine learning. However,
the relatively lower level of trust and a higher degree of
heterogeneity between workers enable federated learning to
be extensively studied in terms of security [11], [12], [13],
privacy [14], [15], efficiency [16], [17], etc.

In the classic federated learning such as FedAVG, the
training process of each round includes the following steps:

1) The server sends the current global model to workers.
2) Workers perform local model updates on the models and

send the updated local models to the server.
3) The server aggregates local models from workers form-

ing the new global model.
The problem solved by federated learning is shown in

Eq. (1). F (θ) is the global optimization function, and θ is
the model parameter. fw(θ) is the optimization function on
worker w. pw is the model weight of worker w, which is
usually determined by the amount of data in the worker. W
is the number of workers.

min
θ
{F (θ) ≜

W∑
w=1

pwfw(θ)}, where

W∑
w=1

pw = 1 (1)

We define θt,e
w to denote the parameter of the wth worker

in round t after e local updates. θt
g is the global parameter

at round t (after the t-1th round of aggregation). The local
gradient update can be described as in Eq. (2). E is the number
of local updates and η is the learning rate.

θt,e+1
w =θt,e

w −η∇fw(θt,e
w ), e=0, 1, . . . , E − 1,

where θt,0
w = θt

g (2)

The tth round local model aggregation can be described as

θt+1
g =

W∑
w=1

pwθt,E
w , where

W∑
w=1

pw = 1 (3)

We illustrate the parameters changes of federated learning
under two workers setting in Fig. 1. Eq. (2) corresponds to the
arrows of local update and download, and Eq. (3) corresponds
to the arrows of upload and aggregation.

B. Related Work
Network Pruning.Compared to existing techniques such as

neural architecture search (NAS) [18], [19], network pruning
is the most efficient way to achieve models of different

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2023 at 02:57:48 UTC from IEEE Xplore.  Restrictions apply. 



ZHOU et al.: FedPAGE: PRUNING ADAPTIVELY TOWARD GLOBAL EFFICIENCY 3

Fig. 1. The parameters changes illustration of federated learning under two
workers setting.

sizes because it brings significantly less additional overhead
to the generation and aggregation of sub-models. Network
pruning is based on the premise that deep neural networks
are over-parameterized, and thus proper pruning can cut off
a large number of parameters to accelerate model inference
while maintaining accuracy. Network pruning consists of three
stages: training, pruning, and fine-tune. According to the
pruned object, network pruning can be divided into non-
structural pruning, which only cuts off weights, and structural
pruning, which cuts off units such as neurons and filters.
However, non-structural pruning can only achieve acceleration
on specialized software [20] or hardware [21]. In contrast,
structural pruning can achieve acceleration on arbitrary soft-
ware and hardware, and thus we adopt it.

Structural pruning usually cuts off units of low importance
predefined, such as the percentage of zero activation [8], the
ℓ1-norm [22], the scaling factor of Batch Normalization (BN)
layer [23], the distance from the geometric median of filters
of same layer [24], the rank of feature map [25], or the impor-
tance indicators introduced in training [9], [26]. Considering
that different network layers have different sensitivities to
parameter pruning [27], so the pruning rate per layer should be
different for a given pruning budget. [9], [28], [29] try to get
global rank for all filters, and [30] proposes to learn pruning
thresholds for different layers.

However, directly applying these stand-alone techniques is
not suitable. On the one hand, they are based on pre-trained
models to speed up inference as opposed to our intention
to speed up training and based on the model being trained.
While some ideas could be adopted, we expect the pruning and
fine-tune to be extremely time-efficient and can be done early
in the training process, which is not considered in previous
works. On the other hand, there is a gap between what we do
and what we pursue in distributed pruning, i.e., we prune the
local model but pursue the accuracy of the aggregated global
model. These all motivates us to design customized pruning
methods for the distributed scenario.

Efficient Federated Learning. Federated learning can be
divided into general federated learning and personalized fed-
erated learning. Personalized federated learning aims to obtain
personalized model suitable for each worker, and the common
approaches include personalizing the trained global model
[31] or focusing on learning with workers that are similar to
itself [32]. In this paper, we are interested in general federal
learning, i.e., seeking a superior global model. We divide the
causes of inefficient training into local and global causes as
illustrated in Fig. 2. The local cause is that the model is too
large, leading to extremely time-consuming model training and
transmission. The global cause is the heterogeneity between
workers, leading to the stragglers, which in turn affects syn-
chronization efficiency.

Local solutions. To speed up model transmission, gradi-
ent quantization and sparsification are extensively studied.

Fig. 2. The illustration of related work about efficient federated learning.

Gradient quantization is achieved by quantizing the gradients
to low-precision values [33]. Gradient sparsification is usually
done by selecting significant parameters to transmit [16], [34],
[35], [36] or adding constraints to get a sparse model [37].
In addition to reducing transmitted parameters to speed up
single transmission, efficiency can also be improved by adjust-
ing the frequency of parameter aggregation [38]. In contrast,
little research has been done on speed up training. Adding
new loss items to improve the training accuracy at the same
time can be seen as a kind of training speedup [17], [39].
Network pruning can speed up model transmission, but almost
all network pruning studies do not pay attention to speed up
training because they retain the original dense model during
pruning. Reference [40] solve the problem by reconfiguring
the model into smaller models during pruning. We draw on
the idea of network reconfiguration.

Global solutions. Compared with local solutions, global
solutions take a global view of efficiency issue and focus
on the heterogeneity. Therefore, other server synchronization
policies have been extensively studied except for BSP to
solve the straggler issue. The asynchronous parallel (ASP)
policy is the opposite of BSP. In ASP, the server updates
the global model as soon as it receives an update. The stale
synchronous parallel (SSP) policy [41], [42] is a trade-off
between BSP and ASP. When the fastest worker is ahead of the
slowest worker by predefined threshold s rounds, the fastest
worker needs to stop and wait. Reference [43] develops a
unified synchronization policy framework that can cover BSP,
ASP, and SSP by designing the collection of active workers
of the next round, and then uses reinforcement learning to
learn the collection to minimize the total time cost. However,
these works do not work well in environments with high
heterogeneity.

Sub-model solutions. Some works have also introduced
sub-models into federated learning. PruneFL [44] and AFD
[45] try to find the same size optimal sub-model for all workers
without considering the straggler issue. Helios [5], HeteroFL
[6] and Split-Mix [7] consider the straggler issue, but both
assume that the worker capabilities are known and do not
consider distributed pruning from the perspective of global
model accuracy. As illustrated in Fig. 2, our approach obtains
adaptive small models for workers according to their capaci-
ties. The small models enable faster training and transmission
addressing local causes. The adaptive size models align worker
update times, eliminate stragglers and thus address global
issues.

III. FEDPAGE
In this section, we overview our framework FedPAGE firstly,

then elaborate on the critical components of the framework,
including model training and aggregating, pruning rate learn-
ing approach, and network pruning approach. The pruning

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2023 at 02:57:48 UTC from IEEE Xplore.  Restrictions apply. 



4 IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE I
SUMMARY OF MAIN NOTATIONS. THE NOTATIONS FROM TOP TO

BOTTOM ARE THE FORMAL REPRESENTATION, HYPERPARAMETERS,
AND INTERMEDIATE PARAMETERS TO BE CALCULATED

Fig. 3. FedPAGE process: the cloud server keeps issuing pruning rates to
resize workers’ models during training until all workers have the same update
time. t1, t2 and t3 represent the update time of the above three workers,
respectively.

rate learning approach determines the worker pruning rate in
order to achieve consistency with the fastest update time. The
network pruning approach determines which units to prune
at the determined pruning rate to minimize the impact on
the global model. Model training and aggregating are tailored
under distributed pruning, and also aim to minimize the impact
on the global model. Before elaborating on our framework
FedPAGE, we summarize the main notations in Tab. I.

A. Overview
The process of FedPAGE is illustrated in Fig. 3. In the

learning process, there is one server for model aggregating,
as well as several workers with different capabilities holding
various data, such as PC, laptop, and phone. The workers
communicate directly with the server, but the bandwidth is
diverse. The task aims to leverage the data on each worker
to get a superior global model. When training begins, the
parameter server distributes the same model θg to each worker
conservatively since workers’ capabilities are unknown. After
obtaining the worker capability signal, i.e., the update time, the
server generates adaptive pruning rates (e.g., 0%, 10%, 28%)

Algorithm 1 FedPAGE: Pruning Adaptively Towards Global
Efficiency
Server:
1: for each round t = 1, . . . , T do
2: while not receiving all updates do
3: Server receives θt

w, It
w from worker w,

4: and calculate worker w’ update time ϕt
w

5: θt
g ← ModelAggregating(θt

1, θt
2,. . . , θt

W )
6: if it is pruning round then
7: Obtain {P t+1

1 , . . . , P t+1
W } with Pruning Rate

Learning approach Alg. 2
8: for each worker w = 1, . . . ,W do
9: Extract parameters of θt

g in It
w forming θt+1

w

10: Server send θt+1
w and P t+1

w to worker w

Worker:
1: Worker w receives θt+1

w and P t+1
w from server

2: θt+1
w ← ModelTraining(βE, θt+1

w , Dw)
3: if P t+1

w > 0 then
4: Uretained ← NetworkPruning(P t+1

w )
5: θt+1

w , It+1
w ← NetworkReconfigure(θt+1

w , Uretained)
6: else
7: It+1

w ← It
w

8: θt+1
w ← ModelTraining((1− β)E, θt+1

w , Dw)
9: Worker w send θt+1

w and It+1
w to server

for workers. The worker receives the pruning rate and then
prunes its model locally. Then the workers get sub-models
with different sizes, e.g., 100%, 90%, and 72%. Next, the
worker performs training with its sub-model and sends the
sub-model to the server for aggregating. The process proceeds
dynamically with training until the update time tends to be
identical. The pseudo-code of the framework is shown in
Algorithm 1. As we can see, FedPAGE consists of two types
of participants, server and worker.

On the server-side, we adopt the synchronous approach that
the server starts aggregating (in Sec. III-B) until all workers’
updates are received as in federated learning [1]. As shown in
Server line 2, the updates include parameters θt

w and global
index It

w of the local model, where It
w is to align the units

in the local model and the global model if the local model is
pruned. Meanwhile, the server calculates the update time ϕt

w
of worker w, which is the time difference between the server
sending and receiving models. ϕt

w is used to model worker
capability and obtain pruning rate as shown in Alg. 2. If the
pruned round arrives, the pruning rate learning approach 2
(in Sec. III-C) is used to get the pruning rate P t+1

w for each
worker. FedPAGE adopts iterative pruning, pruning after each
pruning interval (PI), and pruning from the very beginning
of training, making the overall training process as time-saving
as possible and leaving more rounds to recover the model.
Finally, the server obtains the parameters θt+1

w of the worker’s
sub-model by extracting parameters of θt

g in position It
w, and

sends the parameters and pruning rate to the worker.
On the worker-side, the worker trains part of the epochs

(βE, 0 ≤ β ≤ 1) with its dataset Dw after receiving
parameters (in Sec. III-B). If pruning is not required, the
worker continues training the other part of the epochs (1−β)E
on the previous model as shown in Worker line 8. When

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2023 at 02:57:48 UTC from IEEE Xplore.  Restrictions apply. 



ZHOU et al.: FedPAGE: PRUNING ADAPTIVELY TOWARD GLOBAL EFFICIENCY 5

Fig. 4. The illustration of parameters group g.

Fig. 5. Two approaches to aggregate parameters. The three squares in the
middle represent one weight matrix of three workers, respectively. The squares
on either side represent the results of the two ways of aggregation. The top
worker cuts out a unit, resulting in a missing column of the matrix.

pruning is required, we follow a specific pruning order to prune
network (in Sec. III-D). As shown in Worker line 4 in Alg. 1,
we obtain retained units Uretained according to the pruning
order and pruning rate P t+1

w . Then we rebuild and initialize a
smaller sub-model as in [40] (network reconfigure). And the
units’ global index It+1

w of current sub-model is updated. The
step is shown in Worker line 5, where θt+1

w is the parameters
of current sub-model. In the end, the current sub-model’s
parameters and global unit index are sent to the server. It is
worth noting that, compared to federated learning, the content
of the transmission is only more model’s global index as well
as pruning rate, which introduces little transmission overhead.

B. Model Training and Aggregating
Model training. As introduced in Sec. II-B, we adopt

structural pruning, i.e., cut off units for achieving acceleration
on arbitrary software and hardware. For mitigating the impact
caused by cutting off units, we adopt the sparse training
approach in [40]. The loss function is shown in Eq. (4),
consisting of cross-entropy loss and group lasso loss. The
loss function is used for sparse training in each round. With
the introduction of group lasso regularization, the parameters
associated with a unit are viewed as a group g as illustrated in
Fig. 4. The group lasso loss makes the parameters in a group
smaller at the same time, thus mitigating the impact caused by
cutting off the unit. In addition, we divide the training process
into two parts to explore the effects of different pruning
positions in training in Sec. V-F.

min
θ
{fw(θ) ≜

1
|B|

(
∑

(x,y)∈B

l(y, h(x, θ))

︸ ︷︷ ︸
cross-entropy loss

+λ·
∑
g∈G

√
|g| ∥θg∥2)︸ ︷︷ ︸

group lasso loss

}

(4)

where B represents a batch of data, G represents groups of
parameters, h(x, θ) is the predicted label, λ is the coefficient
balancing the above two losses.

Model aggregating. If we ignore the differences in the
amount of data between workers, the parameter aggregation

Algorithm 2 Pruning Rate Learning
Input: Suppose the round is the nth pruning round, i.e.,

n = t
PI . γ̂n

w and ϕ̂n
w represent the model retention ratio

and corresponding average update time in the last pruning
interval (PI). That is, ϕ̂n

w = Average(ϕt−PI+1
w , . . . , ϕt

w),
γ̂n

w = γt−PI+1
w = . . . = γt

w.
Output: P t+1

1 , P t+1
2 , . . . , P t+1

W

1: ϕmin ← Min(ϕ̂n
1 , ϕ̂n

2 , . . . , ϕ̂n
W )

2: for each worker w = 1, . . . ,W do
3: if n > 1 then ▷ the worker has been pruned
4: Get γtarget

w by Newton interpolation as Eq. (5)
5: γtarget

w ← Max(γtarget
w , γmin)

6: P t+1
w ← γ̂n

w−γtarget
w

γ̂n
w

7: else
8: P t+1

w ← ϕ̂n
w−ϕ̂min

α∗ϕ̂n
w

9: P t+1
w ← Max(P t+1

w , ρmin)
10: P t+1

w ← Min(P t+1
w , ρmax)

coefficient pw is 1
W . However, as a result of network pruning,

some parameters may only exist in w′ (w′ < W ) local
models. Take the example in Fig. 5, the local model of
worker 1 (referred to as local model 1 below) does not have the
parameters in column j, i.e., the parameters in column j only
exist in two local models (w′ = 2). There are two approaches
to set the aggregation coefficient for parameters in column j,
i.e., parameters pruned at some workers, which are illustrated
in Fig. 5.

One way is By-unit with a coefficient of 1
w′ , which is the

way in HeteroFL [6]. By-unit is equivalent to treating the
pruned parameters (e.g., jth column of parameters in local
model 1) as the mean of the parameters at the corresponding
position in the other local models. For example, in Fig. 5, the
first weight in By-unit is 1

2 (1+2) = 1
3 (1+2+1.5), where 1.5 =

1
2 (1+2) is the mean of the jth column of parameters in local
model 2 and local model 3. We propose the other way By-
worker, whose coefficient is still 1

W . By-worker is equivalent
to treating the pruned parameters as 0. For example, in Fig. 5,
the first weight in By-worker is 1

3 (1 + 2) = 1
3 (1 + 2 + 0).

Considering that the pruned parameters are relatively small,
treating them as 0 is closer to the real value. In addition,
[46] points out that the reason why lottery tickets behave well
is that mask operation freezes some values to zero and can
make those values reach the end of their optimization process
faster. In conclusion, treating pruned parameters as 0 when
aggregating is not only closer to the original values, but may
also speed up the optimization. Therefore, we adopt by-worker
to do model aggregating in FedPAGE. We demonstrate the
superiority of By-worker in Sec. V-F.

C. Pruning Rate Learning

Pruning rate learning gives the adaptive pruning rate for
each worker to achieve approximately identical update time.
The worker’s update time consists of two parts: model trans-
mission time and model training time. The transmission time
can be considered to vary linearly with the size of trans-
mitted parameters if the bandwidth is relatively stable. Many
researchers use FLOPs (floating point operations) as an indica-
tor of training capability. However, training time is affected by

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2023 at 02:57:48 UTC from IEEE Xplore.  Restrictions apply. 



6 IEEE/ACM TRANSACTIONS ON NETWORKING

many practical factors (e.g., data loading speed, parallel opti-
mization in the computing chip, underlying optimization of the
computing platform) [47]. That is, no capability indicator can
give the precise update time when the local model is pruned.
Moreover, the capability information is private and difficult to
obtain by the server. Thus, approximate and dynamic capacity
estimation is needed. Considering that collaborating parties
usually establish a relatively stable collaboration environment,
e.g., Google lets phone join the collaboration when the phone
is idle and connected to WIFI [48], the capacity estimation of
the workers is feasible.

Our pruning rate learning approach is shown in Alg. 2.
First, we take the current minimum average update time as
the target time ϕmin for the next round of pruning. Then we
use the data that have been collected, i.e., the model retention
ratio and averaged update time each round (γ̂0

w, ϕ̂0
w), . . . ,

(γ̂n
w, ϕ̂n

w), to construct a polynomial R that satisfies Rw(ϕ̂i
w) =

γ̂i
w, i = 0, . . . , n. Finally, γtarget

w = Rw(ϕmin). Averaged
update time avoids the influence of some random factors and
makes capacity estimation more accurate. There are many
interpolation methods that have been studied. Among them,
Newton interpolation is solid and fast, so we adopt Newton
interpolation in FedPAGE as shown in Eq.(5). According
to Main Theorem of Polynomial Interpolation [49], Rw is
existent and unique. The Newton interpolation may have the
Runge phenomenon at higher orders causing larger errors.
However, since approximately identical update time can be
achieved with three or four prunings, the n is small in our
scenario. Thus the Runge phenomenon does not occur.

γtarget
w = Rw(ϕmin) = Rw[ϕ̂0

w] + Rw[ϕ̂0
w, ϕ̂1

w]

× (ϕmin−ϕ̂0
w)

+. . .+Rw[ϕ̂0
w, ϕ̂1

w, . . . , ϕ̂n
w](ϕmin−ϕ̂0

w)

. . . (ϕmin − ϕ̂n−1
w )

where Rw[ϕ̂i
w] = Rw(ϕ̂i

w) = γ̂i
w, i = 0, . . . , n

Rw[ϕ̂0
w, . . . , ϕ̂n

w] =
Rw[ϕ̂0

w, . . . , ϕ̂n−1
w ]−Rw[ϕ̂1

w, . . . , ϕ̂n
w]

ϕ̂n
w − ϕ̂0

w

(5)

If no pruning has been done before, we conservatively
assume that the update time ϕ varies linearly with the model
retention ratio γ, with a slope of α, and the pruning rate is
obtained as in line 8. The value of α can be set slightly larger,
avoiding pruning too much at the beginning. Besides, we set
a minimum model retention ratio γmin, a maximum pruning
rate ρmax to prevent excessive pruning, and a minimum
pruning rate ρmin to prevent overly frequent minor pruning.
Our algorithm introduces little computational overhead to
the server and quickly adapts to changing environments in
different heterogeneous environments as shown in Sec. V-F.

D. Network Pruning
Network pruning tries to find pruning orders of units for

workers. The intuitive approach is that each worker prunes
their models individually according to the learned pruning rate.
In this way, previous network pruning works can be applied to
each worker individually to obtain pruning orders. However,
previous network pruning works only guarantee the accuracy
of the obtained sub-model, i.e., the accuracy of each worker’s
local model, but not the accuracy of the global model after

aggregation. How can we obtain sub-models by pruning while
taking into account the global model accuracy? This is the
essence of the distributed pruning.

We noticed that HeteroFL [6] adopts a pruning approach
that ignores the unit importance in models for a certain
task, but also achieves good performance. The pruned units
are adjacent in the unit index, and the pruning order is
identical between each worker, constant between each round.
We attempt to investigate the underlying reasons for its good
performance and find the key to guarantee the accuracy of
the global model. The good performance may be related
to the three characteristics, i.e., adjacent (pruned units are
adjacent), identical (all workers share the pruning order), and
constant (all rounds share the pruning order). We keep all
other treatments the same and perform a number of variants as
follows (we show the examples of HeteroFL and three variants
in Appendix B, see the Supplementary Material):

• No adjacent: generate a random order at the beginning
and keep it identical and constant.

• No identical: generate different but adjacent orders ran-
domly for different workers and keep it constant.

• No constant: generate different but adjacent order ran-
domly at each pruning and keep it identical.

We show results of the above three variants and Het-
eroFL on an image classification task (CIAFR100 dataset)
under multiple Non-IID settings in Fig. 6. As we can see,
both the experiments on the IID dataset (Fig. 6a) and the
Non-IID dataset (Fig. 6b, Fig. 6c, Fig. 6d) show similar
results. No identical has the worst result, and the global
model does not converge, which reveals that identical is the
crucial reason. Followed by No constant, the global model
converges but converges to a lower accuracy, which reveals
that constant is also important. No adjacent behaves almost
the same as HeteroFL, which reveals that adjacent doesn’t
matter at all. Why Identical and constant are crucial? [50]
indicates that sharing the same model structure results in
better performance when tasks are more similar in multi-task
training. In federated learning, the tasks of individual workers
are extremely similar, although workers may have different
data distributions. Identical and constant ensure maximum
structural similarity between sub-models. We also demonstrate
that structural similarity is essential to global model accuracy
through experiments in Sec. V-D.

Identical and constant are two principles to guarantee the
accuracy of the global model. Considering that different layers
express different semantics, we introduce the well-established
principle that the unit importance needs to be global. Thus,
we design a constant, identical, and global (CIG-X) pruning
scheme, where X represents a method to calculate the global
importance of a unit which can be borrowed from deeply
studied network pruning works. The generation of pruning
order is as follows.

1) A unit importance metric X is selected, which is used
to compare units in all layers together (global-G).

2) At the first pruning round, each worker calculates the
unit importance in its model based on the importance
metric X, and sends unit importance to the server.

3) The server averages the unit importance received from
workers obtaining the unit importance in the global
model. All units are ranked in the ascending order of
importance to form the pruning order.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2023 at 02:57:48 UTC from IEEE Xplore.  Restrictions apply. 



ZHOU et al.: FedPAGE: PRUNING ADAPTIVELY TOWARD GLOBAL EFFICIENCY 7

Fig. 6. The investigation of the effects of three characteristics in distributed pruning on CIFAR100. The pruning rates of workers are pre-set as in Sec. V-D.
Sort-and-partition and dirichlet partition are two common Non-IID distribution partition ways and the s represents the degree of Non-IID, see Sec. V-A and
Sec. V-E for details.

4) The pruning order is sent to each worker (identical-I).
Each worker adopts the pruning order in each round
(constant-C).

CIG-X considers both unit importance and structural maxi-
mum similarity, and thus obtain higher accuracy.

IV. CONVERGENCE ANALYSIS OF FedPAGE

We analyze the convergence of FedPAGE in this section.
To facilitate the analysis, we first introduce some definitions,
then give assumptions and some simple lemmas.

A. Definition, Assumptions and Lemmas

We use θt,e
w ⊙mt,e

w to denote the remaining parameter after
θt,e

w is pruned. mt,e
w is a matrix with the same dimension as

θt,e
w , containing only 0 and 1. 0 means pruning the parameter

at that position and 1 means keeping the parameter at that
position. mt−1,e

w is the mask obtained by swapping the 0 and
1 in mt−1,e

w . That is, θt,e
w ⊙ mt−1,e

w represents the pruned
parameter.

In the following proof, we focus on pruning before aggre-
gation, i.e., β = 1.0. The proof is similar when β is other
values. At round t − 1, if the parameters of all workers are
pruned, the global aggregation can be described as

θ̂t
g =

W∑
w=1

(pwθt−1,E
w ⊙mt−1,E

w ) (6)

Assumption 1: We assume the following for all w, t, e.
1) fw(θ) is µ-Lipschitz, i.e., ∥fw(θ)−fw(θ′)∥ ≤ µ∥θ−θ′∥

for any θ, θ′.
2) fw(θ) is L-smooth, i.e., ∥∇fw(θ)−∇fw(θ′)∥ ≤ L∥θ−

θ′∥ for any θ, θ′.
3) Bounded Gradients,2 i.e., E[∥∇fw(θt,e

w )∥2] ≤ σ2

Assumption 2: We assume the following for all w, t.
1) The pruned parameters in round t are below the thresh-

old κt+1.
Lemma 1: F (θ) is µ-Lipschitz and L-smooth.
Proof of Lemma 1. Straightforwardly from the fw(θ)’s

assumption, Eq. (1), and triangle inequality.
Lemma 2: In a fully connected neural network using the

relu activation function, if all the relevant parameters of a
neuron are 0, the gradient of these parameters is also 0.

Proof of Lemma 2. The proof is in Appendix A-A, see the
Supplementary Material.

2Bounded gradients assumption is commonly used [51], [52], [53].

Remark 1: The operation of convolution can also be
achieved by matrix multiplication [49], so the above con-
clusion also holds for convolutional neural networks. In the
following, we assume that for fw(θ) the above conclusion
holds. Thus, we do not need to add mask to the gradient of
parameters obtained after structured pruning, i.e., ∇fw(θt,e

w ⊙
mt,e

w ) = ∇fw(θt,e
w ⊙mt,e

w )⊙mt,e
w .

B. Convergence Proof

Theorem 1: Under Assumption 1 and Assumption 2, if η =
1√
T

and T ≥ (EL)2, T rounds yields the following bound3:

1
T

T−1∑
t=0

E[∥∇F (θ̂t
g)∥2]

≤
F (θ0

g)− F (θ∗)
√

TE − E2L
+

LEσ2

(
√

T − EL)

+
µ√

TE − E2L

T−1∑
t=0

E[∥θt
g − θ̂t

g∥]

+
µ
√

ζ√
TE − E2L

T−1∑
t=0

κt +
3Lζ

2(
√

TE − E2L)

T−1∑
t=0

κ2
t (7)

where θ̂t
g =

W∑
w=1

pw(θt−1,E
w ⊙ mt−1,E

w ), θ∗ :=arg min F (θ),

and ζ denotes the dimensionality of the initial parameter θ0
g .

Proof of Theorem 1. The proof is in Appendix A-B, see the
Supplementary Material.

In the right of the Eq. (7), the first two items go to zero as
T →∞. Note that pruning is only done a couple of times in
the early part of the training, so θ̂t

g = θt
g and κt = 0 always

hold in almost all rounds. In the pruning round, θ̂t
g ̸= θt

g and
κt ̸= 0. However, since the group lasso penalty is applied to
the weight value, the pruned weight is small, i.e., ∥θt

g−θ̂t
g∥ and

κt are small. So the last three terms also go to zero as T →∞.
Further, the left items of Eq. (7) go to zero as T → ∞, i.e.,
the algorithm converges. Our experiments also demonstrate the
convergence.

C. Convergence Discussion

We do some discussion of Theorem 1 here, including the
impact of P t

w and the comparions with other federated learning
methods.

3This convergence analysis method is commonly used [44], [51], [53].

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2023 at 02:57:48 UTC from IEEE Xplore.  Restrictions apply. 



8 IEEE/ACM TRANSACTIONS ON NETWORKING

Introduction of P t
w. The pruning rate P t

w is related with
mt,e

w . When P t
w is introduced to the proof, we have

1
T

T−1∑
t=0

E[∥∇F (θ̂t
g)∥2] ≤

F (θ0
g)− F (θ∗)

√
TE − E2L

+
LEσ2

(
√

T − EL)

+
2µ
√

ζ√
TE − E2L

T−1∑
t=0

√
Ctκt

+
3Lζ

2(
√

TE − E2L)

T−1∑
t=0

Ctκ
2
t

where Ct =
W∑

w=1

pw(P t−1
w

t−2∏
i=0

(1− P i
w)) ≤ 1

(8)

Proof when introducing P t
w. The proof is in Appendix A-C,

see the Supplementary Material.
The P t−1

w has an impact on Ct. Given fixed previous
pruning rates P i

w, i < t − 1, t ≤ T , a smaller P t−1
w leads

to a smaller Ct. Consequently, the right-hand side of Eq. (8)
also becomes smaller, which implies that the upper bound of
the mean of the gradients of T rounds becomes lower. This
may mean that the algorithm converges faster with a smaller
P t−1

w .
Comparison with FedAVG. In the classic FedAVG frame-

work, under Assumption 1, if η = 1√
T

and T ≥ (EL)2, T
rounds yields the following:

1
T

T−1∑
t=0

E[∥∇F (θ̂t
g)∥2] ≤

F (θ0
g)− F (θ∗)

√
TE − E2L

+
LEσ2

2(
√

T − EL)
(9)

Proof of FedAVG. The proof is in Appendix A-C, see the
Supplementary Material.

Comparing Eq. (7) with Eq. (9), the last three items are due
to the involvement of pruning, and their values are positive.
Thus, the upper bound of the mean of the gradients of T
rounds becomes higher with the involvement of pruning.
This may mean that the involvement of pruning makes the
algorithm need more rounds to converge. However, the time
for each round is significantly reduced after pruning models.
From the perspective of convergence time, pruning speeds up
convergence.

Comparison with PruneFL and AFD. PruneFL [44] and
AFD [45] try to find the same optimal sub-model, i.e., the
pruning rate and pruning order are consistent between workers.
Under Assumption 1, if η = 1√

T
and T ≥ (EL)2, T rounds

yields the following:

1
T

T−1∑
t=0

E[∥∇F (θ̂t
g)∥2]≤

F (θ0
g)− F (θ∗)

ηTE(1− ηEL)
+

LηEσ2

2(1− ηEL)

+
µ

ηTE(1− ηEL)

T−1∑
t=0

E[∥θt
g − θ̂t

g∥]

(10)

Proof of PruneFL and AFD. The proof is in Appendix A-C,
see the Supplementary Material.

Comparing Eq. (7), Eq. (9) and Eq. (10), the first two items
of Eq. (7) derive from the federated average training approach,
the third item from model pruning, and the last two items

from the inconsistent pruning between workers. The upper
bound of the mean of the gradients of T rounds is higher
compared with the FedAVG and lower compared with the
FedPAGE. This may mean that the consistent pruning makes
the algorithm need fewer rounds to converge. However, incon-
sistent pruning can make full use of the worker’s capabilities
and achieve better performance.

V. EXPERIMENTS

In this section, we intend to answer the following questions.
1) The superiority of FedPAGE compared to other effi-

ciency improvement solutions, including local solutions,
global solutions and sub-model solutions as clarified in
Sec. II-B (Sec. V-B, V-C, V-D).

2) Extensive evaluation on larger number of workers and
diverse data heterogeneity settings (Sec. V-E).

3) The deep dive of the FedPAGE through ablation exper-
iments (Sec. V-F).

A. Experimental Settings
Datasets, models. We evaluate FedPAGE on CIFAR10,

CIFAR100 [54], Tiny-ImageNet4 and MultiNLI (MNLI)
Matched.5 We train a variation of VGG16 on CIFAR10 and
CIFAR100, as in [25], ResNet50 [55] on Tiny-ImageNet,
and BERT (bert-base-uncased) [56] on MNLI. CIFAR10 and
CIFAR100 consist of 50,000 training images and 10,000
validation images in 10 and 100 classes, respectively. Tiny-
ImageNet has 200 classes, and each class contains 500 training
images, 50 validation images. MNLI has three classes.

Baselines. We compare FedPAGE with 12 solutions for
efficiency improvement, including six local solutions (FedAVG
[1], FedRC [38], FetchSGD [16], FedGen [17]), two global
solutions (FedAsync [57], SSP [42]), and six sub-model solu-
tions (Taylor [29], FPGM [24], HRank [25], HeteroFL [6],
Helios [5], SplitMix [7]). We adopt the CIG-BNscalor for
VGG and ResNet, i.e., X is the Batch Normalization’s Scalor
(BNscalor) [23], [58]. Since Layer Normalization is used in
BERT, we adopt the CIG-HIS for BERT, i.e., X is the Head
Importance Score (HIS) [59].

Heterogeneous setting. The heterogeneity H is defined
based on the distribution of worker update time ϕw as Eq.
(11). The definition ensures that H is between 0 and 1, and
the closer to 1 the higher the heterogeneity.

H = 1− 1
W − 1

W−1∑
w=1

ϕW

ϕw

Assume ϕW = Min(ϕ1, . . . , ϕW ) (11)

Our experiments achieve heterogeneous computing capabil-
ities by making different workers run on different computing
chips, i.e., CPU or GPU, and heterogeneous transmission
capabilities by setting different bandwidths.

Non-IID setting. The Non-IID setting is reflected in the
uneven distribution of classes. Each worker has the same
amount of data but a different number for each class. Specifi-
cally, we partition the Non-IID dataset in the same way as [60],
[61], and [62]. We divide the (1-s%) of the IID dataset equally

4Tiny-ImageNet visual recognition challenge, https://tiny-
imagenet.herokuapp.com

5https://gluebenchmark.com/tasks

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2023 at 02:57:48 UTC from IEEE Xplore.  Restrictions apply. 



ZHOU et al.: FedPAGE: PRUNING ADAPTIVELY TOWARD GLOBAL EFFICIENCY 9

Fig. 7. Comparison with local efficiency improvement solutions on multiple datasets.

TABLE II
HYPERPARAMETERS IN THE EXPERIMENTS

to each worker, and the remaining s% of the IID dataset is
sorted by the label and divided sequentially to each worker.
We call the partition sort-and-partition scheme.

Configurations. We build FedPAGE using PyTorch. The
CPUs and GPUs used in experiments are Intel E5-2699 v4
and NVIDIA V100, respectively. The general hyperparameters
in the experiments, and the changed hyperparameters are
specified in the corresponding sections. In our experiments,
β=1.0, γmin=0.1, ρmin=0.2, ρmax=0.5. We adopt the same
method in [40] to set sparse coefficient λ by sparsification
strength. Sparsification strength is set to 0.9 for CIFAR10,
IID CIFAR100 and 0.1 for the others. The model weight pw

of worker w when aggregating models is the proportion of
worker data amount to total data amount. The rest shared
hyperparameters are presented in Tab. II.

The training of the BERT model follows a triangular learn-
ing rate schedule with a warmup ratio of 0.1, a peak learning
rate of 2e-5, and a final learning rate of 1.5e-5. For VGG,
we do not prune the last fully connected layer. For ResNet,
we do not prune the first convolutional layer and the last layer
of each residual block. For BERT, we prune the multi-head
attention layer and the intermediate layers.

B. Comparison With Local Solutions
Local efficiency improvement solutions focus on speedup

the overall transmission or training time. In experiments,
we put five workers on the CPU and the remaining five on the
GPU. And the ten workers are set different bandwidths. So we
achieve heterogeneous initial update time for all workers,
even if some run on the same computing chip (see detailed
heterogeneity setting in Appendix C, see the Supplementary
Material. We report the speedup ratio of the total time com-
pared to FedAVG and the corresponding accuracy.

For FedRC, we enable the algorithm to vary the number
of local epochs per round to achieve different speedups by
setting different total time limits. For FetchSGD, we achieve
different speedups by setting the size of the sketch data
structure. FedGen cannot adjust the speedup, but it can

speed up the optimization process, i.e., achieve the same
accuracy with fewer rounds. So we report the corresponding
time and accuracy at different rounds in the figure. For
FedPAGE, we adjust the minimum retention ratio γmin, the
maximum pruning rate ρmax, and the pruned interval PI to
achieve different speedups. A larger γmin, smaller ρmax and
larger PI both can bring a higher accuracy and a longer
total time. More details about the parameters balancing the
speedup and accuracy are deferred to Sec. V-F. The suffix
_S represents the use of the sparse training approach men-
tioned above. We found that sparse training has no gain
for FetchSGD in experiments, so we did not use it for
FetchSGD.

CIFAR. For CIFAR, we set a heterogeneous environment
where H ≈ 0.82 according to defined heterogeneity. The
results of VGG16 on CIFAR10 and CIFAR 100 are presented
in Fig. 7. As we can see, FedPAGE outperforms all baselines,
achieving the highest accuracy on all speedup ratios.

For CIFAR10 (Fig. 7a), all methods can achieve accu-
racy improvement compared to FedAVG at lower speedups.
Although FedGen achieves the highest accuracy, it consumes
more time compared to FedAVG, i.e., the speedup ratio is less
than 1. The high accuracy may be related to the knowledge
distillation within FedGen. The leftmost point in the FedPAGE
line shows the result of performing sparse training but no prun-
ing. After moderate pruning, the accuracy of FedPAGE has
some improvement compared to the accuracy without pruning.
The improvement probably has to do with the fact that the
pruned parameters are treated as zero in the aggregation, and
most of them are optimized toward zero as well. So pruning
accelerates the optimization of most of the pruned parameters
which is similar to the conclusion of [46]. As the speedup
ratio increases, the accuracies of baselines start to drop sig-
nificantly. The speedup ratio of FetchSGD is constrained by
its inability to decrease the training time, which dominates the
total time, despite its reduction of the transmission time. For
FedRC and FedGen, their accuracies drop by 12% and 20%,
respectively, compared to their accuracies at the minimum
speedup ratio. FedPAGE can do about 6x speedup with a
slight drop in accuracy compared with the minimum speedup
ratio.

As we can see from Fig. 7b, the accuracies of the baselines
do not improve significantly compared to FedAVG, and the
speedups they can achieve while maintaining accuracy are
pretty low. For FedRC and FedGen, their accuracies drop by
14% and 8%, respectively, compared to their accuracies at
the minimum speedup ratio. This is related to the increase
in the difficulty of the task, i.e., from a 10-way classification
task to a 100-way classification task. In comparison, FedPAGE
still maintains a better performance. FedPAGE achieves the
highest accuracy and the accuracy drops by only about 1% at
a speedup ratio of about 5.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2023 at 02:57:48 UTC from IEEE Xplore.  Restrictions apply. 



10 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 8. Comparison of update time composition in a single round. The four
bars represent four workers with heterogeneous abilities.

Tiny-ImageNet. For Tiny-ImageNet, we set a heteroge-
neous environment where H ≈ 0.58. The results of ResNet50
on Tiny-ImageNet are presented in Fig. 7c. As the task’s
difficulty increased again (from a 100-way classification task
to a 200-way classification task), FedPAGE still shows high
overall performance, exhibiting its robustness. FedRC and
FedGen still have a significant drop in accuracy when the
speedup ratio increases, -13% and -8%, respectively. The
accuracy of FetchSGD is low, and we infer that the Non-IID
ImageNet task is too difficult for it. FedPAGE has a drop in
accuracy, e.g., -3% with 3.6x, -6% with 4.2x.

MNLI. Since there are only three data classes in the
MNLI dataset, we set the number of workers W =3 in the
experiment, with one worker running on CPU and the rest
on GPU. We set a heterogeneous environment where H ≈
0.8. Since the training is performed on a pre-trained model,
all methods quickly achieve high accuracy, so we report the
results for different rounds of a single experiment. As we
can see from Fig. 7d, all methods achieve good performance.
However, the accuracy drop is more notable compared with the
previous experiments. We consider that the reason is related to
the structure of the pre-trained BERT model. We will conduct
further research on the pruning and aggregation of the BERT
model.

Internal comparison. We show the update time com-
position of FedAVG, FetchSGD and FedPAGE in Fig. 8.
The worker’s update time per round includes both model
transmission time and training time. The four bars represent
four workers with heterogeneous abilities which is illustrated
by that the bars of their transmission time and training time
are different. The gray bar actually represents the time of each
round, and its height is determined by the slowest worker (the
straggler), i.e., the worker with the highest bar. In Fig. 8, the
transmission times of FetchSGD are significantly decreased for
all four workers, but the training times remain unchanged com-
pared with FedAVG. Because FetchSGD and similar methods
aiming to reduce the transmission overhead can only reduce
the transmission time, not the training time. The speedup that
can be achieved is bounded when the worker’s training time
occupies a certain percentage in the initial update time. As we
can see, the speedup ratio of FetchSGD is only about 1.3.
We also observe that the transmission time reduction ratio is
the same for all workers. This indicates that FetchSGD ignores
the heterogeneous abilities of workers. In contrast, FedPAGE
provides different size networks to each worker by network
pruning, which reduces both transmission time and training
time differently. Meanwhile, the update time of all workers
is converging to the fastest worker. As shown in Fig. 8, the
second worker on the right of FedPAGE has converged to the
fastest worker (the leftmost worker).

TABLE III
COMPARISON WITH GLOBAL EFFICIENCY IMPROVEMENT

BASELINES (CIFAR10 AND CIFAR100)

C. Comparison With Global Solutions
Global solutions focus on the heterogeneous environments,

and try to mitigate the straggler issue from synchronization
policy. FedAsync_S [57] is an asynchronous FedAVG using
the sparse training approach, where the aggregation weights
for the local and global models are set in a polynomial
way, and the hyperparameter a is set to 0.5. The aggregation
coefficient in SSP [42] is set to 1/W . The threshold s in
SSP is set to 2, 4, and 8, respectively, and we chose the
best result as the result of SSP. For FedAsync and SSP, each
worker runs T rounds, resulting in W ∗ T aggregations, and
we report the best accuracy of W ∗ T aggregations and the
corresponding finished time for that round. We put ten workers
all on the GPU, and set the bandwidth of workers differently
to achieve needed heterogeneity (see detailed heterogeneity
setting in Appendix C, see the Supplementary Material. The
heterogeneity H ≈ 0.32.

The results of VGG16 on CIFAR10 and CIFAR 100 are
presented in Tab. III. Two asynchronous baselines, FedAsync
and SSP have a shorter overall time but lower accuracy
compared with FedAVG_S. The lower accuracy of FedAsync
and SSP is caused by the gradient staleness issue, which is
common in asynchronous ways. The staleness issue is that the
model trained at the slowest worker is many rounds behind
the latest global model, and the updates obtained from the
slowest worker may damage the latest global model or even
lead to the dilemma of non-convergence [63]. As we can see,
the impact of gradient staleness increases gradually with the
difficulty of the task (from CIFAR10 to CIFAR100), the degree
of data Non-IID (from IID to Non-IID). We note that the
overall time of SSP in some cases also increases, which is
because the server needs to do more aggregations, i.e., W ∗T
aggregations. If the server is busy, the worker must wait longer
for the new global model after committing the updated model.
In contrast, FedPAGE has higher accuracy and shorter overall
time compared with all baselines. FedPAGE still adopts the
synchronous way, and thus does not have the gradient staleness
issue. The reason for accuracy improvement has been analyzed
in Sec. V-C. Meanwhile, FedPAGE shortens the overall time
by making workers train adaptive models.

D. Comparison With Sub-Model Solutions
Sub-model solutions introduce sub-models of different

sizes. Since these works all assume that the worker capabilities
are known, for a fair comparison, we set the pruning rate
per worker per round before the experiment (see detailed
heterogeneity setting in Appendix C, see the Supplementary
Material. Thus, each approach assigns sub-model of the same

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2023 at 02:57:48 UTC from IEEE Xplore.  Restrictions apply. 



ZHOU et al.: FedPAGE: PRUNING ADAPTIVELY TOWARD GLOBAL EFFICIENCY 11

TABLE IV
COMPARISON WITH SUB-MODEL SOLUTIONS (CIFAR100). THE

PRUNING SCHEME CIG_X USED IN FedPAGE IS CIG_BNscalor HERE.
sim IS THE SUB-MODEL SIMILARITY OF TWO WORKERS WITH

THE SAME PRUNING RATE (E.G., WORKER 4 AND WORKER 6 IN
THE FIGURE OF APPENDIX C, SEE THE SUPPLEMENTARY

MATERIAL) AS DEFINED IN EQ. (12)

size to a certain worker per round, and the difference between
baselines lies in how the sub-model is obtained. We can
assume that all approaches have the same update time per
round, so we only compare the accuracy.

For Taylor, FPGM, HRank, HeteroFL and Helios, workers
obtain their sub-models individually according to the pruning
importance defined by themselves. Other settings are the same
as FedPAGE. Note that Taylor, FPGM, and HRank are just the
stand-alone works of network pruning, and they are applied
directly into our framework for comparison. In addition,
for Helios, we followed its training approach, i.e., workers
reassemble units from the global model to construct their
sub-models individually at each round. In Helios, 95% remain-
ing units are selected randomly. For SplitMix, the size of the
atomic models is x0.125, i.e., the model’s units per layer are
12.5% of those in the base model. We decide the number
of atomic models based on the model retention rate. For
example, when the model retention ratio of a worker is 0.26,
we randomly select two of the eight atomic models and send
them to the worker for training. Meanwhile, we define the
similarity of two sub-models as in Eq. (12) to help understand
the results.

Definition 1: Given sub-model It
w of worker w’ at round t,

the similarity of two workers’ (w1, w2) sub-models is:

sim =
1
N

∑
n=1,2,...N

|It
w1[n] ∩ It

w2[n]|
|It

w1[n] ∪ It
w2[n]|

(12)

where It
w[n] is the units set of nth layer. N is the number of

layers. |It
w1[n] ∪ It

w2[n]| gets the size of the set.
We show the results on the CIFAR100 dataset in Tab. IV.

FedPAGE achieves the highest accuracy in both the IID and
Non-IID cases. SplitMix shows average performance in IID
case, but performs well in Non-IID case. This is related to the
fact that the atomic models in it can access all data distribu-
tions. And we note that there is a strong correlation between
accuracy and sub-model structural similarity. Both HeteroFL
and FedPAGE guarantee the identical and constant, i.e., have
the maximum similarity. But FedPAGE has the advantage that
the pruning order takes into account the unit importance. The
remaining sub-model similarity of FPGM is slightly higher
than that of Taylor, and its accuracy is also slightly higher
than that of Taylor. The similarity of HRank is relatively
low compared to the above methods, and its accuracy is also
relatively low. Helios randomly selects a large percentage of

units each round, so its remaining sub-models have the lowest
similarity. Correspondingly, Helios has the lowest accuracy.
Therefore, this again demonstrates that structural similarity
between sub-models is the key to distributed pruning, and
identical and constant ensure maximum similarity between
sub-models.

E. Evaluation Under Extensive Settings
In this section, we evaluate the performance of FedPAGE

under extensive settings. We extend the number of workers to
100 and introduce two new realistic data heterogeneity settings
for evaluation, i.e., dirichlet distribution partition scheme and
cross domains heterogeneity.

Dirichlet distribution partition scheme. We follow the
Non-IID partition as in [64], [65], [66]. For each class c, pw,c

proportion of the instances is allocated to the worker w, where
pw,c ∼ Dir(s). When s approaches infinity, each class is more
evenly distributed on each worker. Conversely, as s approaches
zero, the distribution gets more skewed. We set s = 0.1 and
s = 0.8 in experiments. We visualize two data heterogeneity
(Non-IID) settings in Appendix B, see the Supplementary
Material.

Cross domains heterogeneity. We introduce another data
heterogeneity here, i.e., the datasets are collected from differ-
ent domains. We adopt a subset of Digits dataset, a benchmark
for domain adaption [67] as in [7]. Digits also serves as
a commonly used benchmark for FL [7], [39], [68]. The
dataset is from five domains: MNIST [69] (handwritten dig-
its), SVHN [70] (cropped from pictures of house number
plates), USPS [71] (scanned from envelopes), SynthDigits [72]
(generated from Windows fonts), MNIST-M [72] (difference-
blended digits over non-uniform background). Each domain
has 7438 training images. Similar to the partition in [7],
each domain of Digits is split into 20 workers, and therefore
100 workers in total. In this way, each worker has samples for
only one domain.

We set the number of workers W = 100, and the sparsifi-
cation strength is set to 0.9. The other settings are the same as
in Tab. II. The baselines here are the sub-model solutions that
are closer to our framework. Due to the poor performance of
HRank and Helios, we do not choose them as a baseline here.
The heterogeneity setting is similar to Sec. V-D (see detailed
heterogeneity setting in Appendix C, see the Supplementary
Material. In addition, we also introduce the standard FedAVG
for comparison. Note that the models in FedAVG are not
pruned.

Non-IID settings. We set local epoch E = 5, update rounds
T = 600 for s = 80, and T = 300 for other settings.
As presented in the Tab. V, FedPAGE achieves the best overall
performance. FedPAGE achieves the highest accuracy under
moderate heterogeneity, and has a relatively large gap (1.15%
in s = 0 and 1.57% in s = 0.8) with the second-place
approach. When the heterogeneity increases, FedPAGE has a
small gap (0.18% in s = 0.1) with the second-place approach
SplitMix. This may be related to the fact that the atomic
models in SplitMix can access all data distributions. Thus, the
benefit is more prominent when the data distribution between
workers is more different. However, when the heterogeneity
continues to increase (s = 80), the accuracy gap between
SplitMix and FedPAGE widens again. This indicates FedPAGE
is also well suited to highly heterogeneous environments.
FedAVG performs the worst in all settings, especially when

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2023 at 02:57:48 UTC from IEEE Xplore.  Restrictions apply. 



12 IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE V
COMPARISON WITH BASELINES ON MULTIPLE NON-IID SETTINGS

WITH 100 WORKERS (CIFAR100). THE PRUNING SCHEME CIG_X
USED IN FedPAGE IS CIG_BNscalor HERE

Fig. 9. Accuracy of different rounds on the digits dataset.

the degree of worker heterogeneity increases. For example,
when s = 80, its accuracy is 10% lower than that of
FedPAGE. We speculate that this may be related to the ability
of sub-models to learn more refined knowledge.

Cross domains settings. We set local epoch E = 2, update
rounds T = 200. As illustrated in Fig. 9, emFedPAGE, Taylor,
FPGM, and HeteroFL have similar performance, and have
higher accuracy compared with FedAVG and SplitMix. This
indicates that FedPAGE is also applicable to cross domains
data heterogeneity. FedAVG converges the fastest, which is
consistent with our theoretical analysis in Sec. IV-C. SplitMix
converges the slowest, and eventually reaches the same accu-
racy as FedAVG. Since SplitMix does not prune model, but
changes the number of atomic models, the accuracy curve is
relatively smooth, and there is no sudden drop in accuracy like
FedPAGE.

F. Deep Dive of FedPAGE
In this section, we show more details about the Fed-

PAGE, including the performance of the pruning rate learning
approach, the impact of pruning position, model aggregating
approach, speedup adjusting parameters and compatibility with
local solutions (see heterogeneity settings in Appendix C, see
the Supplementary Material).

Pruning rate learning approach. We selected six workers
to show their average update time during the first four pruning
intervals, as shown in Fig. 10a. As training proceeds, the
pruning rate learning approach assigns an adaptive pruning rate
to each worker, and the update time of all workers gradually
tends to the fastest worker. Meanwhile, the heterogeneity of
update time between workers rapidly decreases. There are no
more stragglers in the system by internal adjusting, and the
system’s efficiency increases dramatically. We show multiple

Fig. 10. Pruning rate learning approach performance.

Fig. 11. Comparison of different pruning positions and model aggregation
methods.

cases of initial heterogeneity in Fig. 10b. In FedPAGE,
the heterogeneity of update time between workers rapidly
decreases and stabilizes quickly regardless of the initial degree
of heterogeneity. This reflects that our pruning rate learning
approach can dynamically give an adaptive pruning rate to
make the worker update time converge to the minimum update
time.

Impact of pruning position and model aggregating. For
a fair comparison, we set the pruning rate per worker per
round before the experiment. We report the performance under
different pruning positions and model aggregation approaches
in Fig. 11. The smaller the β, the accuracy drop is smaller
after each pruning. When β = 1.0, since no local fine-tune is
done after local pruning, accuracy dropped sharply at first but
recovered quickly later. Overall, the pruning position has little
effect on accuracy. Under the IID setting (Fig. 11a), when
By-unit is used for model aggregation, the model does not
have a drop in accuracy after pruning. The accuracy continues
to rise after pruning but soon stops rising. However, accuracy
no longer rises after pruning and stays at a low value under
the Non-IID setting (Fig. 11b). In our opinion, By-unit treats
the pruned weights (those weights are pruned due to extremely
low values) as the mean of the unpruned weights of the other
local models at the corresponding location. Thus the global
model no longer reflects the information from local models.

Impact of adjusting parameters. Here, we analyze the
impact of the main adjusting parameters inside FedPAGE on
performance, i.e., maximum pruning rate ρmax and minimum
retention ratio γmin. Fig. 12 reports the performance of
accuracy and speedup on the CIFAR100 dataset under different
adjusting parameters, taking FedAVG_S as a comparison.

For maximum pruning rate ρmax (Fig. 12a), the model
achieves better accuracy when ρmax is smaller, but more
rounds are required for the pruning, causing the overall time to
rise (e.g., -0.4% with 3.62x when ρmax = 0.2 vs. -3.51% with
5.88x when ρmax = 0.6, Non-IID). For minimum retention
ratio γmin (Fig. 12b), the model achieves better accuracy when
γmin is bigger, but more parameters are left behind resulting

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2023 at 02:57:48 UTC from IEEE Xplore.  Restrictions apply. 



ZHOU et al.: FedPAGE: PRUNING ADAPTIVELY TOWARD GLOBAL EFFICIENCY 13

Fig. 12. Performance of FedPAGE on CIFAR100 comparing to FedAVG_S
under different adjusting parameters (H=0.87).

TABLE VI
FEDPAGE+DGC (CIFAR10, NON-IID, s=80). SPARSITY

REPRESENTS THE RATIO OF UNCOMMITTED WEIGHTS

in higher overall time (e.g., -4.9% with 6.01x when γmin =
0.1 vs. 0.35% with 2.32x when γmin = 0.5, IID). As we can
see from the results above, the adjusting parameters allow us to
do a trade-off between accuracy and speedup. When accuracy
is more of a concern, a low maximum pruning rate as well as
a high minimum retention ratio can be set, and vice versa.

Compatibility with Local Solutions. FedPAGE is orthog-
onal to local solutions, e.g., we can introduce the gradient
quantization or the optimization way of FedGen to achieve
further speedup.

We show an example of the combination with DGC [36]
here. DGC reduces the transmission overhead by committing
only some of the essential gradients, and the uncommitted
gradients are accumulated locally until a certain threshold
is reached. We use DGC to compress weights after pruning
and report the FedPAGE+DGC results in Tab. VI. When
not combined with DGC, i.e., sparsity is 0.0, the transmis-
sion amount is already 52.2% of parameters transmitted in
FedAVG. When sparsity is 0.9, the accuracy is highest and
the transmission amount is further reduced to 12.5%. And we
note that when only 2.13% parameters are transmitted, the
accuracy is also acceptable. In conclusion, FedPAGE+DGC
can further reduce the amount of transmission and bring an
accuracy improvement.

VI. DISCUSSION

Addressable Market Analysis. FedPAGE can improve the
training speed of federated learning while maintaining accu-
racy, which is applicable to most federated learning scenarios
and extremely beneficial for some scenarios. For example,
in the situation where data is constantly generated, such as
industrial internet of things scenario, FedPAGE enables fast
mining of the value of the latest data in a timely manner.
In the situation where workers can only participate in training
for a short time, such as phones are allowed to participate
in training only when idle, FedPAGE can efficiently utilize
phones’ data.

Limitations. (i) When the gap between worker capabilities
is too large, the speedup ratio that FedPAGE can achieve is

limited. Because in order to ensure accuracy, the set minimum
model retention ratio will limit the model size of the slow
worker, and the update time of the slow worker is difficult to
converge to that of the fastest worker, i.e., its update time
may still be relatively long. However, compared with the
FedAVG, our method can still guarantee a certain speedup
ratio. (ii) When the worker capabilities fluctuate greatly, our
pruning rate learning algorithm cannot model the worker
capabilities well. For example, when multiple other tasks
occupy the CPU and memory of the worker at the same time,
the training capability of worker will fluctuate greatly. When
other tasks that occupy bandwidth or the worker is in motion,
the transmission capability of the worker will fluctuate greatly.
However, the collaborating parties usually establish a relatively
stable collaboration environment, e.g., Google lets phone join
the collaboration when the phone is idle and connected to
WIFI [48]. When the worker capabilities change periodically,
we can extend our method to achieve local model expansion
or contraction.

VII. CONCLUSION

In this paper, we propose a novel and efficient federated
learning framework named FedPAGE, which generates an
adaptive sparse sub-model dynamically from the global base
model for each worker based on its capability. By equipping
capability-different workers with adaptive size sub-models,
all workers commit model updates near-synchronously, thus
avoiding the straggler issue. We discuss in detail model
training, pruning, and aggregation in the framework and the
design of the dynamic pruning rate learning approach. In addi-
tion, we give the convergence proof for FedPAGE. Extensive
experiments on various models and datasets demonstrate the
efficiency of FedPAGE. In the future, we will do more the-
oretical research on distributed adaptive pruning and explore
more efficient and precise pruning approaches adapting to the
dynamic heterogeneous environment.

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. AISTATS, 2017, pp. 1273–1282.

[2] L. G. Valiant, “A bridging model for parallel computation,” Commun.
ACM, vol. 33, no. 8, pp. 103–111, Aug. 1990.

[3] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica,
“Improving mapreduce performance in heterogeneous environments,” in
Proc. USENIX OSDI, 2008, pp. 1–7.

[4] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effective
straggler mitigation: Attack of the clones,” in Proc. USENIX NSDI, 2013,
pp. 185–198.

[5] Z. Xu, F. Yu, J. Xiong, and X. Chen, “Helios: Heterogeneity-aware
federated learning with dynamically balanced collaboration,” in Proc.
58th ACM/IEEE Design Autom. Conf. (DAC), Dec. 2021, pp. 997–1002.

[6] E. Diao, J. Ding, and V. Tarokh, “HeteroFL: Computation and commu-
nication efficient federated learning for heterogeneous clients,” in Proc.
ICLR, 2021, pp. 1–24.

[7] J. Hong, H. Wang, Z. Wang, and J. Zhou, “Efficient split-mix federated
learning for on-demand and in-situ customization,” in Proc. ICLR, 2022,
pp. 1–18.

[8] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, “Network trimming: A data-
driven neuron pruning approach towards efficient deep architectures,”
2016, arXiv:1607.03250.

[9] Z. You, K. Yan, J. Ye, M. Ma, and P. Wang, “Gate decorator: Global filter
pruning method for accelerating deep convolutional neural networks,” in
Proc. NIPS, 2019, pp. 2133–2144.

[10] C. T. Tan and M. Motani, “DropNet: Reducing neural network com-
plexity via iterative pruning,” in Proc. ICML, 2020, pp. 9356–9366.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2023 at 02:57:48 UTC from IEEE Xplore.  Restrictions apply. 



14 IEEE/ACM TRANSACTIONS ON NETWORKING

[11] Z. Zhang et al., “SecCL: Securing collaborative learning systems via
trusted bulletin boards,” IEEE Commun. Mag., vol. 58, no. 1, pp. 47–53,
Jan. 2020.

[12] Q. Zhang, B. Gu, C. Deng, and H. Huang, “Secure bilevel asynchronous
vertical federated learning with backward updating,” in Proc. AAAI,
2021, pp. 10896–10904.

[13] S. Yao et al., “Blockchain-empowered collaborative task offloading for
cloud-edge-device computing,” IEEE J. Sel. Areas Commun., vol. 40,
no. 12, pp. 3485–3500, Dec. 2022.

[14] K. Bonawitz et al., “Practical secure aggregation for privacy-preserving
machine learning,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., Oct. 2017, pp. 1175–1191.

[15] B. Zhao, P. Sun, T. Wang, and K. Jiang, “FedInv: Byzantine-robust
federated learning by inversing local model updates,” in Proc. AAAI,
2022, pp. 9171–9179.

[16] D. Rothchild et al., “FetchSGD: Communication-efficient federated
learning with sketching,” in Proc. ACM ICML, 2020, pp. 8253–8265.

[17] Z. Zhu, J. Hong, and J. Zhou, “Data-free knowledge distillation for het-
erogeneous federated learning,” in Proc. ICML, 2021, pp. 12878–12889.

[18] H. Cai, T. Chen, W. Zhang, Y. Yu, and J. Wang, “Efficient architecture
search by network transformation,” in Proc. AAAI, 2018, pp. 1–8.

[19] X. Chu, X. Wang, B. Zhang, S. Lu, X. Wei, and J. Yan, “DARTS-:
Robustly stepping out of performance collapse without indicators,” in
Proc. ICLR, 2021, pp. 1–22.

[20] J. Park et al., “Faster CNNs with direct sparse convolutions and guided
pruning,” in Proc. ICLR, 2017, pp. 1–12.

[21] S. Han et al., “EIE: Efficient inference engine on compressed deep
neural network,” ACM SIGARCH Comput. Archit. News, vol. 44, no. 3,
pp. 243–254, 2016.

[22] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient ConvNets,” in Proc. ICLR, 2017, pp. 1–13.

[23] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning
efficient convolutional networks through network slimming,” in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2755–2763.

[24] Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang, “Filter pruning via geometric
median for deep convolutional neural networks acceleration,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 4335–4344.

[25] M. Lin et al., “HRank: Filter pruning using high-rank feature map,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2020, pp. 1526–1535.

[26] S. Lin et al., “Towards optimal structured CNN pruning via generative
adversarial learning,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2019, pp. 2785–2794.

[27] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights
and connections for efficient neural network,” in Proc. NIPS, 2015,
pp. 1135–1143.

[28] T.-W. Chin, R. Ding, C. Zhang, and D. Marculescu, “Towards
efficient model compression via learned global ranking,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 1515–1525.

[29] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning
convolutional neural networks for resource efficient inference,” in Proc.
ICLR, 2017, pp. 1–17.

[30] A. Kusupati et al., “Soft threshold weight reparameterization for learn-
able sparsity,” in Proc. ACM ICML, 2020, pp. 5544–5555.

[31] C. T. Dinh et al., “Federated learning over wireless networks: Con-
vergence analysis and resource allocation,” IEEE/ACM Trans. Netw.,
vol. 29, no. 1, pp. 398–409, Feb. 2021.

[32] J. Lu, H. Liu, R. Jia, J. Wang, L. Sun, and S. Wan, “Towards personalized
federated learning via group collaboration in IIoT,” IEEE Trans. Ind.
Informat., vol. 19, no. 8, pp. 8923–8932, Aug. 2023.

[33] W. Wen et al., “TernGrad: Ternary gradients to reduce communication
in distributed deep learning,” in Proc. NIPS, 2017, pp. 1508–1518.

[34] K. Hsieh et al., “GAIA: Geo-distributed machine learning approaching
LAN speeds,” in Proc. USENIX NDSI), 2017, pp. 629–647.

[35] J. Konecny, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” 2016, arXiv:1610.05492.

[36] Y. Lin, S. Han, H. Mao, Y. Wang, and B. Dally, “Deep gradient
compression: Reducing the communication bandwidth for distributed
training,” in Proc. ICLR, 2018, pp. 1–14.

[37] S. Caldas, J. Konecny, H. B. McMahan, and A. Talwalkar, “Expanding
the reach of federated learning by reducing client resource require-
ments,” 2018, arXiv:1812.07210.

[38] S. Wang et al., “Adaptive federated learning in resource constrained
edge computing systems,” IEEE J. Sel. Areas Commun., vol. 37, no. 6,
pp. 1205–1221, Jun. 2019.

[39] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” in Proc. Mach.
Learn. Syst., 2020, pp. 429–450.

[40] S. Lym, E. Choukse, S. Zangeneh, W. Wen, S. Sanghavi, and M. Erez,
“PruneTrain: Fast neural network training by dynamic sparse model
reconfiguration,” in Proc. Int. Conf. High Perform. Comput., Netw.,
Storage Anal., Nov. 2019, pp. 1–13.

[41] W. Dai, A. Kumar, J. Wei, Q. Ho, G. A. Gibson, and E. P. Xing,
“High-performance distributed ML at scale through parameter server
consistency models,” in Proc. AAAI, 2015, pp. 1–9.

[42] Q. Ho et al., “More effective distributed ML via a stale synchronous
parallel parameter server,” in Proc. NIPS, 2013, pp. 1223–1231.

[43] R. Zhu, S. Yang, A. Pfadler, Z. Qian, and J. Zhou, “Learning efficient
parameter server synchronization policies for distributed SGD,” in Proc.
ICLR, 2019, pp. 1–10.

[44] Y. Jiang et al., “Model pruning enables efficient federated learn-
ing on edge devices,” IEEE Trans. Neural Netw. Learn. Syst., early
access, Apr. 25, 2022, doi: 10.1109/TNNLS.2022.3166101.

[45] N. Bouacida, J. Hou, H. Zang, and X. Liu, “Adaptive federated dropout:
Improving communication efficiency and generalization for federated
learning,” in Proc. IEEE INFOCOM Conf. Comput. Commun. Workshops
(INFOCOM WKSHPS), May 2021, pp. 1–6.

[46] H. Zhou, J. Lan, R. Liu, and J. Yosinski, “Deconstructing lottery tickets:
Zeros, signs, and the supermask,” in Proc. NIPS, 2019, pp. 3597–3607.

[47] H. Wang et al., “HAT: Hardware-aware transformers for efficient natural
language processing,” in Proc. 58th Annu. Meeting Assoc. Comput.
Linguistics, 2020, pp. 1–14.

[48] A. Hard et al., “Federated learning for mobile keyboard prediction,”
2018, arXiv:1811.03604.

[49] T. Sauer, Numerical Analysis. Reading, MA, USA: Addison-Wesley,
2006.

[50] T. Sun et al., “Learning sparse sharing architectures for multiple tasks,”
in Proc. AAAI, 2020, pp. 8936–8943.

[51] H. Yu, S. Yang, and S. Zhu, “Parallel restarted SGD with faster con-
vergence and less communication: Demystifying why model averaging
works for deep learning,” in Proc. AAAI, 2019, pp. 5693–5700.

[52] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of FedAvg on non-IID data,” in Proc. ICLR, 2020, pp. 1–26.

[53] J. Perazzone, S. Wang, M. Ji, and K. S. Chan, “Communication-efficient
device scheduling for federated learning using stochastic optimiza-
tion,” in Proc. IEEE INFOCOM Conf. Comput. Commun., May 2022,
pp. 1449–1458.

[54] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Tech. Rep., 2009.

[55] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[56] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” 2018,
arXiv:1810.04805.

[57] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated optimization,”
2019, arXiv:1903.03934.

[58] J. Ye, X. Lu, Z. Lin, and J. Z. Wang, “Rethinking the smaller-norm-
less-informative assumption in channel pruning of convolution layers,”
in Proc. ICLR, 2018, pp. 1–11.

[59] P. Michel, O. Levy, and G. Neubig, “Are sixteen heads really better than
one?” in Proc. NIPS, 2019, pp. 14037–14047.

[60] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Robust and
communication-efficient federated learning from non-i.I.d. data,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 31, no. 9, pp. 3400–3413,
Sep. 2020.

[61] S. P. Karimireddy, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich,
and A. T. Suresh, “SCAFFOLD: Stochastic controlled averaging for
federated learning,” in Proc. ACM ICML, 2020, pp. 5132–5143.

[62] Z. Shen, J. Cervino, H. Hassani, and A. Ribeiro, “An agnostic approach
to federated learning with class imbalance,” in Proc. ICLR, 2022,
pp. 1–12.

[63] W. Dai, Y. Zhou, N. Dong, H. Zhang, and E. Xing, “Toward under-
standing the impact of staleness in distributed machine learning,” in
Proc. ICLR, 2019, pp. 1–19.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2023 at 02:57:48 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TNNLS.2022.3166101


ZHOU et al.: FedPAGE: PRUNING ADAPTIVELY TOWARD GLOBAL EFFICIENCY 15

[64] M. Yurochkin, M. Agarwal, S. Ghosh, K. Greenewald, N. Hoang,
and Y. Khazaeni, “Bayesian nonparametric federated learning of neural
networks,” in Proc. ACM ICML, 2019, pp. 7252–7261.

[65] D. A. E. Acar, Y. Zhao, R. Matas, M. Mattina, P. Whatmough, and
V. Saligrama, “Federated learning based on dynamic regularization,” in
Proc. ICLR, 2021, pp. 1–43.

[66] Y. Guo, Y. Sun, R. Hu, and Y. Gong, “Hybrid local SGD for federated
learning with heterogeneous communications,” in Proc. ICLR, 2022,
pp. 1–42.

[67] X. Peng, Z. Huang, Y. Zhu, and K. Saenko, “Federated adversarial
domain adaptation,” in Proc. ICLR, 2019, pp. 1–19.

[68] S. Caldas et al., “LEAF: A benchmark for federated settings,” 2018,
arXiv:1812.01097.

[69] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[70] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,” in
Proc. NIPS Workshop Deep Learn. Unsupervised Feature Learn., 2011,
pp. 1–9.

[71] J. J. Hull, “A database for handwritten text recognition research,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 16, no. 5, pp. 550–554,
May 1994.

[72] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by
backpropagation,” in Proc. ICML, 2015, pp. 1180–1189.

Guangmeng Zhou received the B.E. degree from
the School of Computer Science and Technology,
Tianjin University, Tianjin, China, in 2019. He is
currently pursuing the Ph.D. degree with the School
of Computer Science and Technology, Tsinghua
University, Beijing, China. His main research inter-
ests include collaborative learning, network security,
and programmable switch.

Qi Li (Senior Member, IEEE) received the Ph.D.
degree from Tsinghua University. He is currently an
Associate Professor with the Institute for Network
Sciences and Cyberspace, Tsinghua University. His
research interests include internet and cloud security,
mobile security, and big data security. He is an
Editorial Board Member of IEEE TRANSACTIONS
ON DEPENDABLE AND SECURITY COMPUTING and
ACM DTRAP.

Yang Liu received the B.E. degree from the
School of Electronic Engineering, Beijing Uni-
versity of Posts and Telecommunications, Beijing,
China, in 2019, and the master’s degree from
the School of Computer Science and Technology,
Tsinghua University, Beijing, in 2022. He is cur-
rently with Huawei Technologies Company Ltd.
His main research interests include collaborative
learning.

Yi Zhao (Member, IEEE) received the B.Eng.
degree from the School of Software and Micro-
electronics, Northwestern Polytechnical University,
Xi’an, China, in 2016, and the Ph.D. degree from
the Department of Computer Science and Technol-
ogy, Tsinghua University, Beijing, China, in 2021.
He is currently an Assistant Researcher and a
Post-Doctoral Fellow with the Department of Com-
puter Science and Technology, Tsinghua University.
His research interests include next-generation inter-
net, network security, machine learning, and game

theory. He is a member of ACM. He was a recipient of the Shuimu Tsinghua
Scholar Program.

Qi Tan received the B.Eng. degree in 2012 and the
master’s degree from Tsinghua University, Beijing,
China, in 2019, where he is currently pursuing the
Ph.D. degree with the Department of Computer Sci-
ence and Technology. His research interests include
machine learning, network security, and data privacy.

Su Yao received the Ph.D. degree from the National
Engineering Laboratory for Next Generation Inter-
net, Beijing Jiaotong University. He is currently with
the Beijing National Research Center for Informa-
tion Science and Technology (BNRist), Tsinghua
University. His research interests include future net-
work architecture and the IoT security.

Ke Xu (Senior Member, IEEE) received the Ph.D.
degree from Tsinghua University, Beijing, China.
He is currently a Full Professor with the Depart-
ment of Computer Science, Tsinghua University.
He has published more than 200 technical articles
and holds 11 U.S. patents in the research areas
of next-generation internet, blockchain systems, the
Internet of Things, and network security. He serves
as the Steering Committee Chair for IEEE/ACM
IWQoS. He has guest-edited several special issues
for IEEE and Springer journals. He is an Editor of

IEEE INTERNET OF THINGS JOURNAL.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Tsinghua University. Downloaded on December 14,2023 at 02:57:48 UTC from IEEE Xplore.  Restrictions apply. 


