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Abstract—Traffic data contains deep domain-specific knowl-
edge, making labeling challenging, and the lack of labeled
data adversely impacts the accuracy of learning-based traf-
fic analysis. The pre-training technology is widely adopted
in the fields of vision and natural language to address the
problem of limited labeled data. However, the exploration in
the domain of traffic analysis remains insufficient. This paper
proposes an efficient pre-training model, TrafficFormer, for
traffic data. In the pre-training stage, TrafficFormer intro-
duces a fine-grained multi-classification task to enhance the
representation capabilities of traffic data; in the fine-tuning
stage, TrafficFormer proposes a traffic data augmentation
method utilizing the random initialization feature of fields,
which helps the traffic model focus on key information. We
evaluate TrafficFormer using both traffic classification tasks
and protocol understanding tasks. The experimental results
show that TrafficFormer achieves superior performance on
six traffic classification datasets, with improvements of up to
10% in the F1 score and demonstrates significantly superior
protocol understanding capabilities compared to existing traffic
pre-training models.

1. Introduction

The network traffic data, generated by the interactions
of network entities, not only encapsulates the interaction
logic of the corresponding protocols but also incorporates
the behavioral information of network entities. For example,
traffic characteristics are different depending on the appli-
cations being used or the web pages being browsed. The
analysis and classification of network traffic are crucial for
security and management. For example, identifying malware
applications enables hosts to alert users and prevent infor-
mation leakage or property loss; categorizing different types
of application traffic allows service providers to differentiate
services and implement dedicated routing policies or queu-
ing mechanisms to enhance Quality of Service (QoS).

Traditional machine learning (ML) methods for traffic
analysis, such as FlowPrint [1f], CUMUL [2], and Appscan-
ner [3]], rely heavily on expert knowledge to select specified
features (e.g., packet interval, packet size, protocol, etc.).
These features, after feature engineering, are fed into the
machine learning model. With the development of deep
learning (DL), researchers have begun feeding raw traffic
data directly into the DL models, such as FlowPic [4]
based on Convolutional Neural Network (CNN) models,
FS-Net [5] based on Autoencoder models, and GraphDapp

[[6] based on Graph Neural Network (GNN) models. These
approaches leverage the DL models to learn complex feature
patterns and classify network traffic. However, a significant
amount of labeled data is crucial for achieving superior
results with these methods. When labeled data is scarce,
the effectiveness and generalizability of DL-driven traffic
analysis are significantly constrained.

However, compared to the labeling of traditional data
(e.g., text, images, sounds, etc.), network traffic data labeling
is more difficult. Since text, images, and sounds are closely
related to our daily lives, resulting in minimal skill require-
ments for data labelers. In contrast, traffic data requires
the labelers to possess knowledge of network protocols and
experience in specific scenarios (for instance understand-
ing certain network attacks). Crucially, the attack-related
traffic data is often overshadowed by the large volume
of background network traffic scale, and exhibits rapidly
changing patterns. As a result, manually labeling network
traffic data is prohibitive, and large-scale and high-quality
labeled datasets are scarce.

The pre-training methodology [7]], [8], [9] is promising
in addressing the problem of limited labeled data. It has
two stages: pre-training and fine-tuning. The pre-training
stage uses unlabeled data to learn general knowledge in a
self-supervised learning manner and the fine-tuning stage
utilizes labeled data to learn task-specific knowledge in a
supervised learning fashion. For instance, large language
models [[10]] rely on pre-training to mine information from a
large amount of unlabeled data, enabling large models with
hundreds of billions of parameters to be effectively fine-
tuned to achieve superior results on many downstream tasks.
Compared to text and image data, network traffic data is
more voluminous and has more complex behavioral patterns,
making the application of pre-training techniques to traffic
analysis and identification tasks a reasonable approach.

Prior approaches have demonstrated the potential of
applying pre-training techniques for traffic data analysis.
For example, PERT [11] introduces the bigram approach to
transform the hexadecimal representation of packet contents
into words and employs the Masked Language Modeling
(MLM) for packet-level pre-training. ET-BERT [12]] consid-
ers a burst (a sequence of consecutive packets in the same
direction) as a sentence and adopts MLM and next sentence
prediction (NSP) tasks from BERT [§]] to learn traffic pat-
terns. YaTC [[13]] processes each flow as an image and adopts
the Masked Image Modeling (MIM) task. However, these
approaches have only explored the traffic representations to
accommodate existing pre-training techniques, and have not



. Traffic Pre-training Fine-tuning
Prior Works Representation Stage Stage
PERT [11] Word MLM X
ET-BERT [12] Word MLM & NSP X
YaTC ([13] Tmage MIM X
TrafficFormer Word MLM & SODF RIFA

TABLE 1: Comparison with prior approaches.

tailored to traffic data in the pre-training and fine-tuning
stages.

In this paper, we propose a pre-training model, Traf-
ficFormer! for traffic data that learns fundamental traffic
semantics from unlabeled data to improve the accuracy of
downstream tasks. As shown in Table [T} in addition to traffic
representation, we make innovative designs in both the pre-
training and fine-tuning stages of the model.

« First, the network traffic data is a form of sequential data,
similar to natural language. However, the direction and
order of its sequence units are more critical. Therefore,
TrafficFormer retains the masked modeling task during
the pre-training stage to learn the sequential relationships
of input units. Additionally, TrafficFormer proposes a
fine-grained multi-classification task, i.e., Same Origin-
Direction-Flow (SODF), which mines the direction and
order information of packets, thereby enhancing the rep-
resentation capability of traffic data (see §3.2).

e Second, the network traffic data is structured, and redun-
dant information is ubiquitous in packet headers. In the
fine-tuning stage, TrafficFormer proposes a traffic data
augmentation method, i.e., Random Initialization Field
Augmentation (RIFA), which preserves traffic semantics.
This data augmentation approach enables TrafficFormer
to quickly focus on the essential information.

In addition to the pre-training and fine-tuning of the
model, we also introduce innovations for its evaluation.
The design rationale is that traffic reflects the behavioral
information of network entities and the interaction logic
of network protocols. Unlike traditional traffic classification
tasks that solely assess a model’s ability to recognize the
behavior of entities, we evaluate the model’s comprehen-
sion of the protocol interactions by introducing multiple
novel protocol understanding tasks (e.g., packet direction
recognition, packet loss detection, out-of-order detection,
and packet prediction). This assures a comprehensive eval-
uation of the capabilities of traffic models. Experimental
results demonstrate that TrafficFormer achieves the best
performance across all traffic classification tasks, with an
improvement of up to 10% in F1 score. Additionally, in
the protocol understanding task, TrafficFormer outperforms
existing traffic pre-training models. We further conduct a
study on the key components of TrafficFormer and reveal
the impact of each on the model performance.

1. https://github.com/IDP-code/TrafficFormer

2. Background and Related Work

2.1. Pre-training Methodology

The pre-training methodology utilizes unlabeled data
and consists of two stages: pre-training and fine-tuning.
In the pre-training stage, the model learns general knowl-
edge in a self-supervised manner based on unlabeled data.
In the fine-tuning stage, it acquires specific task knowl-
edge through supervised learning using labeled data. Self-
supervised learning constructs labels for unlabeled data,
enabling the model to be trained in a supervised manner.

Common self-supervised methods include sequence
modeling and contrastive learning. Sequence modeling pre-
dicts one part of a sequence based on another part of the
sequence, while the objective in contrastive learning is to
minimize the distance between similar samples and max-
imize the distance between dissimilar samples. Sequence
modeling typically encompasses autoregressive modeling
(e.g., GPT [9] and MAE [14]), autoencoding modeling (e.g.,
BERT [8]] and BEIT [15]]), and permutation coding modeling
(e.g., XLNet [16]]). Typical pre-training works based on
contrastive learning include MoCo [17], SimCLR [18] and
SimCSE [19]].

Regarding model structure, current pre-training efforts
predominantly utilize the Transformer [20], which includes
both encoder and decoder components. Works that apply
the encoder structure include BERT [&]], XLNet [16], BEiT
[[15], SimCSE [19], etc., while works that apply the decoder
structure include GPT [9], MAE [14], etc. Works that apply
both encoder and decoder include BART [21]], etc. Since
CNN models are more suitable for image processing, early
works in the visual field like MoCo [|17] and SimCLR [18]]
were based on the ResNet [22] model. Subsequent works,
like MoCo v3 [23], also began to be built based on the
encoder structure.

In terms of model structure, TrafficFormer employs the
encoder structure of the Transformer. For self-supervision,
TrafficFormer incorporates self-supervised tasks designed
for traffic data, thoroughly exploring the composition of
data packets within the traffic and the relationships between
them.

2.2. Data Augmentation

Data augmentation increases the volume of data by
generating various copies, enhancing model performance
and mitigating overfitting on training data. Different aug-
mentation methods have been developed for specific data
types.

For image data, common techniques include cropping,
rotating, color transformation, geometric transformation, and
random erasing [24]. For text data, methods involve syn-
onym replacement, random word insertion, deletion, substi-
tution, and back-translation, which translates text into a tar-
get language and back again. Deep learning-based methods,
such as BAGAN [25] and DAGAN [26], utilize Generative



Adversarial Networks (GAN) for image data augmentation,
while SeqGAN [27] and LeakGAN [28]] use GANSs for text.

For traffic data, Vu [29]] and Oeung [30] employ Syn-
thetic Minority Oversampling Technique (SMOTE) [31] for
augmentation. Horowicz [32] transforms the traffic into
images and applies image enhancement methods for traf-
fic augmentation. Ring [33|] explores data pre-processing
strategies to generate traffic by GAN. ODDS [34] generates
behavioral distributions of bot hosts in feature space using
GANSs, improving bot detection with limited labeled data.
Ta-GAN [35] generates minority class samples in traffic
to address class imbalance. In contrast, our approach di-
rectly modifies the original data rather than altering it in
feature space. Additionally, our approach is based on do-
main knowledge and the enhanced data retains the original
semantics.

2.3. Traffic Classification

Traditional traffic classification identifies traffic based
on information such as port numbers. However, as traffic
behavior has grown more complex and various disguis-
ing techniques have emerged, the accuracy of this method
has significantly declined. Currently, traffic classification
predominantly utilizes machine learning and deep learning
approaches.

Machine learning-based methods [36]], [37]], [38], [39],
[40] rely on expert-designed statistical features of traffic,
which are fed into models for training. Commonly used
machine learning models include the Supported Vector
Machine, Naive Bayes classifier, K-Nearest Neighbor, and
Decision Tree models. The key difference among traffic
classification methods lies in feature design, closely tied
to final performance. Machine learning models are gener-
ally smaller, resulting in faster training and inference, and
the handcrafted features offer better interpretability. Deep
learning-based methods directly input the content of the raw
packets into the model, relying on the deep learning model
to learn complex patterns for classification. Commonly used
deep learning models include CNN, Long Short-Term Mem-
ory (LSTM), GNN, and Encoder models. Some studies [5]],
[41]], [42], [43], [44], [45] input key attribute information of
packets, such as packet size and inter-packet interval, while
other input raw packet bytes directly.

Several works address real-world challenges, such as
the open world problem with different distributions between
testing and training sets [1], [46], [47], efficient training and
inference [48]], [49], [S01, [S1], [52f], [S3]], and traffic mixing
[54], [55]. Our work focuses on the real-world challenge
of achieving high-precision traffic classification in scenarios
where labeled data is scarce.

3. TrafficFormer

In this section, we first outline the design goals, chal-
lenges, and solutions of TrafficFormer, followed by a pre-
sentation of the overall framework of TrafficFormer and a

detailed discussion of both the pre-training and fine-tuning
stages.

Goal. The primary design goal of TrafficFormer is to fully
exploit the information in unlabeled traffic data to learn
the fundamental semantics of traffic, thereby enhancing
performance in downstream traffic tasks.

Challenges. Traffic is generated by the communication be-
tween two parties executing network protocols. Traffic data
is a form of sequential data, similar to natural language.
Several studies in natural language [56], [57] have indicated
that misordering of words has little effect on comprehension,
whereas misordering of packets can lead to packet drops
due to violation of interaction logic. Therefore, the order of
sequence units (packets) in traffic is more critical compared
to the order of words in language. Additionally, packets
possess directional attributes, and header information often
exhibits high redundancy. The primary challenges are to
fully exploit the sequence, direction, and order relationships
of the sequence units, and to efficiently identify valuable
information for downstream traffic analysis tasks amidst the
redundant data.

Solutions. To address the aforementioned challenges, Traf-
ficFormer retains the masked modeling task from the NLP
domain in the pre-training stage to learn the sequential
relationships. And TrafficFormer designs the Same Origin-
Direction-Flow (SODF) task to mine the direction and order
information of the sequence units. In the fine-tuning stage,
TrafficFormer proposes a traffic data augmentation method,
i.e., Random Initialization Field Augmentation (RIFA), to
reduce the model’s reliance on irrelevant information and to
efficiently identify valuable data.

3.1. Framework

The overall framework of TrafficFormer is illustrated in
Figure [I| encompassing two stages: pre-training and fine-
tuning. The tasks in the pre-training stage include Masked
Burst Modeling (MBM) and the Same Origin-Direction-
Flow (SODF) multi-classification tasks. The trained model
can be adapted for various downstream tasks, such as
malware detection, website fingerprinting, and the newly
proposed protocol interaction comprehension tasks. Given
the scarcity of training data for downstream tasks, Traffic-
Former applies data augmentation during the fine-tuning
stage.

TrafficFormer adopts a structure consistent with the
BERT model. The input data is first transformed into vector
representations through an encoding layer, which consists of
three components: word semantic encoding, word position
encoding, and word segment encoding. These components
are combined to form the final vector representation of each
word. The parameters of the encoding layer are continuously
updated during model training, allowing for ongoing opti-
mization of the word encodings. Subsequently, the encoded
vector representations are fed into representation layers,
each comprising a multi-head attention mechanism and a
feedforward neural network. The attention mechanism estab-
lishes connections between each token, enabling each token
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Figure 1: The framework of TrafficFormer.

to refine its representation by combining the representations
of other tokens. The feedforward neural network facilitates
the learning of nonlinear features, further enhancing the
model’s expressive capabilities. Finally, the token vectors
are input into models tailored for different tasks. The model
computes gradients to optimize its parameters based on the
losses received from these tasks. The number of parameters
in TrafficFormer and BERT-base [{8] are on the same order
of magnitude.

3.2. The Pre-training Stage

In the pre-training stage, the model is trained on large-
scale, publicly available unlabeled traffic datasets. The traffic
data is first tokenized and then structured into inputs for the
pre-training tasks. These tasks include the Masked Burst
Modeling (MBM) task and the Same Origin-Direction-Flow
(SODF) multi-classification task.

3.2.1. Data Preprocessing. The traffic dataset is first split
into multiple flows, with each flow further divided into
multiple bursts. A flow is defined by a 5-tuple, which
includes the source and destination IP addresses, source and
destination ports, and the protocol, encompassing packets
in both directions. A burst is defined as a sequence of
consecutive packets transmitted in the same direction [58]].

Each packet is a string of hexadecimal numbers, e.g.,
4504008bd0. TrafficFormer converts packet in the form of
bigrams, where each byte is connected with the following
byte to form a 4-digit hexadecimal string. For example, the
conversion of the string 4504008bd0 results in the sequence:
4504, 0400, 008b, 8bd0. The TrafficFormer then applies the
Byte Pair Encoding (BPE) algorithm to build a corpus with a
maximum size of 65,535 tokens. The BPE algorithm breaks
down all the words in the training corpus into individual
characters, which are progressively merged to form new
words until the corpus reaches the specified size. Applying
BPE to bigrams generates more fine-grained features, pro-
ducing subwords with a minimum of one hexadecimal digit,

ata
Fine-tuning Augmentation
Intermediate
R tati
Input Nl[isll(;d CPIESCRIALON ). ssification
P m Probability
o = (]
o ol |g—
= Sy
Model| = = [Map
> ot = g
2 > |
= > /U
Random Masked N
0000
- 5 —

Encode Dimension Corpus Size

Figure 2: An illustration of the MBM task.

smaller than most typical field lengths. In addition, special
tokens such as [CLS], [SEP], [PAD], [MASK], and [UNK]
are included in the corpus. [CLS] is used for classification
tasks, [SEP] separates sequences, [PAD] pads inputs to the
maximum length, [MASK] is used for masked language
modeling tasks by replacing masked words, and [UNK]
represents words not found in the corpus.

3.2.2. Pre-training Tasks. We first present the two pre-
training tasks (MBM and SODF) separately and then the
overall pre-training task loss.
MBM Task. Traffic data is sequential data, similar to natural
language. To capture this sequential information, masked
modeling tasks are classical approaches, such as Masked
Language Modeling (MLM) and Masked Image Modeling
(MIM). TrafficFormer retains the masked modeling task.
In the Masked Burst Modeling (MBM) task, certain tokens
in the input are masked, requiring the model to predict
these masked tokens. The input of MBM is bursts which
are continuous packets in the same direction.

As shown in Figure 2} the original input is first randomly
masked to obtain the masked input. The model then lever-



ages contextual information to learn the intermediate repre-
sentations of tokens, which have a dimension equal to the
encoding dimension. These intermediate representations are
processed through a mapping network to generate prediction
probabilities, with dimensions corresponding to the size of
the corpus. Finally, the classification probabilities at the
masked positions are combined with the true probabilities
to calculate the loss. The loss function is cross-entropy loss,
as depicted in Equation [I] Here, n is the number of masked
tokens, ¢; denotes the true probability for the ¢-th token using
one-hot encoding, and #; signifies the predicted probability
for the i-th token, which corresponds to the classification
probability in Figure 2} The sum of the values in #; is 1.

lossypy = — Z tilog(t}) €))
i=1

SODF Task. Misordering of words has little effect on
comprehension, whereas misordering of packets can lead to
packet drops due to violation of interaction logic. Thus, the
direction and order of packets in traffic data are more critical
than those of words in text. However, previous research has
not adequately addressed the unique characteristics of traffic
data. ET-BERT incorporates two pre-training tasks, with the
second being the Same-origin Burst Prediction (SBP) task,
which is analogous to the NSP task. In the SBP task, a
burst is divided into two segments, and with a certain prob-
ability, the latter segment is replaced with a segment from
other bursts. The SBP task predicts whether the given two
segments originate from the same burst, making it a binary
classification task. There are two key issues associated with
this task:

1) The task is relatively straightforward. Two segments
from the same burst exhibit many consistent and similar
fields, such as IP address, IP identification (IPID),
and sequence number. Although some fields in the
two segments differ, they are often very similar. For
instance, the first 16 bits of the sequence number are
frequently identical, while fields in randomly replaced
segments may differ significantly. Consequently, pre-
dicting whether two segments originate from the same
burst is relatively simple.

2) The information learned is limited. A burst contains
only packets in the same direction, while the model’s
input during the fine-tuning stage will consist of con-
secutive packets that typically have varying directions.
This inconsistency creates a mismatch between the pre-
training and fine-tuning stages. Furthermore, since each
segment in the Segment Burst Prediction (SBP) con-
tains packets in a single order, model’s understanding
of packet order information is also constrained.

Therefore, the SBP task struggles to capture directional
and sequential information in traffic. To address this, we
have designed the Same Origin-Direction-Flow (SODF)
multi-classification task to learn direction, order, and cor-
responding flow (i.e., 5-tuple) of packets in the pre-training
stage of the traffic model. The SODF task combines the split
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Figure 3: An example of the SODF task. There are three
flows and we show the first three bursts of each flow. These
bursts vary in length and together form five categories.

burst segments to form five categories. Figure 3| illustrates
an example of the combinations of different categories.

1) Category 1: A normal burst, where the two split seg-
ments are separated by a [SEP] token. The segment
identifiers for the tokens in the two segments are 1 and
2, respectively.

2) Category 2: Similar to Category 1, except that the two
segments of the burst are swapped after being split.

3) Category 3: Two consecutive bursts from one flow,
separated by a [SEP] token. The segment identifiers for
the tokens in the two bursts are 1 and 2, respectively.

4) Category 4: Similar to Category 3, except that the two
bursts are swapped.

5) Category 5: Bursts from two flows are arbitrarily com-
bined, with a [SEP] token added between the bursts for
separation.

Categories 1 and 2 represent the normal and disordered
packets within a burst. Categories 3 and 4 further incorporate
two bursts in opposite directions. All four above categories
are associated with a single flow, while category 5 includes
bursts of different flows. Thus, the two-by-two distinction of
categories enables the model to learn the the direction, order,
and corresponding flow of packets through a single task.
More fine-grained tasks can be designed to delve deeper
into each information, e.g., learning packet order through
location prediction [59].

Each burst is processed into each category with a prob-
ability of 20%, meaning that the sample size is the same for
each category. The SODF task also employs cross-entropy
loss, as depicted in Equation [2| Here, b is the batch sizq,
d; is the true probability distribution of sample ¢, and d;
is the predicted probability distribution of sample ¢. Both
distributions have a dimension of 5, corresponding to the
number of categories in the SODF task.

b
losssopr = — Z d;log(d;) 2

i=1
The pre-training stage employs the multi-task learning
mode, with the total loss function of pre-training depicted
as Equation 3| Here, A is a hyperparameter used to balance
the loss values of the two tasks, set to A = 0.1 in the

experiments. The adoption of multi-task learning increases
the complexity of the Masked Burst Modeling (MBM) task



due to the influence of various inputs (bursts of different
flows, directions, and orders) in the Same Origin-Direction-
Flow (SODF) task. This complexity enhances the learning
of fundamental semantics of the traffic.

loss = A xlossyrpy + losssopr 3)

3.3. The Fine-tuning Stage

In the fine-tuning stage, the model is initialized with
the parameters of the pre-trained model and then trained
further on task-specific data. To ensure consistency with
the pre-training process, the fine-tuning data is transformed
into the same input format as the pre-training data. First,
data packets are converted into hexadecimal strings, which
are then transformed into bigram form and tokenized using
the corpus generated during pre-training. The packet tokens
are concatenated directly, without inserting a [SEP] token
for separation, meaning all tokens share the same segment
identifier.

Traffic Data Augmentation. Given the limited amount
of data in the downstream fine-tuning task, TrafficFormer
introduces a traffic data augmentation method.

Protocol Randomly Initialized Fields
1P IPID
source port, sequence number, acknowledgment number,
TCP . . . .
timestamp in the timestamp option
UDP source port
TLS the random number in the
client hello and server hello message

TABLE 2: Randomly initialized fields in common protocols

Certain fields in network protocols are initialized ran-
domly, and their values lack inherent meaning, rendering
them ineffective for classification. Table [2]lists the randomly
initialized fields in common protocols. In the IP protocol,
the IPID field labels each packet, and when an IP packet is
fragmented, the IPID fields of the multiple fragments remain
consistent. Random initialization of the IPID complicates
guessing attempts, thereby preventing malicious attacks.
In the TCP and UDP protocols, the source port number
identifies the client’s sending program and is also randomly
initialized to mitigate port scanning and denial-of-service at-
tacks. Given that the TCP protocol operates on byte streams,
the sequence number denotes the starting position of bytes
to be sent, while the acknowledgment number indicates the
next expected byte’s position. Guessing the TCP source port
number, sequence number, and acknowledgment number
is fundamental to TCP hijacking attacks [60], [61]], and
random initialization increases the difficulty of such attacks.
The timestamp in the TCP timestamp option helps calcu-
late round-trip time delays and prevents sequence number
wraparound, potentially incorporating a value increased by
a random offset [62]. In the TLS protocol, random numbers
in the client hello and server hello messages are utilized to
generate encryption keys, enhancing the strength of session
keys and preventing replay attacks.

Based on the aforementioned insights, we propose the
traffic data augmentation method, i.e., Random Initialization
Field Augmentation (RIFA). RIFA generates multiple copies
of traffic data by randomly altering randomly initialized
fields within a packet, while preserving the original label, as
it does not modify the original semantics. Recognizing that
the change pattern of fields is often more significant than
the actual field values, RIFA maintains the change pattern
of a field in subsequent packets after modifying its initial
value. For instance, in the TCP protocol, RIFA replaces the
sequence number of the first packet with a random number
and subsequently assigns the sequence numbers of later
packets as this random number plus the original difference.
This augmentation allows the model to focus less on the
specific values of these fields and more on the variations
in values or other fields, facilitating the rapid extraction of
valuable information from large datasets. In contrast to deep
learning-based data augmentation methods, RIFA relies on
domain knowledge and modifies the original data directly
rather than in the feature space.

In traffic data, the source/destination IP addresses and
source/destination ports may lead to shortcuts in classifica-
tion. To mitigate this issue, ET-BERT selects packet content
following the port number, which, while effective, results in
a significant loss of information. For example, in the TCP
protocol, only the size of the TCP header is included; with-
out the entire TCP payload, critical information regarding
the payload size may be omitted. Conversely, TrafficFormer
still utilize all packet header content, while randomly vary-
ing the IP and port number fields. This approach not only
retains more information but also prevents shortcuts.

4. Evaluation

In this section, we conduct an extensive evaluation of
TrafficFormer across multiple datasets to demonstrate the
following:

1) TrafficFormer outperforms previous methods in traffic
classification tasks, including machine learning meth-
ods, deep learning methods, and pre-training methods.

2) TrafficFormer surpasses previous pre-training methods
in protocol understanding tasks.

3) The impact of key components on classification result.

4.1. Experiment Setup

We built TrafficFormer using PyTorch 2.0.1, and all
experiments were conducted on NVIDIA A100 GPUs. The
following sections detail the specific experimental settings,
including the pre-training datasets and settings, evaluation
metrics, and baseline methods.

Pre-training Datasets. As shown in Table [3] we select
three datasets from different sources for pre-training: ISCX-
NonVPN [63] (2016), CICMalAnal2017 [64] (2017), and
Browser [1]] (2020). The ISCX-NonVPN dataset includes
traffic from various application types, such as browsers,
email, audio, video, and file transfers. We specifically



Datasets Size Flows Included Protocols ¥
I\IIOSnCV>§N [63] 4.9GB 219076 TLS1.2, SFTP, SSDP, SNMP,
NTP, MDNS, HTTP, GQUIC...
CICMalAnal- 6.5GB 232627 TLS1.2, GQUIC, SSDP,
2017 [64] MDNS...
Browser |1 7.4GB 149527 TLS1.3, GQUIC...

§ Only a subset of special protocols is listed, while common protocols like

IP, TCP, UDP, and DNS are not included.
TABLE 3: Pre-training datasets.

choose the non-VPN traffic portion for our training data.
The CICMalAnal2017 dataset contains traffic from both
normal software and malware, and we select the normal
software traffic from 2017 as our training data. The Browser
dataset consists of traffic data collected using a Samsung
phone to access the top 1,000 websites as ranked by Alexa,
utilizing browsers such as Google Chrome, Firefox, UC, and
Samsung’s native browser.

We first employ SplitCap [65] to segment the datasets
by flow. After this process, the dataset no longer includes
connectionless protocols like ARP and ICMP, as they are
irrelevant to actual data transmission. Table [3] provides
detailed information about the three datasets. The total
volume of the pre-training dataset is approximately 20 GB,
comprising over 600,000 flows. Additionally, the table high-
lights the specific protocols included in the datasets. Both
the ISCX-NonVPN and CICMalAnal2017 datasets contain
software data and a variety of network protocols, with ISCX-
NonVPN featuring a more diverse range. However, these
two datasets were collected earlier and lack data for the TLS
1.3 protocol, which is addressed by the Browser dataset.
Thus, the pre-training dataset is not only sufficient in volume
but also rich in protocol variety.

Pre-training Settings. Ethernet addresses are often tied to
the location of traffic collection and do not pertain to the
communicating parties, making the content in the Ethernet
packet header irrelevant for classification. Additionally, with
the prevalence of encrypted packets today, the content of the
encrypted payload is also unhelpful. Consequently, during
pre-training, we extract 64 bytes of data from each packet
after the Ethernet layer. The model has an encoding dimen-
sion of 768, with a total of 12 layers, where each multi-
head attention mechanism has 12 heads, and the maximum
sequence length is set to 512. The SODF task utilizes the
representation of the [CLS] token from the last layer of
the model for classification. We set the batch size to 64,
and with 3 GPUs, this results in an effective batch size of
192. The optimizer is Adam, with a learning rate of 2e-5, a
linear decay scheduling strategy, and a warm-up ratio of 0.1.
The optimizer used is Adam, with a learning rate of 2e-5,
a linear decay scheduling strategy, and a warm-up ratio of
0.1. The total number of training steps is fixed at 500,000,
with the loss stabilizing around 120,000 steps. Therefore,
we select the model at 120,000 steps as the initial model
for fine-tuning downstream tasks.

Evaluation Metrics. We employ classification accuracy
(AC), precision (PR), recall (RC), and F1 score as our eval-

uation metrics. For multi-class tasks, when calculating these
metrics for each class, that class is treated as the positive
class, while all others are considered negative. To calculate
the overall metrics for the entire dataset, we average the
metric values of each class, which helps balance the issue
of varying sample sizes across classes.

Baselines. We select six baselines, including two machine
learning methods (Appscanner and BIND), two deep learn-
ing methods (DeepFP and GraphDapp), and two pre-training
methods (ET-BERT and YaTC). The training datasets of
ML-based/DL-based baselines are the same as the fine-
tuning datasets of TrafficFormer. And the pre-training
model baselines utilize the same pre-training and fine-tuning
datasets as TrafficFormer.

1) In Appscanner [40]], statistical features are constructed
using packet size and direction, resulting in a total of 54
features. The model employed is a random forest, with
the validation set used to determine the appropriate
classification threshold.

2) In BIND [39], distribution features are derived from
the size and interval of packets and bursts, totaling
700 features. A random forest model is utilized, and
the validation set is used to establish the classification
threshold.

3) In DeepFP [42], packet size and direction information
are input into a CNN model. The validation set is used
to select the number of channels, the dimension of the
fully connected layer, and the learning rate.

4) In GraphDapp [45], packet relationships are con-
structed as a graph, which is then trained using a GNN
model. The validation set is used to determine the
number of layers in the GNN model, the size of the
hidden layer, and the input length.

5) ET-BERT [12] and TrafficFormer share the same
pre-training data and hyperparameters, but their pre-
training tasks differ. We select the model at step
120,000 for fine-tuning.

6) YaTC [13] processes each flow as an image, utilizing
the same pre-training data and hyperparameters as Traf-
ficFormer. We choose the model at step 400,000 for
fine-tuning in downstream tasks.

4.2. Traffic Classification Task

In this section, we present the performance of Traffic-
Former on six fine-tuning tasks for traffic classification.
Fine-tuning Datasets. As shown in Table [] six datasets
are selected as fine-tuning datasets in this section, includ-
ing Cross-Platform (Android), Cross-Platform (iOS), ISCX-
VPN (Service), ISCX -VPN(App), CSTNET-TLS 1.3, and
USTC-TFC. These datasets encompass four specific fine-
tuning tasks: application fingerprinting, service type identi-
fication, website fingerprinting, and malware detection. The
Cross-Platform (Android) and Cross-Platform (i0S) datasets
collect traffic data from the 100 most popular applications on
Android and iOS phones in China, the United States, and
India, respectively. CSTNET-TLS 1.3 contains traffic data



Flow Class
Datasets Tasks Number!  Number!
Cross-Platform (66 Applicgtio.n 32149 197
(Android) Fingerprinting
Cross-Platform 166] Applicz!tio.n 19736 190
10S) Fingerprinting
CSTNETILS )  Website 46372 120
1.3 Fingerprinting
ISCX-VPN Service Type
(Service) [63] Identification 1457 6
ISCX-VPN (63] Apphcz‘ltlc?n 1444 "
(App) - Fingerprinting
USTC-TFC  [67] Malware Detection 6049 14 %

1 The number of flows and classes refers to the actual counts of flows and
classes utilized for classification after processing.
§ The ratio of normal software classes to malware classes is 5:9.

TABLE 4: Fine-tuning datasets.

collected from 120 websites using the TLS 1.3 protocol.
The ISCX-VPN (Service) and ISCX-VPN (App) datasets
capture traffic associated with different behaviors of multiple
applications within a Virtual Private Network (VPN), allow-
ing for classification into various applications and services.
For example, the Skype application generates three types
of traffic, i.e., text chat, file transfer, and voice chat. These
three traffic types belong to different classes in ISCX-VPN
(Service), while they are categorized under the same Skype
class in ISCX-VPN (App). The USTC-TFC dataset includes
traffic generated by 10 normal software applications and 10
malware samples.

Similar to the pre-training process, we begin by splitting

the fine-tuning dataset into flows. We then remove any
flows smaller than 2KB or containing fewer than 3 packets,
followed by removing any classes with fewer than 10 flows.
For classes containing more than 500 flows, we randomly
select 500 flows to ensure no class exceeds this limit. The
number of flows and classes remaining in each dataset after
processing is detailed in Table [] In the malware detection
task, the ratio of normal software classes to malware classes
is 5:9. We split the dataset into training, validation, and test
sets with an 8:1:1 ratio for each class.
Fine-tuning Settings. For machine learning and deep learn-
ing methods, all packets from a flow are used as input. How-
ever, for pre-training methods, only the first 5 packets from
each flow are selected. Both ET-BERT and TrafficFormer
use 64 bytes of data from each packet after the Ethernet
layer as input, with models trained over 20 rounds. YaTC,
on the other hand, uses 80 bytes for the packet header and
240 bytes for the payload (data after IP/TCP), and is trained
for 300 rounds. For pre-training methods, the optimal model
is selected based on validation results from multiple learning
rates and rounds of training.

Additionally, for pre-training methods, certain fea-
tures—such as IP, port, timestamps in the TCP protocol,
and timestamps and server name indication (SNI) in the
TLS protocol—are processed using the data enhancement
technique outlined in Sec.[3.3]to prevent classification short-
cuts. For TrafficFormer, data augmentation is performed

by randomly initializing fields including IPID, TCP se-
quence number, and acknowledgment number five times,
effectively multiplying the dataset size by five. To maintain
consistency in the total amount of training data, only 4
training rounds are conducted on the data-enhanced version
of TrafficFormer (TrafficFormer w/ EA).

Cross-Platform Dataset. The results of different ap-
proaches on the Cross-Platform dataset are shown in Table
B Pre-training approaches generally outperform both deep
learning and machine learning methods. This is primarily
due to the ability of pre-training models to process more
information from single packet and extract valuable insights
from complex data. Among the pre-training methods, YaTC
demonstrates the worst performance, while TrafficFormer
surpasses ET-BERT in all metrics, with a 4.82% and 0.19%
improvement in F1 score, respectively. After applying data
augmentation, TrafficFormer w/ EA achieves even greater
improvements, with a 10.05% and 10.09% boost in F1 score
compared to ET-BERT. This demonstrates the effectiveness
of data augmentation in reducing the model’s reliance on
irrelevant information. The classification accuracies on the
Cross-Platform dataset are relatively low, potentially due to
several factors: (i) the dataset contains a large number of
categories, 197 and 190, respectively; (ii) many applications
in the dataset belong to the same category and exhibit similar
network interaction patterns; (iii) multiple applications often
access the same third-party domains. For instance, 78%
of Android apps in the U.S. access google.com, leading
to overlapping access records [66]]. Additionally, the iOS
system is more closed than Android, resulting in more
uniform traffic patterns, which makes identifying application
fingerprints on iOS more challenging. Nevertheless, Traf-
ficFormer demonstrates significant improvements over the
other methods, proving its efficiency in traffic detection.
CSTNET-TLS 1.3 Dataset. The rightmost section of Ta-
ble [5] presents the results of website fingerprinting on the
CSTNET-TLS 1.3 dataset. TrafficFormer achieves optimal
performance across all metrics, with a 3.92% improvement
in F1 score compared to the best results from machine
learning and deep learning approaches, and a 1.3% en-
hancement over the best pre-training method. Following data
augmentation, TrafficFormer w/ EA improves by 2.87%,
3.07%, 3.24%, and 3.24% in accuracy, precision, recall,
and F1 score, respectively, compared to TrafficFormer. This
indicates that data augmentation significantly benefits the
website fingerprinting task, allowing the model to concen-
trate on valuable information within the packets.

We illustrate the attention mechanisms in TrafficFormer
on the CSTNET-TLS 1.3 dataset and the Cross-Platform
(Android) dataset in Figure ] As shown in Figure fa] at-
tention is more concentrated in two specific areas within the
Cross-Platform (Android) dataset. In contrast, the attention
in the CSTNET-TLS 1.3 dataset, as depicted in Figure [4b] is
more dispersed, with multiple bytes in the packet influencing
the final classification. Despite these differences, the two
attention illustrations share notable similarities. For the same
data, disparities between attention heads indicate that they
focus on different aspects of the data. Additionally, for



Datasets Cross-Platform(Android) Cross-Platform(i0S) CSTNET-TLS 1.3
Approaches AC PR RC F1 AC PR RC F1 AC PR RC F1
Appscanner [40] 0.5185 0.4897 0.3538 0.3982 | 0.4058 0.3267 0.2943 0.3014 | 0.7182 0.8205 0.6771 0.7305
BIND (39| 0.4025 0.2987 0.2705 0.2774 | 0.3607 0.2456 0.2407 0.2330 | 0.8014 0.7842 0.7445 0.7510
DeepFP [42] 0.2669 0.1542 0.1588 0.1525 | 0.2138 0.1235 0.1201 0.1169 | 0.6345 0.5868 0.5870 0.5835
GraphDapp [45] 0.4806 0.3676 0.3429 0.3396 | 0.2605 0.2430 0.2533 0.2460 | 0.7945 0.7690 0.7669 0.7622
ET-BERT [12] 0.6952 0.5446 0.5163 0.5162 | 0.4721 0.4059 0.3634 0.3680 | 0.8120 0.7986 0.7888 0.7884
YaTC [13] 0.6233 0.4324 0.4077 0.4088 | 0.3931 0.2975 0.2902 0.2815 | 0.8407 0.8165 0.8170 0.8133
TrafficFormer 0.7369 0.5900 0.5726 0.5644 | 0.4807 0.4003 0372 0.3699 | 0.8197 0.8064 0.8027 0.8014
TrafficFormer w/ EA | 0.7664 0.6435 0.6204 0.6167 | 0.5679 0.4966 0.4697 0.4689 | 0.8484 0.8371 0.8351 0.8338
TABLE 5: The results of different approaches on the Cross-Platform dataset and the CSTNET-TLS 1.3 dataset.
Datasets ISCX-VPN(Service) ISCX-VPN(App)
Approaches AC PR RC Fl1 AC PR RC Fl1
Appscanner [40] 09178 0.9036 09212 09113 0.7724 (0.6207)T  0.7146 (0.5968) 0.6906 (0.5712) 0.6918 (0.5640)
BIND [39] 0.8562 0.8741 0.8433 0.8543 0.7724 (0.6000) 0.6664 (0.5154) 0.6624 (0.5367) 0.6547 (0.5147)
DeepFP [42] 0.6781 0.6845 0.6678 0.6723 | 0.7310 (0.5034) 0.6413 (0.3224) 0.6901 (0.4119) 0.6599 (0.3559)
GraphDapp [45] 0.8906  0.8903 0.9038 0.8956 0.7969 (0.5938) 0.7351 (0.5637) 0.7813 (0.5154) 0.7419 (0.4826)
ET-BERT [|12] 0.9452  0.9496 0.9450 0.9454 0.7586 0.6255 0.6236 0.6042
YaTC [13] 0.8356 0.8163 0.8116 0.8122 0.7310 0.6004 0.6199 0.6034
TrafficFormer 0.9247 09268 09167 0.9205 0.8000 0.7675 0.7036 0.6959
TrafficFormer w/ EA | 09589 0.9621 0.9450 0.9580 0.7931 0.7544 0.7044 0.7129

1 The results in parentheses represent the method’s performance using only the first five packets of information.

TABLE 6: The results of different approaches on the ISCX-VPN dataset.

102 10! 162 10

(a) Cross-Platform(Android) dataset (b) CSTNET-TLS 1.3 dataset

Figure 4: The illustrations depict the attention of the last
layer’s [CLS] tokens on the Cross-Platform(Android) dataset
and CSTNET-TLS 1.3 dataset in TrafficFormer. On the
horizontal axis, 5 packets are represented, with each interval
containing 64 bytes of the packet. The vertical axis shows
the first 6 of the 12 attention heads, and within each interval
is a batch of data with a batch size of 32.

any given attention head, its focus varies across different
samples within a batch. This variability suggests that the
pre-trained model acquires diverse knowledge from complex
data, enabling it to recognize different classes.

ISCX-VPN Dataset. The results of different approaches on
the ISCX-VPN dataset are presented in Table [6] including
service type identification and application fingerprinting.
In the task of service type identification, pre-training ap-
proaches outperform both traditional machine learning and
deep learning approaches. The model TrafficFormer w/ EA
achieves the best performance in this task, with an F1 score
improvement of 1.26% over the optimal baseline. Compared
to TrafficFormer, TrafficFormer w/ EA enhances accuracy,

precision, recall, and F1 score by 3.42%, 3.53%, 2.83%, and
3.75%, respectively. These results indicate that traffic data
augmentation is beneficial for service type identification.
In the application fingerprinting task, TrafficFormer
demonstrates optimal performance in terms of accuracy
and precision, while GraphDapp excels in recall and F1
value. The pre-training approaches do not show better re-
sults compared to machine learning and deep learning ap-
proaches. The pre-training approaches do not yield better
results compared to traditional machine learning and deep
learning methods. This may stem from the fact that pre-
training approaches utilize information from only the first
five packets for rapid traffic processing, whereas machine
learning and deep learning methods leverage data from all
packets. We report results using only the first five packets in
parentheses. When restricted to this subset, machine learning
and deep learning approaches are less effective than the pre-
training methods. The highest F1 value for machine learning
and deep learning approaches is 56.4%, which is lower
than the lowest F1 value of 60.34% observed in the pre-
training methods. TrafficFormer and TrafficFormer w/ EA
achieve improvements of 9.17% and 10.87% in F1 value,
respectively, compared to the best baseline. Thus, Traffic-
Former can make more accurate decisions with minimal
packet data, which is crucial in scenarios requiring quick
decision-making. However, TrafficFormer w/ EA does not
surpass TrafficFormer in accuracy and precision due to
constraints from the enhancement mode in this section. We
augmented the data eight times over ten rounds of training,
yielding metrics of 83.45%, 73.31%, 74.96%, and 73.94%,
significantly outperforming TrafficFormer.
USTC-TFC Dataset. Table [/| presents the results of the
malware detection task on the USTC-TFC dataset. In this



Approaches AC PR RC F1
Appscanner [40)] 0.8942 09137 0.9050 0.8984
BIND [39] 0.8926 0.8995 0.9043 0.9013
DeepFP [42] 0.8496 0.8613 0.8543 0.8548
GraphDapp [45] 0.8633 0.8787 0.8779 0.8738
ET-BERT [12] 0.9699 09741 0.9724 0.9727
YaTC [[13] 0.9672 0.9679 0.9659 0.9667
TrafficFormer 0.9766 0.9795 09777 0.9784
TrafficFormer w/ EA | 0.9816 0.9837 0.9826 0.9830

TABLE 7: The results of different approaches on the USTC-
TFC dataset.

task, pre-training approaches outperform traditional machine
learning and deep learning methods. Among the pre-training
approaches, YaTC exhibits the poorest performance. Traffic-
Former achieves improvements of 0.67%, 0.54%, 0.53%,
and 0.57% in accuracy, precision, recall, and F1 score,
respectively, compared to ET-BERT. After applying data
augmentation, TrafficFormer w/ EA shows further enhance-
ments of 1.17%, 0.96%, 1.02%, and 1.03% in these metrics
compared to ET-BERT. Thus, TrafficFormer demonstrates
superior accuracy in detecting malicious traffic, and traffic
data augmentation proves beneficial for the malware detec-
tion task.

4.3. Protocol Understanding Task

Traffic not only reflects the behavioral information of
network entities but, more fundamentally, contains the in-
teraction information of network protocols. In this section,
we propose new tasks to evaluate the understanding of
protocol interaction logic of the pre-trained traffic model,
which allows for a more comprehensive assessment of the
model’s capabilities. Specifically, we introduce four tasks:
packet direction judgment, packet loss detection, packet out-
of-order detection, and packet prediction.

Packet Direction Judgement. Two packets are randomly
selected from a flow. If the direction of both packets is the
same, the label is 1; otherwise, the label is 0. This binary
classification task evaluates the model’s ability to discern
the direction of packets.

Packet Loss Detection. We take N consecutive packets
from a flow and randomly drop any packet from 2 to N-1
to create a packet loss sample, labeled as 0. To maintain
the same number of packets, we take packets from 2 to N
or from 1 to N-1 as no packet loss samples, labeled as 1.
This binary classification task assesses the model’s ability
to recognize the order of packets.

Packet Out-of-order Detection. We take N consecutive
packets from a flow, randomly select any packet from 1 to
N-1, and insert it into any position after its original location
to create an out-of-order sample, labeled as 0. The original
N packets serve as a non-out-of-order sample, labeled as 1.
This binary classification task evaluates the model’s ability
to recognize the order of packets.

Packet Prediction. Packet prediction involves forecasting
the fields in a packet’s header. We carefully categorize

these header fields. For instance, in the TCP protocol, some
fields, such as the TCP sequence number, are predictable,
while others, like the window size, are more challenging
to forecast due to their dependence on the host’s available
resources, which cannot be inferred solely from protocol
interactions. Predicting the window size relies more on
experience. Additionally, fields like the checksum pose sig-
nificant challenges, as they are calculated based on the entire
packet’s contents, requiring the model to grasp the complex
logic of checksum computation. The packet prediction task
emphasizes predictable fields because they reflect the logic
of protocol interaction. The task utilizes N consecutive
packets from a flow, masking tokens related to the field
to be predicted in the last packet and expecting the model
to accurately predict the correct token for that position.
While similar to masked modeling tasks, this task only has
preceding context, making the prediction more complex. It
is also a multi-class classification task, with the number of
categories corresponding to the size of the corpus. This task
evaluates the model’s comprehensive understanding of the
logic governing protocol interactions.

We construct protocol understanding tasks based on two
datasets: CSTNET-TLS 1.3 and CICMalAnal2017. To avoid
overlap with pre-training data, we select benign data in 2016
from the CICMalAnal2017 dataset and apply the same flow
filtering and selection logic as described in SecH.2] The
task data is constructed according to the above description,
with N=5. For the packet prediction task, we focus on the
IP and TCP protocols, predicting the following fields: IPID,
source/destination IP, source/destination port, TCP sequence
number, TCP acknowledgment number, TCP header length,
and TCP flags. We predict the fifth packet based on the
first four packets of each flow, with certain fields of the
fifth packet masked and awaiting prediction. To indicate the
direction of the fifth packet, the fifth packet will randomly
include one of the source/destination IP, source/destination
port. In the first three tasks, the number of positive and
negative samples is equal, and we report the F1 scores.
For the packet prediction task, we present the predictive
accuracy of the fields. The baselines in this section are
ET-BERT and YaTC. In the first three tasks, each method
was trained for a total of five rounds. It is important to
note that the MIM task during YaTC’s pre-training stage
focuses on fitting target values, whereas the packet predic-
tion task requires multi-class classification. Therefore, in
the packet prediction task, we added a reshape operation
and fully connected layers to YaTC, adjusting the final
output dimension to 256 for multi-class classification. As a
result, YaTC needs to learn additional parameters from the
fully connected layers in the fourth task. To ensure a fair
comparison, ET-BERT and TrafficFormer were trained for
50 rounds, while YaTC was trained for 150 rounds. Table
presents the performance of pre-trained models on various
datasets and protocol understanding tasks. Here, CSTNET
refers to the CSTNET-TLS 1.3 dataset, and CIC refers to
the CICMalAnal2017 dataset.

As shown in Table [8 both TrafficFormer and ET-
BERT achieve nearly 100% F1 scores in the packet di-



Packet direction Packet loss Packet out-of-order -
Tasks . . . Packet prediction
judgement detection detection
Approaches CSTNET CIC CSTNET CIC CSTNET CIC CSTNET CIC
ET-BERT [12] 0.9996 1.0000 0.8862 0.9890 0.8622 0.9874 0.7847 0.7446
YaTC [13] 0.9374 0.9931 0.7743 0.9789 0.7141 0.9767 0.7336 0.7687
TrafficFormer 0.9998 1.0000 0.8923 0.9901 0.8837 0.9892 0.8361 0.7522

TABLE 8: Performance of pre-trained traffic models on different datasets and different protocol understanding tasks.

Datasets  packet 1  packet 2  packet 3  packet 4
CSTNET  164.703  190.869  190.869  192.582
CIC 80.021 126.728  126.728 121.86

TABLE 9: The average edit distance of flows (first four
packets) in different datasets.

rection judgment task. However, However, YaTC exhibits
a significantly lower F1 score on the CSTNET dataset,
approximately 6% worse than the other two methods. In
the packet loss detection task, YaTC continues to have
the lowest F1 score. On the CIC dataset, TrafficFormer
and ET-BERT perform similarly, while on the CSTNET
dataset, TrafficFormer outperforms ET-BERT by 0.6% in
F1 score. In the packet out-of-order detection task, results
mirror those of the packet loss detection task, with Traf-
ficFormer maintaining the best performance, again out-
performing ET-BERT by 2.15% on the CSTNET dataset.
In the packet prediction task, TrafficFormer achieves the
highest accuracy on the CSTNET dataset, surpassing the
optimal baseline by 5.14%. Conversely, YaTC performs best
on the CIC dataset, with an accuracy 1.65% higher than
that of TrafficFormer. The performance loss for YaTC may
be attributed to TrafficFormer processing a greater number
of categories than YaTC (65,536 vs. 256) since they have
different packet representations. When YaTC is trained for
the same 50 rounds as TrafficFormer, its accuracy is only
0.6443, which is 10.79% lower than that of TrafficFormer.
TrafficFormer demonstrates strong performance with less
training, suggesting it has effectively learned the relevant
order information of packets during the pre-training stage.
In summary, TrafficFormer exhibits superior protocol un-
derstanding capability compared to prior arts.

The results on the CIC dataset are notably higher than
those on the CSTNET dataset in the first three tasks. To
compare the similarity of different flows in the two datasets,
we compute the edit distance of packets in two random
flows. Table [9] presents the average edit distance of the
first four packets, revealing that the edit distance for CIC
is smaller than that for CSTNET. This indicates that the
flows in the CIC dataset are more similar, leading to lower
prediction difficulty and consequently higher performance
on the CIC dataset. Additionally, we compute the edit
distance of neighboring packets within a flow, finding an
average distance of 127.6 for the CIC dataset and 123.2
for the CSTNET dataset. This suggests that packets in a
flow from the CSTNET dataset are more similar, which may

explain the higher packet prediction accuracy observed in
the CSTNET dataset.

4.4. TrafficFormer Deep Dive

In this section, we explore the key components of Traf-

ficFormer to understand the impact of each element on
the final results. This exploration includes six aspects: the
impact of pre-training, the impact of the number of pre-
training steps, the impact of data augmentation, the impact
of input content, the impact of traffic representation, and the
impact of sequence representation. We choose representative
datasets for evaluation: Cross-Platform (Android) (which
has the maximum number of categories), CSTNET-TLS
(which has the maximum number of flows), and ISCX-
VPN(App) (noted for its small number of flows and cat-
egories).
Impact of Pre-training. We evaluate the model without pre-
training on traffic classification tasks, i.e., fine-tuning start-
ing directly from a randomly initialized model. The model
without pre-training maintains the same hyperparameters as
TrafficFormer and we selects the best results across multiple
learning rate settings.

The performance of the model without pre-training on
traffic classification tasks is presented in Table [I0] The
largest drops in F1 score are observed in the ISCX-VPN
(Service) and ISCX-VPN (App) datasets, which decline by
85.17% and 66.05%, respectively. Across the four learning
rates tested, the model demonstrates consistently poor per-
formance, indicating that it fails to learn useful information.
This may be attributed to the relatively small number of
samples in both datasets (approximately 1,500), which limits
the model’s ability to learn associations between inputs, re-
sulting in poor performance. Given the challenges associated
with labeling traffic data, small sample sizes are common. In
scenarios of data scarcity for downstream tasks, pre-training
is crucial, as it allows the model to acquire fundamental traf-
fic semantic information that can be effectively transferred
to downstream tasks. The smallest drop in the F1 score is
the USTC-TFC dataset, which decreases by 6.75%. Among
the six datasets, CSTNET-TLS 1.3 contains the most data,
but its F1 score decreases by 14.28%, which is not the least.
This suggests that the decrease in performance is not solely
related to the limited data in the fine-tuning task but also
to the relevant knowledge learned during the pre-training
stage.

Impact of Pre-training Steps. We evaluate the performance
of pre-trained models produced by different rounds in the



Datasets

AC

PR

RC

F1

Cross-Platform(Android)
Cross-Platform(iOS)
CSTNET-TLS 1.3
ISCX-VPN(Service)
ISCX-VPN(App)

0.5026 (-0.2343)1
0.0253(-0.4554)
0.6973(-0.1224)
0.2603(-0.6644)
0.2414(-0.5586)

0.2247(-0.3653)
0.0001(-0.4002)
0.6743(-0.1321)
0.0434(-0.8834)
0.0219(-0.7456)
0.9136(-0.0659)

0.2378(-0.3348)
0.0053(-0.3667)
0.6588(-0.1439)
0.1667(-0.7500)
0.0909(-0.6127)
0.9144(-0.0633)

0.2184(-0.3460)
0.0003(-0.3696)
0.6586(-0.1428)
0.0688(-0.8517)
0.0354(-0.6605)
0.9109(-0.0675)

USTC-TFC 0.9082(-0.0684)

1 The values in parentheses are the metric difference between the model without pre-training and TrafficFormer.

TABLE 10: The performance of model without pre-training on traffic classification tasks.
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Figure 5: Downstream fine-tuning results of pre-trained
models at different training steps.

pre-training stage. The model at the 120,000th step is cho-
sen for the experiments in Sec. [£.2] and Sec. 3] In this
section, we focus on the models at the 30,000th, 60,000th,
and 90,000th steps on the Cross-Platform (Android) and
CSTNET-TLS 1.3 datasets, respectively. The learning rates
of the fine-tuning are le-4 and 6e-5, respectively.

The fine-tuning results of pre-trained model at different
training steps are presented in Figure 5] The left half of
Figure [3] (Figure [5a] and Figure displays both the pre-
training task loss and fine-tuning F1 scores. The right half of
Figure [3] (Figure [5b] and Figure [5d) displays both the pre-
training task accuracy and fine-tuning F1 scores. Notably,
the accuracy of the SODF task reaches a relatively high
level earlier than that of the MBM task, indicating that the
MBM task is more challenging than the SODF task.

Figure [5a] and Figure [5b] illustrate that the classification
performance of Cross-Platform (Android) remains relatively
poor with fewer than 30,000 pre-training steps. However,

when the number of pre-training steps reaches 60,000, the
F1 score improves markedly. Beyond 60,000 pre-training
steps, the F1 score experiences a slight decline. However, the
classification accuracy continues to increase gradually, with
accuracies at 60,000, 90,000, and 120,000 steps recorded at
68.43%, 69.83%, and 71.35%, respectively. Additionally, the
accuracy of the MBM task shows significant improvement
after 30,000 steps. This suggests that the classification per-
formance of Cross-Platform may be more closely associated
with the MBM task.

Figure [5c| and Figure [5d| demonstrate that the perfor-

mance of website fingerprinting on the CSTNET-TLS 1.3
dataset is commendable at 30,000 pre-training steps. At
60,000 pre-training steps, the F1 score increases by ap-
proximately 6%. However, as the number of pre-training
steps continues to rise, the F1 score shows only marginal
improvement. Similarly, the accuracy of the SODF task
reaches a high level at 30,000 steps and does not signifi-
cantly increase with additional pre-training. This observation
suggests that the classification performance on the CSTNET-
TLS 1.3 dataset may be more closely linked to the SODF
task.
Impact of Data Enhancement. We previously presented
the performance of TrafficFormer with data enhancement
in Sec. @ However, to maintain a consistent amount of
training data for a fair comparison, the data is augmented
by a factor of 5, and this augmented data is trained for
four rounds. In this section, we investigate the effects of
different data augmentation modes, specifically varying the
data enhancement factors. For each augmentation mode, the
data is trained for 10 rounds.
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Figure 6: Results of different data enhancement modes.

The performance of different data enhancement modes
is illustrated in Figure [6] with EAN representing data en-



hanced by a factor of N. As shown in Figure [6a] an increase
in the data enhancement factor correlates with improved
results in each round, leading to a higher final F1 score.
After enhancing the data by a factor of 8, the classification
F1 score on ISCX-VPN (App) reaches 76.98%, significantly
surpassing the result of 71.29% reported in Sec. 4.2] Figure
[6b] further demonstrates that larger data enhancement factors
yield better results in the initial rounds. In the final round,
the performance ranking of different data enhancement fac-
tors is as follows: EAS~EA4>EA2>EAL1. Notably, once the
data enhancement factor reaches 4, the F1 score no longer
improves, indicating that a higher enhancement factor does
not necessarily lead to better performance beyond a certain
point.

Impact of Input Content. In the preceding sections, we
selected the first 5 packets, with each packet comprising 64
bytes after the Ethernet layer, specifically the 14th through
78th bytes. In this section, we vary both the number of
packets in the input and the bytes selected from each
packet to explore the effect of input content on fine-tuning
in TrafficFormer. Specifically, we construct four different
input contents: 5pac,14-78 includes the first 5 packets with
the 14th through 78th bytes (64 bytes after the Ethernet
layer); I0pac,14-46 consists of the first 10 packets with
the 14th through 46th bytes (32 bytes after the Ethernet
layer); 5pac,38-102 includes the first 5 packets with the
38th through 102nd bytes (64 bytes after the port number);
10pac,38-70 comprises the first 10 packets with the 38th
through 70th bytes (32 bytes after the port number). The
total number of bytes across these four different inputs is the
same. The ISCX-VPN (App) and CSTNET-TLS 1.3 datasets
are selected for evaluation in this section.

Figure [/] illustrates the performance of different in-
put contents. As shown in Figure the performance of
Spac,14-78 is higher than that of 5pac,38-102, suggest-
ing that valuable information may reside in the subset
of bytes between the 14th and 38th. /0pac,38-70 slightly
outperforms Spac,38-102, which may be attributed to the
inclusion of more packets. Despite utilizing information
from 10 packets, its F1 score remains lower than that of
Spac,14-78, further indicating that significant information
is concentrated within the 14th to 38th bytes. If valuable
information is absent from the input, merely increasing
the number of packets does not guarantee better results.
10pac,14-46 achieves the best performance among the four
inputs, reflecting both the inclusion of valuable information
and the use of a larger number of packets. From Figure
it is evident that the F1 score of 5pac,14-78 is significantly
higher than that of 5pac,38-102, reinforcing the notion that
valuable information lies in the byte range from the 14th to
the 38th. Additionally, /0pac,14-46 outperforms Spac,14-
78, and 10pac,38-70 surpasses Spac,38-102, indicating that
a greater number of packets generally leads to improved per-
formance. The fact that 5pac, 14-78 outperforms 10pac,3§-
70 highlights the importance of valuable information over
the sheer number of packets. In summary, (i) increasing the
number of input packets generally enhances performance,
(ii) the valuable information varies across datasets, and (iii)
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Figure 7: Results of different input contents.
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Figure 8: Results of different Figure 9: Results of different
traffic representations. sequence representations.

valuable information is more important than the number of
packets.

Impact of Traffic Representation. As described in Sec.
[3.2.1] hexadecimal packets are transformed into bigram form
for input into TrafficFormer. In this section, we explore the
effects of different traffic representations of TrafficFormer
on fine-tuning. We define the gram form here for com-
parison. For example, 450612 06 are two adjacent fields.
The bigram representation yields 4500 0012 1206, while
the gram representation results in 450b 1206. The bigram
representation overlaps the bytes, making the final input
twice as long as the gram input. The bigram contains richer
information compared to the gram, as it includes one addi-
tional word (0b12) from the adjacent field. In this section,
we conduct pre-training in gram form, with the fine-tuning
data also processed into gram form. The CSTNET-TLS 1.3
dataset is selected for evaluation. Gram_Spac represents
the input in gram form, with 5 packets inputted for fine-
tuning. As shown in Figure [§] Gram_5pac is comparable
to Bigram_5pac. The input lengths of Gram_10pac and Bi-
gram_5pac are the same and their performances are similar.
This suggests that the traffic representation has a minimal
effect on downstream fine-tuning for traffic classification.
The good performance of the gram representation is re-
lated to the BPE method. For example, when 0b12 is a
useful feature, BPE may produce the sub-words ##0b
and 124#+. Consequently, the model learns the relationship
between them. In contrast, the bigram representation pro-
vides richer information directly in the input, thus reducing
the model’s learning burden. Acceptable longer-sequence
overheads align with the model’s increasing capability to
handle extended sequences.

Impact of Sequence Representation. In TrafficFormer, the



input to the classification layer is derived from the output
of the final representation layer, which encompasses the
representations of all tokens in the input sequence. The rep-
resentation of the first token, [CLS], is utilized as the input
to the classification layer during fine-tuning, as it synthe-
sizes information from the other tokens. In this section, we
explore the effects of alternative sequence representations.
The [CLS] representation is denoted as First, the sequence
representation formed by the maximum value across each
dimension in all token representations is denoted as Max,
and the sequence representation formed by the average value
across each dimension in all token representations is denoted
as Mean. The CSTNET-TLS 1.3 dataset is selected for
evaluation in this section. As shown in Figure 0] the best
result is achieved with First, followed by Max and finally
Mean. This superiority may be attributed to the fact that
the [CLS] representation is also employed as a sequence
representation for the classification task during the pre-
training stage. The advantage of Max over Mean may stem
from its ability to retain more unique information.

5. Discussion

In this section, we discuss the potential limitations of
TrafficFormer when performing various tasks. (i) Limited
Flow Input Length. Although the attention mechanism em-
ployed in TrafficFormer can theoretically handle arbitrar-
ily long data, it may lead to memory overflow [68] and
distraction as the input length increases. This limitation
restricts TrafficFormer’s ability to process a substantial
amount of packet information. To mitigate this issue, Traf-
ficFormer can employ techniques such as sliding windows
(i.e., attending only to words within a finite surrounding
context) [69]. (ii) Processing Flows with Raw Packets Only.
TrafficFormer utilizes only the raw payload of packets,
omitting features such as packet timestamps that are not
included in the payload. This may adversely affect the
effectiveness of tasks that depend on packet intervals (e.g.,
DDoS detection). These features (e.g., packet intervals or
other expert features) can be encoded as tokens and added
to the payload sequence, or cross-attention techniques can be
applied to establish connections with the payload sequence
[[70]. (iii) Single-Flow Detection. TrafficFormer operates as
a flow-by-flow detection scheme, which means the input
consists solely of information from a single flow. In multi-
flow scenarios (e.g., accessing a web page generates multiple
flows), the performance of TrafficFormer may degrade.
To address this limitation, the input can be extended to
accommodate multidimensional data, enabling multidimen-
sional attention for multi-flow detection (e.g., Space-Time
Attention in TimeSformer [[71]]).

6. Conclusion

In this paper, we propose an efficient pre-training model,
TrafficFormer, designed for traffic data. This model learns
the fundamental semantics of traffic by utilizing a sub-
stantial amount of unlabeled data, which it subsequently

generalizes to downstream traffic classification tasks using a
limited amount of labeled data. Specifically, during the pre-
training stage, we introduce the SODF multi-classification
task, enabling the model to learn the directional and order
information of packets within the traffic, thereby enhancing
the representation of traffic data. In the fine-tuning stage, we
present a traffic data augmentation approach called RIFA,
which reduces the model’s reliance on irrelevant data, fa-
cilitating the quicker identification of valuable information.
Additionally, we propose a novel evaluation task for traf-
fic models, termed the protocol understanding task, which
assesses pre-trained models based on their comprehension
of protocol interaction logic. We evaluate our model on
six traffic datasets, and TrafficFormer achieves optimal
performance in both the traffic classification task and the
protocol understanding task.
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