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approach for VoD
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Abstract Since user demand for a Video-on-demand (VoD)
service varies with time in one-day period, provision-
ing self-owned servers for the peak load it must sustain
afew hours per day leads to bandwidth under-utilization at
other times. Content clouds, e.g. Amazon CloudFront and
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Azure CDN, let VoD providers pay by bytes for bandwidth
resources, potentially leading to cost savings even if the
unit rate to rent a machine from a cloud provider is higher
than the rate to own one. In addition, recent studies have
presented fog computing as a new paradigm to extend the
cloud-based platform for a cost-effective and highly scal-
able service. In this paper, based on long-term traces from
two large-scale VoD systems and temporal development
model of content clouds, we tackle challenges, design and
potential benefits in migrating both Clients/Server-based
and peer-assisted VoD services into the hybrid cloud and
edge peers in fog computing environment. Our measure-
ments show that the popularity of the most popular videos
decays so quickly, for example, by 11% after one hour
that it poses large challenges on updating videos in the
cloud. However, the trace-driven evaluations show that our
proposed migration strategies (active, reactive and smart
strategies), although simply based on the current informa-
tion, can make the hybrid cloud-assisted VoD deployment
save up to 30% bandwidth expense compared with the
Clients/Server mode. Moreover, they can also handle the
flash crowd traffic with little cost. Leveraging the edge peers
in fog computing, we propose a cloud-friendly peer replica-
tion strategy, which further reduces the migration cost by a
factor of 4. Our simulation also shows that the cloud price
and server bandwidth chosen play the most important roles
in saving cost, while the cloud storage size and cloud con-
tent update strategy play the key roles in the user experience
improvement.
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1 Introduction

Video-on-demand (VoD) has become an extremely popular
service in the Internet [20]. Typically today’ ISPs bill a VoD
provider for bandwidth usage using the 95 percentile rule,
which works as follows: The average server bandwidth is
measured every 5 minutes within each month. These band-
width measurements over a month form a set of values, and
the 95 percentile value is the smallest number that is greater
than 95% of the values in the set. Since the user demand for
a VoD service varies with time in one-day period, provision-
ing self-owned servers for the 95 percentile value however it
must sustain a few hours per day leads to bandwidth under-
utilization at other times. For example, in PPLive [8, 17], the
utilization ratio is less than 20% for more than 50% times
with an average value of 40%. The 95 percentile value is
5 times of the lowest value. Moreover, the provision for a
flash crowd is extremely expensive even if the flash crowd
can be predicted.

Generally, it is sophisticated to design a cost effec-
tive VoD system, which is featured with viewer demand
dynamics. The conventional service providers have suffered
from high bandwidth consumption and large volume of
video replication in a high frequent video popularity varia-
tion environment. Fortunately, content cloud platforms (e.g.,
Amazon CloudFront [1] and Azure CDN [3]) with elastic
resource provisioning are becoming increasingly popular.
They are based on a “pay-as-you-go” paradigm for enabling
convenient, on-demand network access to a shared pool of
configurable bandwidth and storage resources that can be
rapidly provisioned and released with minimal management
effort [12, 24]. In addition, the concept of fog comput-
ing, which has been suggested since 2014, aims to process
certain workloads and services locally on edge devices or
edge servers (fog), rather than bing transmitted to the cloud
[18]. This paradigm introduces a new intermediate fog layer
between end users and cloud, which is composed of geo-
distributed fog servers which are deployed at the edge of
networks [11]. These fog servers facilitate a wide range
of services, such as geo-distributed and latency-sensitive
applications [14, 22, 30].

Hence, it is a good idea to develop a hybrid cloud-
assisted VoD delivery system, including distributed peers,
self-owned servers (also called servers in short), cloud stor-
age and cloud CDN. The self-owned servers, which are
owned by the VoD providers, store all the original video
files, serve part of user requests and upload videos to the
cloud storage. The cloud storage stores part of video files
and pushes these videos to its cloud CDN. The cloud CDN
delivers streaming content using a global network of edge
locations. The requests for videos are automatically routed
to the nearest edge location, thus the contents are delivered
with the best possible performance. Both the cloud storage

and the cloud CDN are owned by cloud providers. Based
on the hybrid cloud-assisted VoD development, the clients
can download video data either from the servers or from the
cloud. The content clouds let VoD providers pay by bytes
for the bandwidth resources, potentially leading to cost sav-
ings even if the unit rate to rent a machine from a cloud
provider is higher than the rate to own one. For example, our
analyses show that VoD providers can save more than 30%
bandwidth expense by migrating 40% traffic to the cloud,
if the unit bandwidth price of the cloud is twice as that
of the ISPs. Furthermore, the hybrid cloud-assisted deploy-
ment can handle burst traffic with trivial cost compared with
over-provisioning in the self-owned servers. It just needs to
buy more cloud storage. And if there is burst traffic, the
additional requests can be directed to the cloud.

To design such a hybrid cloud-assisted VoD system, a
fundamental question is how to balance the video replicas
and traffic load among the self-owned servers, the cloud
platform, and edge peers in a cost-effective manner. Since
a large-scale VoD site can store hundreds of thousands of
videos and a large volume of traffic are directed to the cloud
in our hybrid solution, it is required that cloud must store a
huge amount of files to serve such traffic. While the expense
to upload those files is high, including the cloud storage
cost and especially the bandwidth cost for uploading video
to the cloud, we should carefully design our migration strat-
egy: Howmuch traffic should be directed to the cloud? How
many files should be stored in the cloud and what are they?
Should we update the set of videos stored in the cloud?
And how do we update? Obviously, our target of design-
ing a good migration strategy is to save the aggregate cost
while minimize the unmet user requests as much as possi-
ble. In order to save the cloud storage cost and updating cost,
we choose to store the most popular videos. Even though,
the cloud content updating cost can be very high, since the
video popularity changes very frequently. For example, our
measurements show that 11% of top-5000 videos in Hulu
[5] will be changed after an hour. A good update strategy
should consider many aspects. For example, it is expected
to utilize the uploading bandwidth of self-owned servers for
content replication when they are idle. It is also expected to
upload videos that will be popular in near future. Further-
more, the difficulty to predict the videos popularity makes
our task even harder.

For the first time, this paper studies the challenges,
design and potential benefits of the hybrid cloud-assisted
VoD deployment. We first propose a cloud-assisted VoD
architecture and formulate the problem. Then using the
traces from three large-scale video streaming systems, we
extract many key characteristics of these systems which are
relevant to the hybrid cloud-assisted deployment. We design
three heuristic migration strategies and make extensive
trace-driven performance evaluation.
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Besides Clients/Server-based VoD systems, there also
exist many large-scale peer-assisted VoD systems (e.g.,
PPLive, PPStream [9], and Joost [7]). Considering the lim-
ited peers’ uplink capacity and the popularity of high defini-
tion movies, these systems still need to provide huge server
bandwidth. For example, PPLive needs at least 10Gbps
server bandwidth to support its peer-assisted VoD service.
Similar to Client/Server-based VoD systems, the server
bandwidth utilization is less than 40%, with much idle band-
width in the morning [17]. Therefore, it is also beneficial
to migrate partial videos of such systems to content clouds.
We analyze the necessary change in current peer-assisted
VoD systems when they are migrated to content clouds,
and find the migrated videos to cloud can be reduced by a
large margin through only small change in peer replication
strategy.

The contribution of this paper are as follows:

(1) We collect the traces from two large-scale VoD ser-
vices, (i.e. Hulu and PPLive), and a crowdsourced
video platform (i.e. Twitch.tv). The Hulu trace con-
tains the top-5000 most popular videos information
every hour over one month. The PPLive trace con-
tains three parts: the simultaneous online users every
5 minutes over 10 months; the integrated server band-
width load; and the video popularity distribution. The
twitch.tv trace contains the source stream distribution
and view demand distribution in one day, respectively.
We process these data to extract many of the key char-
acteristics of large-scale video streaming deployments.
Particular attention is given to the characteristics rele-
vant to the cloud migration deployment.

(2) Aiming to meet the clients’ requests while minimiz-
ing the total bandwidth cost, we design three heuristic
migration strategies (active, reactive and smart strat-
egy), that only need current system information. Our
evaluation results show that the smart strategy, which
updates the set of videos in the cloud once a day, is suf-
ficient. It is efficient and cost-saving, while the active
and reactive strategies, which update multiple times
a day, can provide a better user experience at higher
costs.

(3) We explore the traces from PPLive and Hulu to drive
simulations for the hybrid cloud-assisted deployment.
The results show that: (a) The hybrid cloud-assisted
deployment can save around 30% bandwidth expense
based on current the unit bandwidth price of cloud and
that of the ISPs. It also can handle unpredicted flash
crowd with very little cost by the cloud storage over-
provisioning. (b) The chosen of the server bandwidth
capacity play the most important role in the cost sav-
ings. (c) The cloud storage size and the cloud content
update strategy play the key roles in user experience.

(4) We point out the low efficiency of conventional peer
replication strategy in peer-assisted VoD systems,
and propose a cloud-friendly replication strategy. Our
PPLive trace-based simulations show that the number
of migrated videos in cloud can be reduced by a factor
of 4, with trivial reduction in peer upload utilization.
This is especially beneficial when network bottleneck
exits between cloud and self-owned servers.

The rest of the paper is organized as follows. In section 2,
we propose a hybrid cloud-assisted VoD delivery architec-
ture, analyze its cost composition and formulate the prob-
lem. Section 3 presents characteristics of large-scale VoD
services, and shows potentials and challenges of the hybrid
cloud-assisted VoD delivery architecture. In Section 4,
we propose three heuristic migration strategies to solve
these challenges. Section 5 presents evaluation, using real
traces from two large-scale VoD systems Hulu and PPLive.
Section 6 proposes and analyzes the cloud-friendly replica-
tion strategy. We present related work in Section 7 before
concluding in Section 8.

2 Hybrid cloud-assisted VoD delivery model

In this section, we describe the architecture, the cost com-
position, and the problem formulation of the hybrid cloud-
assisted VoD systems, based on architecture and pricing of
Amazon AWS [1, 2] and Microsoft Azure [3, 4].

2.1 System architecture

As shown in Fig. 1, there are four components in a hybrid
cloud-assisted VoD delivery system: clients, self-owned
servers (also called servers in short), cloud storage and
cloud CDN. The self-owned servers, which are owned by
the VoD providers, store all the original video files, serve
part of the user requests and upload videos to the cloud

Fig. 1 System architecture
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storage. The cloud storage stores a part of video files and
pushes them to the cloud CDN in order to get a better
user experience. The cloud CDN delivers streaming content
using a global network of edge locations. The requests for
your objects are automatically routed to the nearest edge
location, thus the contents are delivered with the best possi-
ble performance. Both the cloud storage and cloud CDN are
owned by the cloud providers.

Based on this architecture, there are four kinds of traffic:
The clients download the videos from both the cloud CDN
and the self-owned servers. The self-owned servers upload
videos to the cloud storage. The cloud storage pushes these
videos to the cloud CDN.

2.2 Cost composition

The cost under the cloud-assisted VoD delivery mode can
be divided into four parts (note that the cloud providers do
not charge video providers for the data transfer between the
cloud storage and the cloud CDN):

(1) Self-owned server bandwidth cost: it includes the
bandwidth consumed to deliver videos to the clients
and to upload the videos to the cloud.

(2) Out-cloud bandwidth cost: the bandwidth consumed to
deliver videos from the cloud CDN to the clients.

(3) Into-cloud bandwidth cost: the bandwidth cost charged
by cloud providers for the video uploading.

(4) Cloud storage cost: the cost for disk space that storage
videos in the cloud.

2.3 Problem formulation

Now we formulate the cost and the unmet user requests. To
make the problem easy to discuss but without losing essence
of this problem, we quantize time into discrete time slots,
which may be a few minutes to several hours (e.g., one hour
in our experiment). Table 1 gives all the notations of our for-
mation. Equation 1 gives the total cost of the cloud-assisted
VoD system during the time T*L. The total cost have four
parts including

∑
t=1...L

∑
vi∈M(t) P1Zi as the into-cloud

data cost,
∑

t=1...L
∑

vi∈M(t) P2(D(t) − U(t))T as the out-
cloud data cost, P3CserverT L as the self-owned server cost,
and P4ScloudT L as the cloud storage cost. Equation 2 gives
the unmet user requests during the time T*L. There will be
unmet user requests, if the self-owned servers and the cloud
can not provide enough bandwidth capacity for the average
system bandwidth demand. Equation 3 gives the constraint
for the server bandwidth used for the user requests – it must
be less than both the total system bandwidth demand and
the total self-owned servers bandwidth capacity.

Table 1 Notations of system parameters

Notation Definition

T Time slot size

L Experiment length in terms of time slots

vi Video i

M(t) Set of migrated videos during t th time slot

Di(t) Average user demand for video i during
time slot t

D(t) Average system bandwidth requests
during time slot t

Zi Size of video i

Cserver Self-owned servers bandwidth capacity

B(t) Bandwidth bottleneck between cloud and
self-owned servers

Scloud Cloud storage size

U(t) Average server bandwidth for user
requests during time slot t

S(t) Set of videos in the cloud during time slot t

Pi , i = 1, 2, 3, 4 The unit price of into-cloud data transfer,
out-cloud data transfer, server bandwidth,
and cloud storage

Total cost (TC) is defined as Eq. 1:

T C =
∑

t=1...L

⎛

⎝
∑

vi∈M(t)

P1Zi + P2(D(t) − U(t))T

⎞

⎠

+ P3CserverT L + P4ScloudT L (1)

Unmet user requests (UUR) is defined as Eq. 2:

UUR =
∑

t=1,...,L

Max

⎛

⎝0, D(t)−
⎛

⎝
∑

vi∈S(t)

Di(t) + U(t)

⎞

⎠

⎞

⎠

(2)

Constraints:

U(t) ≤ Min(D(t), Cserver ), t = 1,...,L (3)

The target of a migration strategy is to minimize the total
cost while making the unmet user requests zero. Actually,
we use normalized cost and normalized unmet user requests
as the performance metrics in the Section 5. The normal-
ized cost is defined as the ratio of the total cost under
cloud-assisted VoD systems (shown in Eq. 1) divided by
the total cost under Clients/Server-based VoD systems. The
normalized unmet user requests is defined as the ratio of
total unmet user requests under cloud-assisted VoD systems
(shown in Eq. 2) divided by total user requests. The mea-
surements of VoD services in the next section will show
the potential and challenges in gaining our target. Since
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our measurements show the difficulty to predict the sys-
tem information in the future, we can not expect an optimal
solution. Instead, in Section 4, we propose three heuristic
update strategies, which only use current information, such
as the video popularity. Although simple, they can achieve
near-optimal results as is shown in Section 5.

3 Characteristics of large-scale VoD services,
potentials and design challenges

In this section, we report the characteristics of large-scale
VoD services, which shed insight on an eventual hybrid
cloud-assisted deployment for VoD. Then based on these
observations, we discuss potentials of hybrid mitigation of
VoD services to content cloud and its design challenges. In
Sections 4 and 5, we will use this trace data to explore the
design and potential benefits of the hybrid cloud-assisted
deployment separately.

3.1 Trace collections

We collect the data traces from a leading VoD provider
in America, Hulu, and a leading VoD provider in China,
PPLive. They are two large-scale VoD applications, which
mainly provide movies and TVs. To explore the geo-
distributed video content dissemination, we further investi-
gate a crowdsourced video system Twitch.tv, which is the
world’s leading video platform and community for gamers.1

The Hulu trace, which was crawled from its website,
contains the information of top-5000 most popular videos,
including video name, popularity rank, video length (in
terms of time), and category. Each page lists twenty videos,
hence top-5000 videos are listed in 250 successive pages.2

They are collected every hour over one month (starting
from November 20th, 2010). The PPLive trace, which was
collected by PPLive’s log servers, contains three parts:
the simultaneous online users evolutions; the aggregate
server bandwidth load; the video popularity distribution.
The PPLive trace was collected every 5 minutes over 10
months. The Twitch.tv trace was crawled from its website
from July 6 to July 12, 2014. It has 14 geo-distributed ingest
servers, 1 from Asia area (AS for short), 6 from European
area (EU for short), and 7 from United States area (US for
short) to serve live broadcast for over 44 million visitors per
month in a global scale.

1http://www.twitch.tv/
2http://www.hulu.com/popular?h=18&page=1&timeframe=today

3.2 User demand evolution and potentials

Based on our long-term measurements, we find the user
demand generally exhibits similar daily patterns and similar
peak values every day. However, to illustrate how the hybrid
cloud-assisted deployment can handle the flash crowd well,
Fig. 2 chooses two special consecutive days–November
22nd and 23th, 2010. One 24 set TV series were published
on November 22nd . First, we can see that the number of
simultaneous users achieves its highest value at about 21:00
and the lowest point appears at about 7:00 with the high-
est value 5 times of the lowest one. Second, the peak user
demand suddenly increases by nearly 25% in next day.
Even if service operators can predict the size of this flash
crowd correctly, the provision is very costly for them in the
self-owned servers. Later in Section 5, we can see cloud-
assisted architecture can handle flash crowd very easily and
economically.

Typically today the ISPs bills a customer (such as a VoD
provider) for bandwidth usage using the 95 percentile rule.
Instead, cloud providers charge data transfer with pay-as-
you-go mode. For example, Amazon CloudFront charges
$0.15 /GB in United States and $0.201 / GB in Japan for first
10 TB/month. It only charges $0.03 /GB in United States
and $0.075 / GB in Japan over 1000 TB/month.

From above measurements, we find that the server uti-
lization is very low. For example, in Fig. 2 we can see that
at most time the user demand is lower than 50% on aver-
age with only three hours for peak requests in one day.
Thus, there is an immense possibility that the VoD providers
can get benefits if they buy less server bandwidth from
an ISP and let additional user requests be served by the
cloud. Table 2 shows the potential bandwidth cost savings
under the cloud-assisted VoD delivery mode. The normal-
ized cloud price is defined as the ratio of unit cloud price
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Table 2 Potential bandwidth cost savings under cloud-assisted VoD
delivery mode

Normalized cloud price 1 2 3 4 5 ≥6

Normalized bandwidth cost 0.48 0.67 0.75 0.79 0.84 >0.9

divided by the ISP’s price. The normalized bandwidth cost
is defined as the ratio of server bandwidth cost under cloud-
assisted VoD delivery mode divided by that under traditional
Clients/Server mode. The unit bandwidth prices of the ISPs
[6] and the clouds vary from different providers and we find
the normalized unit cloud price is generally from 1 to 10.
We only focus on the case where normalized unite cloud
price is between 1 and 5, since the benefits might be trivial
if the potential bandwidth savings are less than 10%. The
unit price of content cloud is expected to be lower with its
technology advance.

3.3 Video popularity distribution

Since a large volume of user requests are directed to a
cloud in our hybrid solution, it should be guaranteed that
the videos in the cloud can attract no less requests than what
should be severed by cloud. In order to reduce cloud stor-
age cost, it is always a good idea to store the most popular
videos in the cloud. Then, some natural questions raised
are: How many videos should we upload to the cloud? How
much cloud storage do we need to store those videos? In
order to solve those questions, we need to know the video
popularity distribution. Figure 3 plots the CDF (Cumula-
tive Distribution Function) of simultaneous peers against
video ranks. The horizontal axis represents the popularity
of videos, with video ranks normalized between 1 and 100.
The graph shows that the top 10% popular videos attract
nearly 50% views and the top 20% popular videos attract
nearly 70% views. This result infers that we can employ our
hybrid solution with a limited cloud storage cost.
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Fig. 3 Video popularity distribution

3.4 Video popularity evolution and design challenges

Although the VoD providers can get benefits from the band-
width cost reduction for the user requests, they also have
to pay additional expense for the data transfer between the
cloud and the self-owned servers. Thus, if the set of the most
popular videos changes too frequently, it will cost the VoD
providers a lot of money to upload current most popular
videos to the cloud. In this section, we measure the video
popularity evolution of the top-5000 most popular videos
provided by Hulu. We investigate how quickly the popular-
ity ranks and the aggregate popularity of top-k most popular
videos change over time. Our data analyses show that the
video popularity changed very frequently, which means a
lot of videos in the cloud should be replaced.

Figure 4 shows the popularity decay of the most popular
videos in the cloud under different cloud storage sizes. We
assume that the cloud stores a certain number of the most
popular videos at the start time, and never updates those
videos. We consider different sample times, and gives the
average value in Fig. 4. Figure 5 shows the corresponding
average, maximum value and minimum value to that in
Fig. 4, when the cloud storage size is 1000 files. From
Figs. 4 and 5, we can find that: (1) The popularity evolution
shows daily pattern. (2) The popularity of the most popular
videos decays by 20% after the first day and decays another
20% after anther nine days. (3) Similar popularity decay
patterns are shown under different cloud storage sizes. (4)
The little difference among average, maximum and mini-
mum decay curves show that popularity decay patterns are
not related to the start time.

Since the popularity of the most popular videos demon-
strates an obvious decay within the first day, we further
examine the popularity variation in a one-day period. We
match every current top-k video with all top-k videos an
hour(or two hours...) later, and define the total number of
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unmatched videos as the number of videos leaving top-k.
Figure 6 shows the average number of videos leaving top-k
after an hour, three hours, six hours, twelve hours and one
day. We find that: (1) On average, 11% of videos will leave
the top-k most popular videos after an hour, 22% after three
hours, 30% after six hours, 35% after twelve hours, and
interestingly back to 28% after one day. (2) The update cost
will significantly increase, if the cloud updates the top-k
videos in each hour instead of every 24 hours. (3) The num-
ber of videos that leave top-k is nearly linear to the value of
k. (4) It is very interesting that fewer videos leave the top-k
list after one day than after six hours and twelve hours. One
possible explanation is that people tend to focus on the same
kind of videos during the same time next day.

Figure 7 plots the average percentage of the videos that
leave top-k after different three-hours slots. We find the val-
ues show significant differences for different three-hours
slots. The sharp rank changes happen during the office
hours (9am-5pm) and midnight (0am-3am). One possible
explanation for this may be that Hulu generally publishes
new videos during office hours and the beginning of a day.
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Figure 8 plots the average percentage of the videos that
leave top-k after different one-day periods. It is interesting
that the values show significant differences under different
one-day periods. Particularly, statistically the fewest videos
leave top-k list from 0am to 0am next day. Thus we can
set 0am to 0am next day as the daily video update cycle, in
order to reduce the video update expense.

Figure 9 plots the percentage of the videos that leave the
top-5000 list after one day and three hours. Since we take
many samples, it plots the average, maximum and minimum
values. The horizontal axis is the start time. For example,
the vertical value at horizontal axis 0 means that on average,
13% videos leave the top-5000 list from 0am to 3am, and
30% from 0am to 0am next day. We can witness an obvious
fluctuation of changes whin one day and a bigger fluctuation
of changes whin three hours. This fact means that it is very
difficult to predict the popularity change in the future based
on the previous statistic information.

To explore the geo-distributed video streaming in
Twitch.tv, we divide the locations as AS, EU, and US, and
record the percentage of source streams from each region
in Fig. 10 and corresponding viewer population in Fig. 11
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Fig. 9 Percentage of videos that leave top-5000 in one day and three hours

for every 30 minutes between 3:00 AM to 24:00 PM. In
Fig. 10, it can be easily observed that most of the streams
fromAsia and Europe are during the morning and afternoon,
and the number of streams from the United States keeps
growing when night falls. In Fig. 11, we can see that in the
early morning between 3:00 AM and 7:00 AM, most of the
popular streams come from Europe or Asia. We conjecture
that it is because the local times in Europe or Asia are in
afternoon or evening, and there are more online sourcers
from these regions during that time. Meanwhile, the viewer
demand from these areas can also be more active during
this period. And most of the viewers may prefer the streams
with native language speaking sourcers. Similar reasons can
also explain the increase of viewer demand for the source
streams from the United States after 15:00 PM.

4 Migration strategies

A migration strategy can be divided into three parts: (1)
choose a server bandwidth capacity; (2) choose a cloud

Fig. 10 Source stream distribution in one day

Fig. 11 Viewer demand for the distributed source streams in one day

storage size; (3) choose a cloud content update strategy. In
this section, we design three cloud content update strate-
gies and discuss the impact of the server capacity and cloud
storage size.

4.1 Cloud resource provisioning

The selection of server capacity is related to unit price of
cloud data transfer. Generally higher unit price of cloud data
transfer is, more server bandwidth capacity should be provi-
sioned. The selection of cloud storage size should be related
to how many user requests will be migrated to the cloud.
Generally, more request results in larger cloud storage pro-
visioning. In the next section, we will explore how these two
factors affect unmet user requests and total cost.

4.2 Cloud content replication strategies

Since our measurements show that it is difficult to predict
the system information in the future, we will propose three
heuristic update strategies, which only use current informa-
tion, such as the video popularity. In the next section, we
will find these simple strategies can achieve near-optimal
results.

4.2.1 Active strategy

According to Fig. 2, there is much idle server bandwidth in
the morning, which provides an opportunity to reduce the
cloud content update cost. We can upload more videos in the
morning and thus fewer in the evening. This can utilize the
free server bandwidth in the morning and hopefully reduce
uploading load in the peak time. But it may increase the
unnecessary uploading, because video popularity changes
so quickly that some videos uploaded in the morning might
not be popular any more in the evening. Based on this idea,
we design a strategy called active strategy, which works
as follows: It uploads current most popular videos to the
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cloud and replaces most unpopular videos in the cloud. Ui

is equal to total user bandwidth demand when total user
demand is smaller than the total server bandwidth Cserver .
But when the total user demand is more than Cserver , the
servers must reserve enough bandwidth to update the most
popular videos.

4.2.2 Reactive strategy

To reduce unnecessary uploading, conversely we can upload
videos only if the videos in the cloud can not attract enough
requests. But this method may introduce very large upload-
ing server bandwidth demand in the peak time. Based on
this idea, we design a strategy called reactive strategy, which
works as follows: It uploads videos only if when total user
demand is bigger than the total server bandwidth Cserver .
Ui is equal to total user bandwidth demand when the total
user demand is smaller than Cserver . But when the total
user demand is bigger than Cserver , self-owned servers must
reserve enough bandwidth to update most popular videos to
the cloud.

4.2.3 Smart strategy

Exploring the advantages of both ideas, we propose our last
strategy called smart strategy, which works as follows: It
uploads videos only once in one-day period when there is
idle server upload capacity. It replaces the videos so that all
videos in the cloud are most popular at that moment.

4.3 Discussion of implementation issues

To deal with the dynamic demands in a large scale, initially
we have the geo-distributed self-owned servers. Each self-
owned server can monitor its local viewer demands, which
can be divided into two parts. Some traffic flow can be
served by the dedicated server itself, and the rest can be
redirected toward the provisioned cloud servers or CDN. To
migrate the traffic flow toward cloud, we will implement the
following two steps:

1. Cloud provisioning strategy: We need to provision two
types of resources from cloud platform, i.e., bandwidth
support from cloud servers or CDNs, and cloud stor-
age for video content. As the traffic load of self-owned
server can be released through bandwidth provisioning,
the self-owned server can determine whether to provi-
sion a new cloud server or CDN according to the traffic
load served by itself. As the bandwidth provisioning is
dependent to content replication in cloud storage, the
self-owned server can determine whether to provision
more cloud storage according to the redirected traffic
load toward cloud servers or CDNs. In other words,

the cloud provisioning strategy can be implemented by
self-owned servers through traffic monitoring.

2. Content replication strategy: After the cloud provision-
ing is completed, the self-owned server can upload
the hottest videos to cloud storage. The replication
strategy can select any one of the proposed strategy
(i.e., Active strategy, Reactive strategy, and Smart strat-
egy). Specifically, we can consider a cooperative solu-
tion among multiple self-owned servers in distributed
regions. When the traffic load is heavy in a region,
the content replication can be completed by an idle
self-owned server in another region.

In addition, we can further consider a hierarchical struc-
ture to organize the distributed self-owned servers, cloud
servers, and CDNs, rather than a flat structure. We can uti-
lize a tree-based method to optimize the server organization,
such as allocating the self-owned servers with higher upload
capacities closer to the cloud platform, so that the depth
of the subtree rooted can be minimized. The heterogenous
structure is efficient to avoid the popularity churn and fur-
ther reduce the total cost through the cooperation of servers
in distributed regions. The drawback is that it may lead to
cross-boundary traffic.

5 Trace-driven evaluations

In this section, we use the traces of Hulu and PPLive to
gain critical insights of the hybrid cloud-assisted deploy-
ment. Generally the VoD services have seasonal or other
periodic demand variation. But they also face some unex-
pected demand bursts. We evaluate our migration strategies
in both cases. The performance metrics are the normalized
cost and normalized unmet user requests, which are defined
in Section 2. We use the trace data shown in Section 3 as
experiment parameters, such as the video popularity dis-
tribution and evolution. We set 5000 files as the system
scale.

5.1 Steady-state scenario

In this subsection, we study the performance of our three
migration strategies in steady-state scenario. We define the
steady-state scenario as where user demand shows pred-
icable periodic demand variation. In the steady-state sce-
nario, we can smartly provision server bandwidth capacity
and cloud storage size based on previous user demand
information.

Figure 12 shows the normalized cost under different stor-
age sizes and update strategies. The lower bound cost is
defined as the cost that excludes the cloud content update
cost. We find the performance curves of all three update
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Fig. 12 Normalized cost under different storage sizes and update
strategies

strategies are not far from the lower bound curve. Specif-
ically, the cost under the smart strategy is very close to
the lower bound value and almost doesn’t increase with
the cloud storage size. We configure P1=P2=2*P3 in both
Figs. 12 and 13.

Figure 13 shows the normalized unmet user requests
under different storage sizes and update strategies. The only
difference between active and reactive strategies is whether
videos in the cloud should be updated when the servers have
free bandwidth. Since it does not make different unmet user
requests during this period, active and reactive update strate-
gies give exactly the same results. Compared with these two
strategies, the smart strategy gives worse results. The per-
formance however becomes much better with a larger cloud
storage. From Fig. 12, we know that the aggregate cost
increases very little with the increase of cloud storage under
the smart strategy. Therefore, the smart update strategy can
be a better strategy weighting the trade-off of the cost and
user experience.

Figure 14 shows the normalized cost under different
server bandwidth capacities and unit bandwidth prices.
Since the smart update strategy can be a better strategy
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weighting the trade-off of cost and user experience, we sim-
ply configure the smart strategy as the update strategy. We
set cloud storage size as 1000 files. These settings are also
for Fig. 15.We find both server capacity and unit cloud price
play the significant roles in cost savings. We also find both
a very high or very low of server bandwidth will lead to bad
results. Generally the proper server bandwidth is from 40%
to 60% of the peak user demand. Hence, we set 50% for
experiments of Figs. 12 and 13.

Figure 15 shows the normalized unmet user requests
under different server capacities. The unmet user requests
will reduce quickly with the increase of the server band-
width capacity. In this experiment, the unmet user requests
become zero when the server bandwidth capacity is more
than 30% of the peak user demand.

5.2 Flash crowd scenario

We define the flash crowd scenario as where the daily
user demand pattern changes suddenly and the peak value
becomes much higher than previous days. In this scenario,
the decision is also made based on the previous information.
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We configure P1=P2=2*P3. Here we only use the reac-
tive and smart strategy, since the active strategy shows no
advantages against them.

Figure 16 shows the normalized unmet user requests
under different content update strategies and cloud storage
sizes. The “predictable strategy” refers to the strategy that
can correctly predict flash crowds and chooses an optimal
server capacity based on the correct user demand. Con-
versely, the “unpredictable strategy” refers to the strategy
that can not predict flash crowds and chooses an non-
optimal server capacity based on the previous user demand.
We find the performance decreases by around 2% if we do
not predict the flash crowd. We also find there is 0.25%
unmet user requests under the Clients/Server-based VoD
development. The unmet user requests under the reactive
update strategy are reduced to zero when the cloud size
is more than 900 files. So, the hybrid cloud-assisted VoD
development can handle flash crowd easily by setting a big-
ger cloud storage even if the sudden increased user demand
are not correctly predicted.

Figure 17 shows the normalized cost under different
cloud content update strategies and cloud storage sizes. It
shows that the over-provision of the cloud storage and the
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Fig. 17 Normalized unmet requests under different server capacities

wrong forecast of the user demand do not add too much
additional cost. In sum, the hybrid cloud-assisted deploy-
ment can handle the flash crowd very well with very little
cost. For example, we use the reactive update strategy, and
set storage size to be 1000 files, The aggregate cost is
reduced by more than 32%.

5.3 A brief summary

Based on above analyses, we can achieve the flowing find-
ings: (1) The hybrid cloud-assisted VoD deployment can
save up to 30% bandwidth expense when the unit price of
cloud is twice as that of the ISPs. It can also handle the
flash crowd with less than 2% cost by cloud storage over-
provisioning. (2) The unit cloud price and server bandwidth
chosen capacity play the most important roles in cost sav-
ings. (3) The cloud storage size and the cloud content update
strategy play the key roles in user experience.

6 Cloud-friendly edge peer replication strategy

Even though the modern cloud platform can provide an
elastic and flexible services for the large scale VoD stream-
ing systems, yet the heterogenous demands have presented
heavy burden on current cloud based infrastructure. Fog
computing has been suggested since 2014, which aims to
process certain workloads and services locally on edge peers
(fog), rather than being transmitted to the cloud. On the
other hand, considering the limited peers’ uplink capacity
and the popularity of high definition movies, the system
still need to provide huge server bandwidth. For example,
PPLive needs at least 10Gbps server bandwidth to support
its peer-assisted VoD service. Similar to Client/Server-based
VoD systems, the server bandwidth utilization is less than
40%, with much idle bandwidth in the morning. Therefore,
it is beneficial to migrate partial videos of such systems
to content clouds, and further deploy edge peers in a fog
computing environment. We point out the low efficiency of
current peer replication strategy in peer-assisted VoD sys-
tems, and then propose a cloud-friendly edge peer replica-
tion strategy. Finally we evaluate our strategy using PPLive
trace data and find the number of migrated videos in cloud
can be reduced by a factor of 4, with trivial reduction in peer
upload utilization.

6.1 Motivation

Current peer-assisted system usually adopts the Multiple
Video Caching (MVC) (e.g., PPLive) mechanism which
means peer can store and redistribute a video which was
previously viewed but is not currently played. Each peer is
required to contribute a fixed amount of hard disc storage
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(e.g., 1GB). A peer watches and at the same time stores
video files in its local contributed storage if there is free
space. It shares all videos stored in its local contributed
storage, and entire viewer population thus forms a dis-
tributed peer-assisted storage (or file) sharing system. After
peer’s local storage is filled with the viewed video repli-
cas, if a new video is requested, disk replacement happens.
One viewed video replica is selected to be replaced by the
new watching video. How to regulate this storage system is
undoubtedly the most critical part of the peer-assisted VoD
system, because proper replica distribution among peers
shared disks is the precondition to discover and transmit the
desired contends efficiently with each other.

However, previous peer-assisted VoD systems is aiming
to reduce server bandwidth cost as much as possible while
maintaining user experiences [27, 33]. They do not consider
the video migration cost from the self-owned servers to the
cloud. Now we use a simple example to illustrate how a bet-
ter replication strategy can reduce video replicas in cloud
while not raising total server bandwidth cost.

As is shown in Fig. 18, all replicas of video A, B, and
C are stored in three peers (Peer 1, 2 and 3). There is 1
current viewing user for each video. There are two repli-
cation strategy, a proportional replication and a skewness
replication, namely. The proportional replication means the
replicas number of a video is proportional to its viewer num-
ber. The skewness replication means all replications expect
the proportional replication and Fig. 18 gives an example.
We assume a simple schedule strategy: a viewer will request
video to all peers who has its replica, and an uploader will
upload data to all its requests uniformly. We also assume
that all peer has a uniform upload capacity. Under these
assumptions, the additional server bandwidth cost of each
viewer will be Si = max(0, 1 − ρ ∗ Ri/

∑
Rj ).

If ρ = 2/3 and taking the skewness replication, then
Sa = 0, Sb = 1/3, Sc = 2/3, we only need to store V ideob

and V ideoc in cloud. While if ρ = 2/3 and taking the pro-
portional replication, then Sa = 1/3, Sb = 1/3, Sc = 1/3,
we need to store all three videos in the cloud. Both strategies
produce same server bandwidth cost:1, but the skewness
replication reduces the cloud storage cost and thus migration
cost. Note that the skewness replication strategy does not

Fig. 18 Illustration of proportional and skewness replication
distribution

always lead to better performance than proportional replica-
tion strategy, particularly if ρ ≥ 1, although the peer upload
capacity is generally less than streaming rate. For example,
we assume ρ = 1. If we take the skewness replication, then
Sa = 0, Sb = 0, Sc = 1/2, and the server bandwidth cost
is 1/2. While if we take the proportional replication, then
Sa = 0, Sb = 0, Sc = 0, and it do not produce server
bandwidth cost.

6.2 Cloud-Friendly replication strategy

From above example, we know a skewness replication dis-
tribution probably leads to good performance in terms of
least number of videos stored in the cloud. Now we will
get some general conclusion. Before that, we first define a
cloud-friendly replication strategy called chunked propor-
tional replication distribution. It does not replicate Top-k
most popular videos, and all rest videos have propor-
tional replicas to their requests. The parameter K depends
on the amount of videos directed to the cloud (denoted
as Vcloud ). k is chosen as the least integer which makes∑k

i=1 Vi > Vcloud .
We make similar assumptions as in the motivation exam-

ple: a viewer will request data to all peers who has requested
replicas; a unloader will upload data to all its requests uni-
formly; all peer has a uniform upload capacity. Under these
assumptions, we can get the following conclusion:

Theorem 1 If ρ ≥ 1, proportional replication distribution
can get optimal solution. If ρ ≤ 1, chunked proportional
replication distribution can get optimal solution.

Proof If ρ ≥ 1, Si = 0, for each i=1,..,M. All requests are
served by other peers. Thus, neither the server bandwidth
nor the migration cost is needed. If ρ ≤ 1, this k fulfils∑M

i=k Vi ≥ ρ × N . Thus all peer’s upload capacity can be
fully utilized, thus the request server bandwidth (either from
self-owned servers or cloud) is least. Meanwhile, since the
top-k most popular videos are purely severed by servers, the
least videos are needed to be uploaded to the cloud given
the amount of migrated traffic that the cloud should serve.
Therefore, Theorem 1 is proved.

One concern is how to achieve the chunked proportional
replication distribution by a replacement algorithm. For the
proportional part, Wu et al. [27] showed with extensive sim-
ulations that, the performance margin enjoyed by optimal
strategies over the simplest algorithms (e.g., LRU) is not
substantial, when it comes to reducing server bandwidth
costs in peer-assisted VoD systems. For the chunked part,
we can neither replace all replicas of top-k most popular
videos nor produce them in a minute. Thus we can use above
algorithms to regulate replication distribution but disable the
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replicas of the top-k most popular videos, which should be
in the cloud. For example, a peer can do this by not telling
other peers that it has such video replicas. Thus, these repli-
cas can not be found and requested until these videos are
moved out of the cloud. In the next subsection, we will
examine the performance of this simple implementation.

6.3 Performance evaluation

In this subsection, we compare the performance of the
proportional replication strategy and our proposed cloud-
friendly strategy based on the PPLive video popularity
distribution data, which is shown in Fig. 3.

Figure 19 compares the least number of migrated videos
in the cloud under different replication strategies. The least
number of migrated videos is defined as the least integer
k which makes

∑k
i=1 Vi > Vcloud . We find that it needs to

migrate much fewer videos to the cloud under the cloud-
friendly replication strategy. Recall that the system gains
the most bandwidth cost saving generally when migrating
less than 50% of total traffic. Thus we particularly zoom
up this region, and find that only less than 10% of videos
should be migrated in this region. When ρ = 1/2 and the
migrated traffic is 50%, the number of migrated videos can
be reduced by a factor of more than 4.

The peer upload capacity may be not fully utilized
because the replicas of some videos are disabled by the
chunked proportional replication strategy. For example, if
all replicas of a peer stores are videos in the cloud. It seems
that this peer stores nothing from other peers’ perspective,
because these replicas are disabled by the system. Figure 20
shows the increased server bandwidth cost by the cloud-
friendly replication strategy. We configure each peer stores
four videos, which is a generical case in PPLive. Since
Fig. 17 shows less than 10% of videos should be migrated
to gain most server bandwidth cost saving, we zoom up this
region. We find the increased server bandwidth cost is less
than 0.25% in this region.
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Fig. 20 Increased server bandwidth cost

In sum, our PPLive trace-based simulations show that the
number of migrated videos in cloud can be reduced by a
factor of 4, with trivial reduction in peer upload utilization.
This is especially beneficial when network bottleneck exits
between cloud and self-owned servers. Although a lower
peer upload utilization increases the server bandwidth cost,
it reduces peer upload load on the other hand.

Note that our simple model does not consider the peer
churn and the heterogeneous peer upload capacity. Based
on a more complicated model, a recent research showed
that the proportional replication strategy is not optimal in
reducing server bandwidth cost [27]. Based on the real-
world development and some trace data, our previous work
also showed that the proportional replication strategy and
the LRU replacement algorithm does not give an optimal
result, although very close to it. A more recent research
[33] proposed and analyzed a generic replication algorithm
RLB which balances the service to all movies, for both
deterministic and random demand models, and both homo-
geneous and heterogeneous peers. Nevertheless, we can
simply replace the proportional replication part of truncated
proportional replication strategy by these better replication
strategy.

7 Related work

As a novel computing paradigm, cloud services provide
flexible resource allocation on demand with the promise of
realizing elastic, Internet-accessible computing on a pay-
as-you-go basis [13]. We have seen many new generation of
cloud-based services that emerged in recent years, which are
rapidly changing the operation and business models in the
market. A prominent example is Netflix, a major on-demand
Internet video provider. Netflix migrated its entire infra-
structure to the powerful Amazon AWS cloud in 2012, using
EC2 for transcoding master video copies to 50 different ver-
sions for heterogenous end users and S3 for content storage [2].
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Leveraging the elastic and flexible resource provisioning,
many researchers pay attention to develop cloud assisted
video streaming systems with the Quality-of-Service (QoS)
guarantee to support various video streaming applications.
For the social aware video applications, the online social
network interaction among users can facilitate to build sta-
ble relationship in cloud environment. Wang et al. [25]
proposed a cloud-assisted adaptive video streaming with
social-aware video prefetching to avoid intermittent disrup-
tions and long buffering delays. Hu et al. [15] presented a
social video replication and user request dispatching mech-
anism in the cloud content delivery network architecture to
reduce the system operational cost. Nan et al. [21] devel-
oped an efficient multimedia distribution approach taking
advantage of live-streaming social networks to deliver the
media services from the cloud to both desktop and wire-
less end users in a large scale. For the video streaming
over mobile devices, cloud computing can offer a natu-
ral solution to reduce the cost of deploying and operating
mobile media networks [26]. Zakerinasab et al. [29] pro-
posed an energy-efficient cloud-assisted streaming system
for smartphones with a two-level scheme. Hu et al. [16]
further proposed a public cloud assisted architecture to alle-
viate the traffic burden to the social service providers and
further reduce the service latency of mobile users. For the
encoding, decoding and transcoding of video streaming,
the computation-intensive media processing tasks can be
offloaded from the end devices to the cloud platform. In
[10], a cloud-based real-time transcoding and transmission
framework is presented to provide smooth video quality
for mobile devices. In [32], Zhao et al. further explored
a segment-based storage and transcoding trade-off strategy
for multi-version VoD systems in the cloud. However, all
above works only utilize the elastic resource provisioning
to facilitate the video streaming service without considering
the cooperation between the self-owned servers and cloud
platform.

Generally, a geo-distributed cloud is ideal for supporting
large scale media streaming applications by spanning mul-
tiple data centers at different geographical locations. There
have been numerous studies on large scale video streaming
in geo-distributed cloud environment. For example, Wang
et al. [24] presented a generic framework that facilitates
migrating live media streaming toward a cloud platform
for a global service. Qiu et al. [23] investigated optimal
migration of a content distribution service to a hybrid cloud
consisting of private servers and public geo-distributed
cloud services. Furthermore, cloud-based content delivery
networks (Cloud CDN) cache and deliver contents from
geo-distributed cloud data centers to end users. Zhang et al.
[31] proposed an efficient online algorithm for dynamic
content replication and request dispatching in cloud CDNs
operating over a long time span, targeting overall cost

minimization with performance guarantees. Lai et al. [19]
developed a workload scheduling mechanism that aims at
optimizing the tail latency while meeting the cost con-
straint given by application providers. In addition, as a new
paradigm, fog computing refers to a platform for local com-
puting, storage and distribution in edge devices rather than
centralized data centers [22]. Some works are presented as
cost-effective solutions with cooperation between the edge
peers and remote cloud [11]. For example, Yan et al. [28]
proposed a hybrid edge cloud and client adaptation frame-
work for HTTP adaptive streaming to deal with inaccurate
bandwidth estimation and unfair bitrate adaption under the
highly dynamic cellular links. Even though all above strate-
gies consider the cost minimization with performance guar-
antees, our work further analyzes the relationship between
cloud provisioning cost and content replication cost under
the time-varying video popularity. For the first time, we pro-
pose a cloud-assisted VoD architecture and formulate the
online cloud migration problem in details. Using the traces
from three large-scale video streaming systems, we extract
many key characteristics of these systems which are relevant
to the online implementation of cloud migration.

8 Conclusion

This paper considers the challenges, design and potential
benefits of the hybrid cloud-assisted VoD deployment. We
first develop a cloud-assisted VoD deployment model and
formulate the cost. Then using a nine-month PPLive trace,
a one-month Hulu trace, and a one-day Twitch.tv trace, we
extract many key characteristics of large-scale VoD systems
that are relevant to the hybrid cloud-assisted deployment
and analyze exiting opportunities and challenges. Finally,
we design three heuristic migration strategies and make
extensive trace-driven performance evaluation. The simula-
tion results show that our hybrid cloud-assisted deployment
can save up to 30% bandwidth expense based on current
data transfer price of content clouds and ISPs. For a large
scale VoD systems, we propose a cloud-friendly peer repli-
cation strategy, which further reduces the migration cost by
a factor of 4. Our simulation also shows that the cloud price
and server bandwidth chosen play the most important roles
in saving cost, while the cloud storage size and cloud con-
tent update strategy play the key roles in the user experience
improvement.
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