
I Know If the Journey Changes: Flexible Source
and Path Validation

Fan Yang∗, Ke Xu∗†‡, Qi Li§†, Rongxing Lu¶, Bo Wu∗, Tong Zhang‖, Yi Zhao∗ and Meng Shen∗∗‡
∗Department of Computer Science and Technology, Tsinghua University, Beijing, China †BNRist, Beijing, China
‡Peng Cheng Laboratory (PCL), China §Institute for Network Sciences and Cyberspace, Tsinghua University, China

¶Faculty of Computer Science, University of New Brunswick, Canada
‖College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, China

∗∗School of Computer Science, Beijing Institute of Technology, Beijing, China
{y-f14@tsinghua.org.cn, xuke@tsinghua.edu.cn, qli01@tsinghua.edu.cn, rlu1@unb.ca, wub14@mails.tsinghua.edu.cn,

zhangt@nuaa.edu.cn, zhaoyi16@mails.tsinghua.edu.cn, shenmeng@bit.edu.cn}

Abstract—No matter from the perspective of detection or
defense, source and path validations are fundamentally primitive
in constructing security mechanisms to greatly enhance network
immunity in the face of malicious attacks, such as injection,
traffic hijacking and hidden threats. However, existing works for
source and path verification still impose a non-trivial operational
overhead and lack adjustment capability for path dynamic
changes. In this paper, we propose a flexible and convenient
source and path validation protocol called PSVM, which uses an
authentication structure PIC composed of ordered pieces to carry
out packet verification. Specifically, in the basic PSVM protocol,
PIC (related to cryptographic computation) in the packet header
does not require any update during packet verification, which
thus enables a lower processing overhead in routers. To cope with
the challenge of path policy changes in the running protocol, the
dynamic PSVM protocol supports controllable adjustment and
migration, especially in the case of avoiding a malicious node
or region. Our evaluation of a prototype experiment on Click
demonstrates that the verification efficiency of PSVM is barely
influenced by payload size or path length. Compared to the
baseline of normal IP routing, the throughput reduction ratio
of the basic PSVM is about 13%, which is much better than
28% of existing best solution Origin and Path Trace (OPT). In
addition, for a 35-hop path with 30 pieces of PIC needed to be
adjusted in dynamic PSVM, the throughput reduction ratio of
routing cross node performing the adjustment operation after
normal verification is only 2.4%.

Index Terms—source and path validation, PSVM, dynamic
verification

I. INTRODUCTION

It is inevitable that current networks are so popular that we
cannot image our today’s lives without them [1]. Nevertheless,
it is still very challenging to make sure a given policy has
been properly implemented in current networks, even for some
basic path policies. In particular, since network users cannot
confirm the source authenticity of data, and network operators
also cannot guarantee that the user packets are not detoured
in transmission, numerous network attack surfaces are opened
up today [2]–[4]. For example, an attacker may try to flood
arbitrary packets from multiple spoofed sources to waste
downstream resources. Traffic hijacking happens frequently
[5] where packets may go through an eavesdropping node,

resulting in a potential leakage of sensitive information [6]. It
is easy to tamper packet contents on the path and insert other
loads such as malicious code.

Although a great deal of attention has been paid to source
authentication [7], [8], the verification of a packet’s actual path
has been neglected by comparison. Some existing approaches
for IP path tracking fail to solve the above problems, being
unable to identify path deviation [9], [10]. Recently, there are
several proposals addressing both source and path validation
that fill the void, such as ICING [3] and OPT [2]. However, for
the targeting environment which is adversarial, high-speed, and
variable-path, their protocols still have significant processing
overhead, and do not support the adaptive adjustment of
routing node verification when the path policy changes.

In this paper, we design a new protocol for source and path
validation, termed PSVM (Piece Split Validation Mechanism),
which aims to confirm whether packets have been forwarded
correctly in the data plane according to intended path policies.
We engineer a flexible authentication structure called PIC,
which translates the intended path policies (including the
source) into a check set consisting of ordered path information
pieces, instead of a whole value as usual. PSVM embeds
PIC into the packet header as a validation standard before
the session starts, and minimizes operations on PIC in nodes,
which can significantly reduce packet processing latency and
optimize communication cost. More importantly, by replacing
PIC pieces, PSVM can support dynamic validation of actual
packet transmission. Our contributions are three-fold:
• We introduce a basic PSVM protocol (in Section II-C). It

does not update any PIC pieces in packet headers during
packet verification, which enables a low overhead of
processing in routers. This superiority is decisive because
it only performs complex computation once, while the
existing best-practice OPT still needs to do that twice.

• To the best of our knowledge, among existing source
and path validation solutions, our dynamic PSVM (in
Section III-A) is the first to support online migration and
adjustment of node verification in the case of the intended
path changes. It is trying to answer (1) whether it was
possible to build one, (2) how to build one, and (3) what978-1-7281-6887-6/20/$31.00 c© 2020 IEEE

it would cost to cope with the variable-path challenge.
Indeed, it has good cost-effectiveness when intended path
changes due to safety reasons.

• We implement our PSVM prototype on Click [11] and
evaluate basic and dynamic PSVM protocols in different
scenarios on a prototype-based real testbed (in Section
V). The evaluation results indicate that the verification
efficiency of PSVM in routing nodes is barely influenced
by payload size or path length, and PSVM achieves a
high throughput.

II. PSVM BASIC DESIGN

In this section, we first introduce PSVM architecture, and
then present the basic idea of PSVM validation and show its
protocol design.

A. PSVM Architecture

PSVM is a validation protocol committed to providing
capability to verify source authenticity and consistency of data
plane forwarding and control plane path policies. To support
the protocol, we employ PSVM architecture that separates
general service functions from routing nodes, and its design
is inspired by [3], [4], [12], some of which were actually
used. Fig. 1 shows PSVM architecture, where a guarantee for
the control plane path policies can be implemented by the
provider’s trusted agent, which is called Credible Guarantee
Agent (CGA).

In PSVM architecture, CGAs interact with different nodes
through PSVM protocol packets, e.g., responding to a node’s
request or error report. Each CGA manages some nodes. The
master key of a node (KeyNi) is only shared between the
node (Ni) and its corresponding CGA. Then, CGA is able
to derive a session symmetric key (KeySessionNi) from the
node’s master key (without seeking help from node Ni) [13]
to calculate the authentication structure for source and path
validation, which is treated as a path policy certificate. In
particular, different providers may build one or more CGAs
according to their needs, and CGA’s service capability may be
a virtual function module backed up or migrated on multiple
CGAs, which enables the architecture with better availability
and robustness.

B. Assumptions

We aim to achieve real-time session packet verification for
data plane forwarding. We assume that existing secure routing
protocols can enable end-nodes to learn the AS- or router-level
intended path that packets will traverse. There are many ways
that end-nodes (i.e.,the sender and receiver) could know path
information, such as network topology analysis [14], obtained
from some BGP related protocols [15], [16], or employing the
existing control plane routing protocols [13] (especially Pathlet
[17] or SCION [18] where the path is assigned by end-nodes).

Moreover, we assume that each node would use the self-
certifying system (e.g., IDs as public keys) to sign the gener-
ated PSVM protocol packets containing requests, responses,
and error reports according to security requirements. This

Fig. 1: The PSVM Architecture and Basic Workflow Overview.

paper temporarily does not discuss the loss of protocol pack-
ets, which may have a higher priority or be dispatched for
multi-times and in multi-ways in practice to ensure a greater
probability of being received. Furthermore, we suppose that
node Ni and its CGA would use secret methods (such as
Diffie-Hellman [19]) to share the master key (KeyNi), which
may be replaced if necessary to prevent cryptanalysis attacks.
The session symmetric key of Ni (KeySessionNi) can be derived
through pseudo-random operation functions [13] by Ni and its
CGA, respectively, without long-term storage or re-exchange.
Finally, we assume all the nodes in a session are loosely time
synchronized (e.g., using NTP).

C. Basic PSVM Protocol

Compared to general source and path authentication proto-
cols dealing with intended path information as a whole and
lacking flexibility, we develop a piece by piece authentica-
tion structure called PIC, which divides the intended path
information representing forwarding policies into a number
of sequential pieces and each piece named as Pic logically
expresses an directed adjacent relationship of two nodes.
Session initialization. (1) Requesting PIC structure. The
sender needs to apply for a PIC structure of the session by
submitting essential materials (including the intended path
information and session time limit T DL , etc.) to the relevant
CGAs. After confirming the legitimacy of application, CGAs
generate the Pics of PIC separately with the routing nodes’
session keys and reply to the sender. Since all Pics are returned
with a higher transmission priority, if the Pic belonging to a
CGA has not arrived on time after a number of requests, the
sender could request a CGA backup service for the piece to
complete the corresponding Pic application.
(2) Session notification. CGAs will push tailored session
notices NoticeNi (computed by Formula (1)) to each node
on the path, which reminds the intended node of the session
for subsequent verification.

NoticeNi = EncKeySN
Ni

(SessionNum ‖ S ‖

D ‖ T DL ‖ i), SignSKCGA
(NoticeNi)

(1)

(3) PSVM packet creation. The sender configures session
packets with a PSVM header (as shown in Fig. 2), and delivers
them to the next hop.
• SN : Hash of source S, destination D, session time limit

in D (T DL), and session symmetric key of S (KeySNS),
denoted as H(S ‖ D ‖ T DL ‖ KeySNS);

Fig. 2: PSVM Header. The value in parenthesis is the size of the
field.

• INDEX (OPTIONAL FIELD): It is the directory of authenti-
cation structure PIC in the next field Encryption PIC,
which gives W different labels to help different nodes
find their corresponding Pics.

• ENCRYPTION PIC: This field contains W Pics that are
generated by CGAs (computed as Formula (2)).

Pici = EncKeySN
Ni

(Ni−1, Ni+1)

PicD = EncKeySN
D

(D − 1, S,KeySNS)
(2)

• H(P)KeySN
S

: This is the hash of the packet’s payload
using the session key KeySNS of S.

Session validation. (1) Intermediate node validation. When
receiving a packet, an intermediate node Ni first checks its
notice list to prevent unauthorized packets from being passed.
For efficient verification, Ni only verifies its own Pici in the
packet header, and the validation process (shown as Algorithm
1) does not need to update Pici.

Algorithm 1 Intermediate Node Validation Pseudocode
Require: Ni maintains a list of session NoticeNi in real time, which adds

the received ones and removes the expired ones.
1: function VALIDATION BY INTERMEDIATE NODE Ni

2: SN ’ ← The SessionNum in packet header
3: T D

L ’ ← The T D
L in packet header

4: Fast look up SN ’ in the list by T D
L ’ as a pointer

5: if look up SN ’ unsuccessfully then
6: Return error report
7: N ′i−1 ← Collect the actual entry
8: i ← Locate N ′is P ici
9: Compute Pici =DecKeySN

Ni

(Ni−1, Ni+1)

10: if (decode Pici successfully) and
11: (N ′i−1 = Ni−1) then
12: Forward the packet
13: else
14: Drop the packet
15: Return error report
16: end if
17: end function

(2) Destination validation. If the packet has not been dropped
halfway until reaching D and the check of D − 1’ has
succeeded, D is assured that the packet’s actual path is already
bounded to the intended one in the light of property of Pics.
Then, the conformance test of S′ in packet header and S
in PicD is a helper to confirm the claimed S′ matches the
expected S (shown as Algorithm 2). Finally, because the value
in H(P)KeySN

S
field as a mark is calculated by S using the

secret KeySNS , the correct result of re-calculating the actual
hash of the packet’s payload by KeySNS in PicD proves the

packet payload is integrated, and re-tells that the packet is
indeed originated from the expected S.

Algorithm 2 Destination Validation Pseudocode
1: function VALIDATION BY DESTINATION D
2: SN ’ ← The SessionNum in packet header
3: T D

L ’ ← The T D
L in packet header

4: Fast look up SN ’ in the list by T D
L ’ as a pointer

5: if look up SN ’ unsuccessfully then
6: Drop the packet
7: D-1’ ← Collect the actual entry
8: S’ ← The source in packet header
9: H(P)KeySN

S
← The field value in packet header

10: Compute PicD =DecKeySN
D

(D − 1, S,KeySN
S)

11: if (decode PicD unsuccessfully) or
12: (D − 1′ 6= D − 1) then
13: Drop the packet
14: Compute H(P)′

KeySN
S

=MACKeySN
S

(payload)

15: if (S′ 6= S) or
16: (H(P)′

KeySN
S

6= H(P)KeySN
S

) then
17: Drop the packet
18: else
19: Accept the packet
20: end if
21: end function

III. REFINEMENT TO BASIC PSVM

In this section, we further introduce an improvement to basic
PSVM called dynamic PSVM, and more detailed design of the
improvement can be found in [20].

A. Dynamic PSVM

In order to execute real-time verification, existing source
and path validation protocols embed the known test standard
representing path policies in the packet in advance. Unfor-
tunately, existing protocols do not take the factor of path
policy changes into account, let alone that their test standard
weave the path policy as a whole into a complex structure
(e.g., an encrypted nested structure), which has a large cost
of temporary modification. We further propose a dynamic
validation method based on our flexible PIC structure to help
basic PSVM overcome the above difficulties. As our PSVM
is concerned with forwarding verification and is orthogonal to
the problem of routing policy selection or even network failure
recovery, dynamic PSVM is performed after the network
environment is rebuilt. And we mostly assume that the sender
is now ready for a candidate intended path.
Asking for new PIC. The sender S will request new Pics of
PIC structure from CGAs in the same way as basic PSVM
(Stage 1© in Fig. 3), but CGAs will reply both S and the first
cross node of the old and new paths, which is N2 in stage 2©
or may be before N2 in practice. The location of cross-node
may have a slight impact on cost-effectiveness of dynamic
PSVM. Together, CGAs will notify useless nodes on the old
path to cancel the session and inform all nodes on the new
intended path to add or update the session through NoticeNi.
Dynamic verification. S launches the rest of session packets
carrying new Pics in the PSVM header to the next hop. In
addition to the check of previous hop information, N2 also

Fig. 3: The dynamic PSVM workflow overview.

needs to detect whether the intended next hop is N3 or Nn
in Pic2 of currently arriving session packets. If it is N3,
representing that the packet takes old Pics and has been away
from S before the dynamic change, N2 will replace the old
PSVM header into the new one and continue to send it to the
normal downstream. Once there is Nn, N2 will stop replacing,
which means Pics in the packet header is already new and
the adjustment process has been completed at the moment in
stage 5©. It is worth considering that in the case of network
topology having no change but avoiding a malicious node or
region, dynamic PSVM is more affordable and flexible.

IV. SECURITY ANALYSIS

This section discusses how our PSVM guards against a
computation-limited attacker that may compromise the routing
node at different stages of data transmission.
Malicious forwarding. If an attacker wants to redirect packets
to any honest node Nj that is not on (or on) the intended path,
it cannot create a legal Picj without the session key of Nj ,
and cannot pass the validation of Nj .
Modification of source address or payload. If a malicious
node changes the source address, the destination D cannot
verify PicD correctly which is encoded with the claimed
source information and is frozen without the session key of D.
Similarly, the destination D will be aware whether the payload
is replaced when comparing the hash field H(P)KeySN

S
.

Injection & Cloning attacks. Without the session keys, the
malicious node can only inject packets of a valid session to
the next hop on the session path, and can only inject packets
with the same header and payload as the normal packets seen
before. Then such injection or cloning could be mitigated by
the session time limit T DL in PSVM.
Hidden threat. In PSVM, as long as the hidden node involves
in the forwarding process, it will be found by the honest next
hop using above approaches. It does not matter whether the
packet contains the hidden node’s mark.
Availability attack. When dealing with requests, CGA may
be attacked by usability. A CGA victim can quickly migrate
its capability to other reliable agents of providers. If there is
a potential leak of session keys, the victim node is convenient
to re-derive a session key, which just releases a replacing
messages to the corresponding CGA instead of exchanging
the session key itself.
Collusion. It is a conventional case that a malicious node
cooperates with another node by sharing their session keys
and may try to skip the honest nodes between them, or even

redirect the packet to any other nodes outside the intended
path. As long as the packet passes through an honest node
during the delivery process, it cannot complete the PSVM
legitimate validation of the honest node. Secondly, the skipped
normal nodes will send the corresponding error report if no
session packet is received within the session time limit.

In PSVM architecture, if a CGA is compromised to do bad
things, such as revealing the session key, sending the notice
or generating the Pics for the attacker. Based on the error
reports, the destination can find: 1) some nodes on the intended
path do not receive session packets, or 2) some nodes not on
the intended session path are receiving session packets, which
could help to discover potential troubles.

V. IMPLEMENTATION & EVALUATION

We implement the prototype source and routing node of
PSVM on a terminal computer and a modular software router
Click [11], respectively. The source node system has one
Intel(R) Core(TM) i5-4200u 1.60 GHz CPU, 4.0 GB memory
and NIC 1000 Mbps. The routing node system has one Intel(R)
Core(TM) i5-5200u 2.20 GHz CPU, 12.0 GB memory and
employs a NIC with a maximum rate of 1000 Mbps. We
conduct evaluations of our PSVM on a real testbed built upon
the prototype using the normal IP routing performance of the
Click router as the baseline, and compare our PSVM with
the-state-of-the-art OPT [2].

TABLE I: The Combinations of Experiment Parameters.

Num Packet Sizes A Path Length (hops) Inserted W1 Pics
\Payload Sizes B (Bytes) \Modified W2 Pics

1 A ∈ {1514} {2, 4, 6, 8, 10, W1 ∈ {2, 4, 6, 8, 10,
15, 20, 25, 30, 35} 15, 20, 25, 30}

2 B ∈ {64, 256, 576, {4, 6, 10} −
768, 1024, 1248}

3 A ∈ {1100, 1514} {10, 35} W2 ∈ {2, 4, 6, 8}
W∗

2 ∈ {6, 8, 10, 20, 30}

TABLE II: The Processing Time and Throughput of the CGA and
Source Operations. ` is the hops of path length.

Operations Processing Time (µs) Throughput (1/Processing Time)
(a) (b)

CGN
0.88`+ 0.08 1.12 ∗ 106/(`+ 0.09) (Pic/s)Pics Calculation

Basic PSVM
0.43 ∗ 10−3`+ 0.51 2.29 ∗ 109/(`+ 1174.29) (Pkt/s)Packets Creation

Method and parameter setup. For fairness, we use the same
128-bit AES algorithm to compute the PSVM’s authentication
structure Pic and OPT’s validation structure MAC, which can
reach the throughput of 48 Gbps in the hardware implementa-
tion technology [21] and will not become a bottleneck of router
forwarding. Moreover, we adopt the SHA-3 based 256-bit
HMAC algorithm to generate hash strings of packet payload
hash (which is truncated to a 128-bit value in packet header).
Since either our PSVM or OPT needs to derive the session
symmetric key, which is cached once calculated, we prefer
to take the key from cache when doing this part. When the
source sends packets to the routing node, we choose different
path lengths, packet or payload sizes, the amount of modified

(a) 4-hop Path in Basic PSVM (b) 6-hop Path in Basic PSVM (c) 10-hop Path in Basic PSVM (d) Throughput vs. W2

Fig. 4: The Average Throughput of Baseline, OPT, and all the Protocols of PSVM in the Routing Node. W2 is the amount of modified Pics
in the dynamic PSVM.

Pics and other parameters to estimate PSVM and OPT in time
and space overhead (see Table I).
The source and CGA overhead. For cost measurement of
CGA’s generation of Pics and Pics insertion at source, we
change the path length (according to combination 1 in Table I),
count the total processing time repeatedly, and fit the functions
of path length and processing time in Table II by using the
least squares linear regression where R2 > 0.99. As shown in
Table II, the cost of Pics calculation would increase by about
0.88 µs per hop and the generation rate of the PIC structure
for a 15-hop path is approximately 74.2K Pics/s.
The routing node throughput in basic PSVM. We inves-
tigate the throughput performance (according to parameters
of combination 2 in Table I), and compute the throughput
reduction ratio of basic PSVM and OPT using the baseline
throughput. Fig. 4 (a) to (c) reveal that: 1) the throughput of
basic PSVM outperforms that of OPT at different path lengths.
The maximum throughput of basic PSVM is about 823 Mbit/s
in 10-hop path, by comparison, the maximum throughput of
OPT is about 675 Mbit/s. This result is mainly caused by
performing twice complex calculation for each packet in OPT
(more than PSVM). 2) despite the path length (or payload
size) changes, the throughput (or throughput reduction ratio)
of basic PSVM and OPT are barely influenced because their
verification operations (such as computing Pics or MACs) are
irrelevant to the path length (or payload size) in a routing
node. With reference to the baseline throughput, the average
throughput reduction ratio for basic PSVM and OPT are 13%
and 28%, respectively. 3) in the destination, basic PSVM’s
operations are still independent of path lengths, but OPT’s are
proportional to path hops.
The routing node throughput in dynamic PSVM. Dynamic
PSVM contains a cross node that is different from other nodes
on the path and not only performs verification operations but
also does new Pics replacement during path adjustment. To
better understand the cost of cross node, we pick out two
reference lines: a) line a©. 656 Mbit/s throughput of basic
PSVM node (a 10-hop path, 1100B packet size). b) line
b©. 839 Mbit/s throughput of basic PSVM node (a 35-hop
path, 1514B packet size). Then, under the same conditions of
reference line a© and line b© (i.e., with the same path length
and packet size in the session), we examine the throughput
of the cross node when it needs to replace W2 and W ∗2
Pics detailed in combination 3 of Table I, respectively. It is
observed in Fig. 4(d) that for a 10-hop path with 8 Pics needed

to be replaced, the throughput of the cross-node is 637 Mb/s
and the reduction ratio is 2.8% compared to the reference
line a©. For a 35-hop path with 30 Pics to be replaced, the
throughput of the cross-node is 819 Mb/s and the reduction
ratio is 2.4% compared to the reference line b©.
The routing node communication and storage overhead.
For communication overhead, OPT and basic PSVM have an
additional protocol header of 52 + 16 ∗ L and 21 + 16 ∗ L
bytes (where L is the path length), respectively. OPT requires a
larger number of bytes, so it would consume more bandwidths.
In a session, the total number of bytes of Pics and notices
generated by CGAs can be calculated as 16∗L+32∗L = 48∗L.
For IP path with the average length of 13.11 hops, it will be
no more than 630B which is shared by the entire session.

For storage overhead, PSVM only store one master key for a
long time to serve the derivation of session keys. Furthermore,
we select a sample trace of CAIDA [22] to translate the cost
of storing the notice list on a routing node in PSVM. The
sample trace shows that the total number of application flows
observed is 12.90463K on average at one time in a routing
node. When a session notice is calculated in 32B, the total
size of the notice list for all application flows stored at the
same time will not exceed 0.42MB, which consumes little
compared to today’s SRAM capabilities [23].

VI. DISCUSSION

Compatibility. As an extension of a common routing protocol,
PSVM can act in conjunction with routing protocols (e.g.,
BGP, OSPF, or Pathlet). PSVM can accommodate IPv4 and
IPv6 address format transmission. In IPv4, we recommend
using a method of embedding Pics with random probability to
simplify basic PSVM, where the PSVM header can be placed
in the optional field of IPv4 headspace.
The SDN scenario. For PSVM deployment, the SDN network
is a natural environment reflected in the following two aspects:
1) The controller of SDN can bear the function of CGAs. 2)
We suggest that a PSVM header in SDN only keeps necessary
information as the protocol identifier, and Index and Pics can
be merged into the session notice. In addition to storing the
original notice information, the routing node also needs to
store its Pic. As shown in a sample trace of CAIDA [22] (in
Section V), with 16 B Pic and 1 B Index, fitting the critical
verification information of all application flows would need
less than 0.22 MB. Yet, the PSVM overhead in an SDN packet
is only 21 B, which is a very exciting result.

VII. RELATED WORK

Path detection and Fault localization. Many researches
provide path validation by making intermediate routers collect
packet information [24], and infer path properties of interest
[25]. Fault localization is recognized as a high-quality online
service, since it enables receivers to efficiently localize faulty
links [26]–[28]. In practice, most of these systems are expen-
sive to deploy, and they all require a certain amount of extra
storage overhead for intermediate routers.
Source and path validation. Current techniques for both
source authentication and path verification have been proposed
in ICING [3], the Origin and Path Trace (OPT) [2], Orthogonal
Sequence Verification (OSV) [4], and PPV [29]. In ICING,
it requires each router to verify the optimized cryptographic
construction PoP for all upstream nodes and generate new
PoPs for every downstream node with the secret keys shared
among all intermediate routers, causing considerable com-
munication and computation overhead. OPT improves the
processing performance of intermediate nodes. OSV uses
orthogonal sequences (instead of cryptographic structure) as
credentials that identify the source and verify the path. PPV
attempts to reduce the communication overhead by means
of probabilistic packet marking, but it cannot carry out real-
time verification at intermediate nodes. Additionally, the above
mechanisms do not support adaptive adjustments in the session
upon environment requirement.

VIII. CONCLUSION

In this paper, PSVM tackles an important missing piece
in current networks — performing a flexible verification for
source authenticity and path consistency based on intended
polices. It achieves many advantages and is superior to related
protocols in terms of throughput performance. We anticipate
our PSVM will promote the work of source and path valida-
tion, stepping forward to the field of practical applications.

ACKNOWLEDGMENTS

This work was in part supported by the National Key
R&D Program of China with No. 2018YFB0803405, Na-
tional Science Foundation for Distinguished Young Schol-
ars of China with No. 61825204, National Natural Science
Foundation of China with No. 61932016, No. 61972039
and No. 61572278, Beijing Natural Science Foundation with
No. 4192050, Beijing Outstanding Young Scientist Program
with No. BJJWZYJH01201910003011, BNRist with No.
BNR2019RC01011, PCL Future Greater-Bay Area Network
Facilities for Largescale Experiments and Applications with
No. LZC0019.

REFERENCES

[1] Y. Zhao, H. Wang, H. Su, L. Zhang, R. Zhang, D. Wang, and K. Xu,
“Understand love of variety in wireless data market under sponsored
data plans,” IEEE Journal on Selected Areas in Communications (JSAC),
vol. 38, no. 4, pp. 766–781, 2020.

[2] T. H.-J. Kim, C. Basescu, L. Jia, S. B. Lee, Y.-C. Hu, and A. Perrig,
“Lightweight source authentication and path validation,” in Proceedings
of ACM SIGCOMM, 2014, pp. 271–282.

[3] J. Naous, M. Walfish, A. Nicolosi, D. Mazières, M. Miller, and
A. Seehra, “Verifying and enforcing network paths with icing,” in
Proceedings of ACM CoNEXT, 2011, p. 30.

[4] H. Cai and T. Wolf, “Source authentication and path validation with
orthogonal network capabilities,” in Proceedings of IEEE INFOCOM
WKSHPS, 2015, pp. 111–112.

[5] D. Madory, “Uk traffic diverted through ukraine,” http://research.dyn.
com/2015/03/uk-traffic-diverted-ukraine.

[6] M. Shen, B. Ma, L. Zhu, R. Mijumbi, X. Du, and J. Hu, “Cloud-
based approximate constrained shortest distance queries over encrypted
graphs with privacy protection,” IEEE Trans. Information Forensics and
Security (TIFS), vol. 13, no. 4, pp. 940–953, 2018.

[7] J. Wu, G. Ren, and X. Li, “Source address validation: Architecture and
protocol design,” in Proceedings of IEEE ICNP, 2007, pp. 276–283.

[8] M. Shen, B. Ma, L. Zhu, R. Mijumbi, X. Du, and J. Hu, “Cloud-
based approximate constrained shortest distance queries over encrypted
graphs with privacy protection,” IEEE Trans. Information Forensics and
Security (TIFS), vol. 13, no. 4, pp. 940–953, 2018.

[9] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Practical network
support for ip traceback,” in Proceedings of ACM SIGCOMM, 2000, pp.
295–306.

[10] A. Yaar, A. Perrig, and D. Song, “Pi: A path identification mechanism
to defend against ddos attacks,” in Proceedings of IEEE SP, 2003, pp.
93–107.

[11] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
click modular router,” ACM Transactions on Computer Systems (TOCS),
vol. 18, no. 3, pp. 263–297, 2000.

[12] D. Boneh and M. Franklin, “Identity-based encryption from the weil
pairing,” in Proceedings of Crypto, 2001, pp. 213–229.

[13] B. Raghavan and A. C. Snoeren, “A system for authenticated policy-
compliant routing,” in Proceedings of ACM SIGCOMM, 2004, pp. 167–
178.

[14] R. Nithyanand, O. Starov, A. Zair, P. Gill, and M. Schapira, “Measuring
and mitigating as-level adversaries against tor,” 01 2016.

[15] S. Kent, C. Lynn, and K. Seo, “Secure border gateway protocol,” IEEE
Journal on Selected Areas in Communications (JSAC), vol. 18, no. 4,
pp. 582–592, 2002.

[16] Y. C. Hu, A. Perrig, and M. A. Sirbu, “Spv: secure path vector routing
for securing bgp,” in Proceedings of ACM SIGCOMM, 2004, pp. 179–
192.

[17] P. Godfrey, I. Ganichev, S. Shenker, and I. Stoica, “Pathlet routing,” pp.
111–122, 2009.

[18] X. Zhang, H.-C. Hsiao, G. Hasker, H. Chan, A. Perrig, and D. G.
Andersen, “Scion: Scalability, control, and isolation on next-generation
networks,” in Proceedings of IEEE SP, 2011, pp. 212–227.

[19] V. Boyko, P. MacKenzie, and S. Patel, “Provably secure password-
authenticated key exchange using diffie-hellman,” in Proceedings of
Eurocrypt, 2000, pp. 156–171.

[20] “Technical Report,” https://www.dropbox.com/s/c7fbtn0x6dx6nwc/TR
PSVM.pdf?dl=0.

[21] “Aes fast,” http://cavium.com/processor security nitroxII.htm.
[22] “Passive monitor: equinix-chicago,” http://www.caida.org/data/monitors/

passive-equinix-chicago.xml.
[23] “Reliable, high-performance synchronous srams from cypress,” http://

www.cypress.com/products/synchronous-sram.
[24] S. Narayana, M. Tahmasbi, J. Rexford, and D. Walker, “Compiling path

queries,” in Proceedings of NSDI, 2016, pp. 207–222.
[25] D. Levin, Y. Lee, L. Valenta, Z. Li, V. Lai, C. Lumezanu, N. Spring, and

B. Bhattacharjee, “Alibi routing,” in Proceedings of ACM SIGCOMM,
2015, pp. 611–624.

[26] X. Zhang, Z. Zhou, H. C. Hsiao, T. Kim, P. Tague, and A. Perrig,
“Shortmac: Efficient data-plane fault localization,” 2011.

[27] C. Basescu, Y. H. Lin, H. Zhang, and A. Perrig, “High-speed inter-
domain fault localization,” in Proceedings of IEEE SP, 2016.

[28] B. Wu, K. Xu, Q. Li, B. Liu, S. Ren, F. Yang, M. Shen, and K. Ren,
“Rfl: Robust fault localization on unreliable communication channels,”
Computer Networks, 2019.

[29] B. Wu, K. Xu, Q. Li, Z. Liu, Y. Hu, M. J. Reed, M. Shen, and F. Yang,
“Enabling efficient source and path verification via probabilistic packet
marking,” in Proceedings of IEEE/ACM IWQoS, 2018.

