
1448 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 5, OCTOBER 2011

Defending Against Distance Cheating in
Link-Weighted Application-Layer Multicast

Dan Li, Member, IEEE, ACM, Jianping Wu, Senior Member, IEEE, Jiangchuan Liu, Senior Member, IEEE,
Yong Cui, and Ke Xu, Senior Member, IEEE, Member, ACM

Abstract—Application-layer multicast (ALM) has recently
emerged as a promising solution for diverse group-oriented appli-
cations. Unlike dedicated routers in IP multicast, the autonomous
end-hosts are generally unreliable and even selfish. A strategic
host might cheat about its private information to affect protocol
execution and, in turn, to improve its individual benefit. Specifi-
cally, in a link-weighted ALM protocol where the hosts measure
the distances from their neighbors and accordingly construct the
ALM topology, a selfish end-host can easily intercept the mea-
surement message and exaggerate the distances to other nodes,
so as to reduce the probability of being a relay. Such distance
cheating, rarely happening in IP multicast, can significantly im-
pact the efficiency and stability of the ALM topology. To defend
against this kind of cheating, we present a Vickrey–Clarke–Groves
(VCG)-based cheat-proof mechanism in this paper. We demon-
strate a practical mapping from the utility, payment, and welfare
of a VCG mechanism to the link-weighted ALM context. Based
on this, we further discuss practical issues for implementing the
cheat-proof mechanism—specifically, a trustworthy distributed
algorithm for payment computation. Performance analyses show
that the overheads of the computation, storage, and communi-
cation of our implementation are controlled at low levels, and
extensive simulations further testify the implementation’s effec-
tiveness. Although there are other similar studies in this area, the
contribution of our cheat-proof mechanism and its implementa-
tion primarily lies in two aspects. On one hand, we first explicitly
solve the distance cheating problem in link-weighted ALM since
its proposal by mapping the VCG mechanism to link-weighted
ALM context. On the other hand, our distributed implementation
can not only effectively defend against distance cheating, but can
also avoid the potential cheating behaviors when selfish ALM
nodes fulfill the cheat-proof mechanism itself.

Index Terms—Application-layer multicast (ALM), cheat-proof,
distance cheating, Vickrey–Clarke–Groves (VCG) mechanism.

I. INTRODUCTION

M ULTICAST is an effective vehicle for such group
communications as media broadcasting, video con-

ferencing, online gaming, and distance learning. IP multicast,
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which is implemented in the network layer, is probably the
most efficient for the Internet. The deployment of IP multicast,
however, remains limited nowadays due to many practical and
political concerns, e.g., the lack of incentives to install mul-
ticast-capable routers and to carry multicast traffic. Recently,
application-layer multicast (ALM) has emerged as a promising
alternative [3]–[8]. ALM builds an overlay network out of
unicast tunnels across cooperative participating end-hosts; each
host is both a receiver and an application-layer router, and
multicast is then achieved through data relaying among these
nodes.

The application-layer multicast is more readily deployable
and flexible than the network-layer solution with dedicated mul-
ticast routers. However, the end-hosts are autonomous appli-
cation-layer nodes, which can join or leave the session at will
or easily crash. Hence, efficiency and stability has been crit-
ical concerns in ALM topology construction. Even worse, an
end-host can be selfish and strategic, which might affect the
topology construction to improve its individual benefit. As an
example, consider a typical link-weighted ALM protocol, in
which each host measures the distances from its neighbors and
the ALM topology is accordingly constructed. Given that the
operations are in the application-layer, a selfish end-host may
easily intercept the measurement message and exaggerate the
distance to other nodes, so as to reduce the probability of being
a relay. Such distance cheating, rarely happening in IP multi-
cast, can significantly impact the efficiency and stability of an
ALM topology [2], [9].

While the negative impact of distance cheating has been
carefully investigated in previous studies, there is no explicit
solution to defending against it yet. In this paper, we present
an effective cheat-proof mechanism for link-weighted ALM,
which is motivated by the Vickrey–Clarke–Groves (VCG)
mechanism [10]–[12]. We demonstrate a mapping from the
utility, payment, and welfare to the link-weighted ALM con-
text. Given this mapping, we discuss a set of practical issues
for implementing the mechanism design—specifically, a trust-
worthy distributed algorithm for payment computation. Our
cheat-proof mechanism and its implementation do not depend
on specific optimization objectives of the ALM topology
construction, and hence can serve a broad range of protocols.
Performance analyses show that the overheads of the compu-
tation, storage, and communication of our implementation are
all controlled at low levels. Extensive simulations are further
conducted under diverse network configurations, and the results
demonstrate that, in all the configurations, the welfare of an
individual receiver is maximized only when it tells the true
distance.
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We acknowledge that many similar studies are conducted in
this area, but the contribution of our cheat-proof mechanism
and its implementation primarily lies in two areas. First, we
explicitly solve the distance-cheating problem in link-weighted
ALM since its proposal by mapping the VCG mechanism to
link-weighted ALM context. Second, our distributed implemen-
tation can not only effectively defend against distance cheating,
but can also avoid cheating behaviors when selfish ALM nodes
are fulfilling the cheat-proof mechanism, which is usually not
considered by other studies.

II. RELATED WORK

There have been significant studies on IP multicast in the
past decade [1]. While it would be the most efficient vehicle,
its scope and reach remain confined due to many practical and
political issues. ALM thus has emerged as a promising alterna-
tive. Typical ALM examples include NARADA [3], NICE [4],
and ZIGZAG [5], which, as in IP multicast, generally main-
tain a tree-structure for data delivering. Enhancements using
advanced layered or multiple-description coding or using ad-
vanced mesh structures have also been introduced, e.g., Split-
Stream [6], Bullet [7], DONet [8], etc. , yet the tree structure
remains an important building block in these systems.

The participating nodes in ALM are unreliable end-hosts,
which are quite different from the dedicated multicast routers.
The studies listed previously have addressed many of the effi-
ciency and stability issues with the dynamic end-hosts. In this
paper, we consider an orthogonal problem arising with the self-
ishness of end-hosts. That is, they might cheat about their private
information, such as outgoing bandwidth, link cost, and avail-
able data, so as to receive multicast data with higher quality or
bear less forwarding burden [2], [15].

The community has shown consistent interest in the study
on user selfishness in ALM during the past years. Li et al.
proposed defensive mechanisms against buffer map cheating
in mesh-based ALM [30]. They also studied the impact of
user selfishness during the construction-action stage of the
data topology formation [31]. Xiao investigated cheating
and anti-cheating in gossip-based protocols largely used in
ALM [32]. Kitayama further studied the ALM host cheating in
wireless environment [33].

We focus on distance cheating in link-weighted ALM in
particular. Mathy et al. [2] showed that such a kind of simple
cheating can negatively impact link stress and stretch of ALM
trees. Li et al. [9] further demonstrate that the tree stability can
be noticeably affected as well. Unfortunately, they do not offer
practical solutions to prevent the cheating.

In this paper, we present an effective solution to defend
against distance cheating in link-weighted ALM, which is mo-
tivated by the VCG mechanism. A similar mechanism has also
been used by Yuen et al. [13] in single-rate and variable-rate
ALM. Their focus, however, is on defending against throughput
cheating, and the payment to each node is computed by the
node itself, which does not address the problem if cheating
happens during payment reporting. On the other hand, Wang et
al. [14] study the link-cost cheating in general noncooperative
multicast protocols. The optimal routing problem in the general
multicast context is a Steiner tree problem, which is known to be
NP-hard [16], [17]. In this context, they show that no efficient

mechanisms can enforce selfish agents to correctly implement
a payment scheme. In ALM, since all the participating nodes
are receivers as well as relays, the Steiner tree problem turns
into the much easier Minimum Spanning Tree problem. As a
result, the VCG mechanism could be applied. Nevertheless,
the mapping and implementation are nontrivial, especially the
payment quantification and distributed computation. We will
show that in our study.

III. BACKGROUND AND SYSTEM MODEL

A. Distance Cheating in Link-Weighted ALM

We consider a general ALM model in which all the nodes are
autonomous end-hosts. The total number of nodes, excluding
the source, is . Given the potentially large scale of the multi-
cast session, we assume that each node has only a partial view of
the members in the session, referred to as its neighbors. When a
node joins the ALM session, it is assigned with neighbors by a
central node (e.g., the source node or the node designated by the
source node). The neighborships among the nodes form an ALM
control topology, in which the average number of neighbors of
each node over the total number of other participating nodes is
the neighbor density, denoted by . In link-weighted ALM, each
receiver1 asks its neighbors about their respective distances from
the source, referred to as source-to-end distances, and measures
its own distances from each neighbor. Given such distance in-
formation, the node selects one parent from its neighbors. The
resultant topology for data delivering is in general a tree, which
is called the ALM tree.

Note that each ALM receiver not only benefits from receiving
data, but also suffers from forwarding data to its children. There-
fore, a selfish receiver has the motivation to interfere with the
distance measurement, so as to contribute less in forwarding but
still enjoy good receiving quality. The interfering methods can
be various, and we use a simple example to illustrate it. Con-
sider a typical PING-resembled example, in which node mea-
sures its distance from neighbor by probing . An honest
may reply the probe immediately, and the round-trip time (RTT)
perceived by node is thus a relatively accurate distance mea-
sure for delay-sensitive applications. A strategic , however,
may delay the reply, so as to exaggerate the distance, which in
turn reduces the possibility of being selected as a parent. This
can be viewed as distance cheating by node . In our paper, we
use a 4-tuple to model such a kind of distance
cheating, where is the percentage of cheating receivers over
all receivers, and each of them increases the actual distance with
a cheating degree . It is worth noting that our model is not
confined to this additive operation; it can be easily extended to
accommodate multiplicative cheating, i.e., multiply the actual
distance by .

Fig. 1 shows a simple example of the impact of distance
cheating with . Fig. 1(a)
is the ALM tree constructed based on the actual distances with
no cheating. In Fig. 1(b), nodes , , and all exaggerate their
distances to other nodes by increasing the actual values by 4.
The source-to-end distance of node then changes from 3 to 6,
that of node changes from 5 to 6, and that of node changes
from 7 to 8. We can see that such cheating substantially changes

1In this paper, we use “node” and “receiver” interchangeably, given the con-
text is clear. Note, however, that “nodes” include the source as well.
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Fig. 1. Illustrative example of distance cheating. (a) ALM tree built without
distance cheating. (b) ALM tree built with distance cheating.

the structure of ALM tree, which is clearly suboptimal as com-
pared to that in Fig. 1(a).

Existing studies have also shown that, compared to the op-
timal ALM tree constructed with honest receivers, the link stress
and the stretch will both increase under distance cheating [2].
In addition, since the cheating receivers would benefit from the
misbehaviors, they tend to continuously declare wrong infor-
mation, making the ALM tree unstable [9]. Therefore, distance
cheating can significantly degenerate the efficiency and stability
of an ALM tree. We address this problem through implementing
a well-designed cheat-proof mechanism. Before we proceed on
the details of the cheat-proof mechanism and its implementa-
tion, we first give an overview of the general algorithmic mech-
anism design and the VCG mechanism, which has been used in
a wide range of computer network problems [19]–[25].

B. Overview of Algorithmic Mechanism Design and VCG
Mechanism

Consider a public system consisting of agents,
. Each agent has

some private information, called its private type , and
denotes the private types of all the agents.

The types are drawn from a publicly known set , but is
known by agent only. The agents can be selfish and work
strategically. In particular, when agent is required to declare
its private type to the public system, it may declare ,
referred to as its strategy, which is not necessarily equal to .

The outcome of the public system is a function of the strate-
gies of all the agents, , where .
We also use to represent
the strategy set of all the agents but .

Each agent wants to maximize its utility , which depends
on the outcome of the public system and its own type .
Given that , the utility function can be written as

. Note that agent itself could achieve a
higher utility by setting differently from , though the
outcome of the system would be negatively impacted. The
algorithmic mechanism design addresses this cheating by
introducing a payment function . The function defines a
payment policy for each agent : A positive
means agent should be paid, while a negative means it
should be charged. The welfare of agent thus depends not only
on the utility, but also its payment, i.e., welfare ,
or , which now becomes the

objective function for the agent to maximize. In a cheat-proof
mechanism, each agent will achieve its maximum welfare only
if it tells its true type; that is, the following definition applies.

Definition 1: A mechanism is cheat-proof

Meanwhile, we expect to improve the efficiency of the system
according to the following definition.

Definition 2: A mechanism is efficient if and
only if it maximizes

The VCG mechanism [10]–[12] is a well-studied efficient
cheat-proof mechanism, and our study is motivated by VCG as
well.

Definition 3: A mechanism belongs to the VCG
family if it satisfies

(1)

(2)

The above two equations respectively define the VCG out-
come and payment functions. Equation (1) suggests that, given
the declared type set , the VCG outcome function should
maximize the total utility of all the agents. Equation (2) suggests
that, given the optimal outcome function , the payment to
agent is the total utility of all other agents when agent par-
ticipates in the system, minus that when agent withdraws from
the system.

Given the above utility and payment functions, the welfare of
agent in the VCG mechanism is computed as follows:

(3)

We can see from (3) that the welfare of each agent is the total
utility of all agents when agent participates in the system,
minus the total utility of all other agents when withdraws
from the system. It is obvious that agent cannot influence the
value of . Therefore, in order to maximize its own welfare, it
should seek to maximize the total utility of the public system.
Note that is maximized when all agents tell the truth. Hence, a
rational agent has no motivation to cheat, and the mechanism
is thus cheat-proof. More details, as well as formal proofs for
the VCG mechanism, can be found in [26].
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TABLE I
LIST OF NOTATIONS

IV. CHEAT-PROOF MECHANISM AGAINST DISTANCE CHEATING

There are, however, some challenges to apply the VCG mech-
anism in the link-weighted ALM context. We should quantify
the utility, the payment, and the welfare of each ALM node in
this context, especially defining the computable payment. Also,
we need to design a practical algorithm to implement the map-
ping. The algorithm is preferably distributed with low computa-
tion, storage, and communication overheads. In this section, we
show such a mapping for the distance-cheating context, and its
implementation is presented in Section V. For ease of our ex-
position, Table I lists the major notations, some of which have
already been used in Section III.

A. Utility

In the link-weighted ALM context, the utility of node can be
evaluated as its benefit from receiving the multicast data, minus
the cost of forwarding the data to its children. Clearly, its benefit
depends on its source-to-end distance, and the cost depends on
the number of its children, . Let represent the benefit
of node from receiving multicast data with a source-to-end
distance of , and be the cost of forwarding data to a child.2
We have

(4)

2In practice, the forwarding costs of different ALM nodes might be different,
but in this paper we take them as identical for simplicity.

where benefit is a nonincreasing function of .
We then consider the following mapping. The private infor-

mation for each node in link-weighted ALM is the vector of
its actual distances to its neighbors, and its strategy is the mea-
sured distance vector by its neighbors. Each receiver selects the
parent based on the strategy set of all the participating nodes.
The parent-selection policy is to select the neighbor through
which it has the least source-to-end distance, which gives the
outcome function , and the resultant ALM tree thus be-
comes outcome .

B. Payment Policy

In the VCG payment function (2), the payment of each node
is the difference between the total utility excluding node ’s with
and without the participation of node . To evaluate the payment,
we classify all the receivers in an ALM tree into three sets and
discuss their respective utility changes after node leaves the
multicast session.
Set 1) , in which each receiver satisfies the fol-

lowing two conditions: 1) it is a descendant of node ;
and 2) when node leaves, it still has an alternative
parent to receive the multicast data. Both its benefit and
cost might change after node ’s leave, resulting in a
utility change of .

Set 2) , in which each receiver satisfies condition 1)
above, but not 2). Since it cannot join the multicast ses-
sion after node ’s leave, its utility after the leave of
node is 0, giving a utility change of .

Set 3) , which includes the receivers not belonging to the
subtree rooted at node . The benefit of a receiver in this
set will not change after node leaves, but its forwarding
cost may increase if it has to serve as the alternative
parent for the nodes in Set 1. It is easy to show that the
utility change is .

In summary, the payment of node can be evaluated as
follows:

(5)

Given the total number of nodes (including the source and
node ) is in the ALM tree, we have

(6)

After the leave of node , the total number of nodes becomes
, which follows that

(7)
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Combining (5)–(7), the payment of node becomes

(8)

Specifically, if node is a leaf receiver, i.e., and
, the above payment can be simplified as

(9)

It suggests that a leaf receiver should be charged for the unit
forwarding cost of its parent, which follows our intuition.

C. Welfare

Given a receiver’s utility (4) and payment (8), its welfare is
simply their sum, that is

(10)

and the VCG mechanism ensures that the welfare is maximized
when each receiver behaves honestly. Please note that the wel-
fare is the optimization target for a selfish ALM node under the
payment scheme instead of the utility.

V. DISTRIBUTED IMPLEMENTATION AND PRACTICAL ISSUES

We now present a practical distributed algorithm to imple-
ment the above cheat-proof mechanism. It is worth noting that
the VCG mechanism is efficient, but not necessarily budget-bal-
anced, i.e., the total payments to all agents can be positive or
negative [26]. In this case, it is up to the media provider or the
source node to bear the surplus or deficit of the payment policy.
Note that the monetary micropayment can be only a very small
fraction of the total income of the media provider.

A. Design Principles

The first design issue is where to store the payments. For
sake of both scalability and trust, a specified third party is de-
sired. Fortunately, even without a dedicated third-party server,
the source node can act as the role because its benefit is associ-
ated with the overall outcome of the ALM tree while not that of
individual nodes. The source node of an ALM session usually
has strong computing and storing capacity to play the role as the

third party. Unless otherwise specified, in the following we use
source node to represent the trustworthy third party.

Then, we focus on the computation of payment for each re-
ceiver, which is key to implement the cheat-proof mechanism.
Clearly, we cannot rely on a receiver itself to compute its pay-
ment because it could cheat to obtain a higher payment when
reporting the computed results to the source node. An alterna-
tive is to compute the payment to node by its parent . This is
unfortunately not trustworthy either because, according to (8),

does the calculation according to the reports from its descen-
dants, which include node .

To solve this problem, we suggest that the payment to node
be computed by its children, . Intuitively, this choice works
because the information demanded for computation will not
pass through node , so it has no chance to cheat to increase
its payment. We now formally prove this desired property.

Theorem 1: Any rational node has no motivation to
cheat about the payment for node when reports this payment
to the source node.

Proof: Let be the utility of node when it reports the
payment for node honestly, and be the utility of node
when it cheats on node ’s payment.

First, assume node cheats by decreasing the payment for
node . In this case, the cheating may cause node to leave from
the multicast session. Since node has chosen as its parent, its
welfare cannot be further improved by choosing another parent.
Hence, cannot be higher than .

Second, assume node cheats by increasing the payment for
node . Note that the welfare of node has already been max-
imized when it reports the actual payment for node to the
source node. Since the cheating behavior itself brings overhead
to node , cannot be higher than either.

Hence, node cannot increase its own utility by cheating on
node ’s payment, and a rational node has no motivation to
cheat. Q.E.D.

We thus extend (8) into (11) to reflect this computation
framework

(11)

Let ,
, , and

. Equation (11) can be simpli-
fied as

(12)

Note that in our model we do not assume either the source
node or any receiver maintains the global topology of the ALM
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tree. Therefore, the computation for the payment to each re-
ceiver can only be conducted in a distributed way. Fortunately,
from (12) we can let each child of node compute and
report it to the source node. The source node then sums all

, minus , to obtain the total payment for node . A leaf
node has no children to report the payment message for it, and
thus its payment is simply , which also follows (9). In this
manner, the computation burden put onto the source server is
also limited.

Note that the payment computation and report are both
periodical. Originally, the payment computation relies on a tree
that might be established based on true or cheated distance in-
formation. However, given the payment-computation algorithm
implementing the cheat-proof mechanism we design, all selfish
nodes will be guided to behave honestly during the distance
measurement to achieve its optimal welfare. Therefore, the
ALM tree will be dynamically adjusted to a final optimal tree.
We should also notice that the payment reports from ALM
receivers to the source node are routed in the network layer,
and other ALM nodes thus have no chance to alter them. The
algorithm details are covered in Section V-B.

B. Algorithm Details

There are two types of messages exchanged in our algorithm,
namely payment message and record message. The two types of
messages are all sent periodically to suite the network dynamics.
A payment message is sent from an ALM receiver to the source
node, containing the payment about its parent. A record mes-
sage is sent from an ALM receiver to its parent in the ALM
tree, containing the record set of node . More explicitly, let
denote the distance from node to node in the ALM tree. The
record set of node includes the following record information
for every node : , the source-to-end distance of node
with the participation of parent ; , the source-to-end
distance of node when node withdraws; and , the dis-
tance from to . We use a 3-tuple to represent
the record of node . Note that since we assume the source node
will bear the surplus or deficit of the ALM session, there is no
need for the children of the source node to compute or report the
payment for source node or send the record message to source
node. According to Theorem 1, node has no motivation to alter
either the payment message or the record message.

We next give the details of the computation in
Algorithms I–VI, among which Algorithms I–IV are executed
in each ALM receiver and Algorithms V and VI are executed
in the source node.

Algorithm I is for node to compute the record set, which
includes the records for all the nodes in its subtree,

. The record is readily available. For each
descendant , its record is computed as follows. The value
of is previously received from the children of node . If node
has a second best parent node when node withdraws from the
multicast session, will choose the same parent as before con-
sidering the stability of the ALM tree, and is just the sum
of and . Otherwise, is the same as , which node

has already received from its children. is simply plus
, which is previously received from the children of node .
Each node periodically sends its record message to its

parent, as shown in Algorithm II. Upon receiving a record
message from one of its children, node locally stores it for

future computation of its own record and the payment to its
parent, as illustrated in Algorithm III.

Algorithm I: Record-Set Computation on Receiver

01 void recordSetCompute()
02 if has a second best parent
03 for each
04 still select as parent
05 end for
06 else has no other potential parents
07 for each
08 same as when withdraws
09 end for
10 end if
11 for each
12
13 end for

Algorithm II: Sending Record Message on Receiver

01 void recordMsgSend()
02 recordSetCompute()
03 recompute records before sending to parent
04 record message
05
06 for each
07
08 end for
09 msgSendToParent

Algorithm III: Receiving Record Message on Receiver

01 void recordMsgReceive()
02 msgRcvFromChild()
03
04 if
05 for each

record message containing records
of all nodes in

06
07
08
09 end for
10 end if

Algorithm IV shows how node computes and sends
the payment message containing to the source node. The
record set for computing is obtained in Algorithm I. Upon
receiving each , the source node stores it and updates the
payment array that maintains the content of the payment mes-
sage from each receiver. We should note here that the network
is dynamic and the parent/children relationship among ALM
nodes will change from time to time, so each entry in the pay-
ment array will timeout after a threshold value. The source node
further computes the payment to each receiver in the ALM tree
using the information in the payment array, as illustrated in
Algorithm VI.
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Algorithm IV: Sending Payment Message on Receiver

01 void paymentMsgSend()
02 recordSetCompute()
03 recompute records before computing the payment

for parent
04 Eq. (12)
05 Eq. (12)
06 Eq. (12)
07 to calculate , Eq. (11)
08 for each
09 if nodes in
10
11 else nodes in
12
13
14 end if
15 end for
16
17
18 payment message
19
20
21 msgSendtoSource

Algorithm V: Receiving Payment Message on the Source
Node

01 void paymentMsgReceive()
02 msgRcvFromReceivers()
03
04
05
06

Algorithm VI: Payments Computation on the Source Node

01 void paymentsCompute()
assume source node maintains all receivers

02 for each receiver
03 Eq. (11)
04 end for
05 for each receiver
06
07 Eq. (11)
08 end for

C. Algorithm Complexity

We now analyze the algorithm complexity of our imple-
mentation, with a focus on the following important measures:
computation overhead, storage overhead, and communication
overhead.

1) Computation Overhead: The computation overhead of
each receiver comes from two parts, namely computing the
record set and computing the payment about its parent.

From function recordSetCompute() in Algorithm I, we
can see that the grandson of the source node has the highest

record-set computation load to compute the record set for the
children of the source node, which is . All other receivers
usually have only a sublinear overhead. The average overhead
of all receivers is in common cases and not worse than

, which rarely happens. (The detailed derivation is omitted
here for space limitation). From function paymentMsgSend()
in Algorithm IV, we can see that the computation overhead of
payment computation is almost the same as that of record-set
computation.

The computation load of the source node comes only from
computing the payment to all receivers in the ALM tree. Ac-
cording to the function paymentsCompute() in Algorithm VI,
the computation load on the source node is .

2) Storage Overhead: From function recordMsgReceive() in
Algorithm III, each ALM receiver except the children of the
source node needs to store its record set. Thus, the maximum
storage load is again at the grandson of the source node.
The average storage load of all ALM receivers usually remains

and not worse than , which rarely happens.
From function paymentMsgReceive() in Algorithm V, we can

see that the source node needs to maintain a payment array that
contains the payment message information from all receivers,
the size of which is .

3) Communication Overhead: There are two types of mes-
sages in our algorithm: the record message and the payment
message. Function recordMsgSend() in Algorithm II suggests
that the maximum communication overhead is incurred on the
overlay paths connecting the source node and its grandson,
which is . Meanwhile, the average communication over-
head for all paths in the ALM tree is usually and not
worse than , which rarely happens.

The payment message is sent from an ALM receiver to
the source node, containing the payment it has computed
about its parent. According to function paymentMsgSend()
in Algorithm IV, the communication overhead on each path
connecting an ALM node and the source node is only.
Therefore, the communication overheads on the ALM paths
are very low.

VI. SIMULATIONS

We conduct extensive simulations to study the performance
of our implementation of the cheat-proof mechanism. Unless
otherwise specified, the following default settings are adopted
in our simulations. We use the GT-ITM toolkit [27] to generate
network-layer topologies that consists of links and routers. In
each topology, there are 2000 routers, and the link distances
between connected routers are uniformly distributed within

ms ms . The receivers in the ALM as well as the
source node are attached to randomly drawn routers.
We set and , which follows that

. The quantification of the utility
function will not affect the generalization of the results. The
ALM tree is built using the shortest-path-tree algorithm. To
mitigate the impact of randomness, 50 topologies are generated
for each simulation, and the results are averages over them.

We present the overall utility of ALM tree, the welfare of
individual receivers, and the payment to individual receivers in
Sections VI-A–C.
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Fig. 2. Overall utility. � � ��� and � � ���.

A. Overall Utility

In the first set of simulations, we compare the overall utilities
of ALM trees to different amounts of cheating receivers. We fix
the total number of receivers to 500 and examine the impact of
different cheating degrees and the neighbor densities. Specifi-
cally, we first set the neighbor density to 60% and vary the
cheating degree , i.e., the value that a cheating receiver adds to
its actual distances to others, from 25 to 200 ms. We then fix the
cheating degree to 100 ms and gradually change the neighbor
density from 10% to 80%.

Figs. 2 and 3 plot the corresponding overall utilities of the
ALM trees for the above two settings. In both figures, the overall
utility is always maximized when the percentage of cheating re-
ceivers is 0% and decreases with higher percentage of cheating
receivers. This is not surprising given that the existing studies
have shown an ALM tree is optimized with no node cheating.
Note that the trends are not necessarily monotonic; see, for ex-
ample, the line of ms in Fig. 2. We conjecture that this
is because, when there are a lot of cheating receivers, some of
them might counteract with each other. Fig. 2 demonstrates that
the overall utility is decreasing with higher cheating degree, im-
plying that distance exaggeration will negatively influence the
quality of parent selection. On the other hand, Fig. 3 shows that
the overall utility is also decreasing with lower neighbor den-
sity. This result suggests that, with a limited parent choice, the
adverse impact of distance cheating can be more remarkable.

B. Welfare of Individual Receivers

We next investigate the welfare of individual receivers under
our cheat-proof mechanism. We define the truth gain of a re-
ceiver as the difference of its welfare between telling the truth
and cheating, assuming that all other nodes tell the truth. Again,
we fix the number of receivers to 500 and then vary the cheating
degree and the neighbor density, respectively.

Figs. 4 and 5 give the corresponding truth gains of individual
receivers for each aforementioned setting. We can see that the
truth gain of an individual receiver is always nonnegative, which
suggests that it achieves its maximum welfare by behaving hon-
estly during distance measurement. Apparently, any rational re-
ceiver will tell the truth when its truth gain is nonnegative (we
assume that a node has no motivation to cheat if the truth gain is

Fig. 3. Overall utility. � � ��� and � � ��� ms.

0, for the cheating behavior itself would incur overhead). There
are some peaks in these figures, corresponding to the nodes
serving a large group of children. Their welfares are signifi-
cantly decreased if they cheat to avoid accepting children be-
cause of the huge payment loss. The figures also suggest that
the truth gain increases when the cheating degree is higher or
when the neighbor density is lower. In summary, our mecha-
nism effectively defends against distance cheating.

C. Payment to Individual Receivers

Since the payment to a node is the difference between the
total utility of all other nodes with and without the participa-
tion of this node, the average payment thus reflects the average
impact of an individual receiver’s dynamics to the whole mul-
ticast session. Such payment is closely related to the session
size and neighbor density. Hence, we generate multicast ses-
sions with the total number of receiver ranging from 100 to 1000
and the neighbor density from 10% to 80%. Fig. 6 shows the av-
erage payment as a function of such session sizes and neighbor
densities.

We can see that the average payment decreases when there
are more receivers because a single receiver’s impact on the
total utility becomes relatively smaller. We also see that with the
growth of neighbor density, the average payment first increases,
but then decreases. This is because the relationship between the
neighbor density and the payment lies in two aspects: On the
one hand, if a node has more neighbors, it has more chances
to affect others; on the other hand, more neighbors implies that
a node has more potential parents and thus suffers less when
its current parent leaves. Fig. 6 implies that when the neighbor
density is relatively low, the former is more noticeable, while
the latter becomes dominating when the density is high.

VII. CONCLUSION

In this paper, we have proposed a cheat-proof mechanism
to defend against distance cheating, which presents a practical
mapping from the utility, payment, and welfare of the VCG
mechanism to the link-weighted ALM context. The mapping
ensures that each selfish ALM receiver has to behave honestly
during distance measurement to maximize its own welfare.
Based on the cheat-proof mechanism, we then demonstrate a
trustworthy distributed implementation. Our implementation
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Fig. 4. Truth gains of individual receivers. � � ��� and � � �. (a) � � �� ms. (b) � � ��� ms. (c) � � ��� ms.

Fig. 5. Truth gains of individual receivers � � ��� and � � ��� ms. (a) � � ���. (b) � � ���. (c) � � ���.

Fig. 6. Average payment as a function of session size and neighbor density.

also effectively prevents a selfish node from cheating the
payment-computation process. Meanwhile, its computation,
storage, and communication overheads are all controlled at
low levels. Such cheat-proof design has also been verified by
extensive simulations.

We expect more advanced solutions introduced to migrate our
proposal to encompass collusion, Sybil attack, and large-scale
ALM session. This is also our future work.
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