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a b s t r a c t

Mission-critical communication (MCC) is one of the main goals in 5G, which can leverage multiple
device-to-device (D2D) connections to enhance reliability for mission-critical communication. In MCC,
D2D users can reuses the non-orthogonal wireless resources of cellular users without a base station
(BS). Meanwhile, the D2D users will generate co-channel interference to cellular users and hence
affect their quality-of-service (QoS). To comprehensively improve the user experience, we proposed a
novel approach, which embraces resource allocation and power control along with Deep Reinforcement
Learning (DRL). In this paper, multiple procedures are carefully designed to assist in developing our
proposal. As a starter, a scenario with multiple D2D pairs and cellular users in a cell will be modeled;
followed by the analysis of issues pertaining to resource allocation and power control as well as
the formulation of our optimization goal; and finally, a DRL method based on spectrum allocation
strategy will be created, which can ensure D2D users to obtain the sufficient resource for their
QoS improvement. With the resource data provided, which D2D users capture by interacting with
surroundings, the DRL method can help the D2D users autonomously selecting an available channel
and power to maximize system capacity and spectrum efficiency while minimizing interference to
cellular users. Experimental results show that our learning method performs well to improve resource
allocation and power control significantly.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

With the development of the fifth-generation (5G) cellular
etworks, mission-critical communication (MCC) [1] and Gigabit
obile connectivity will be supporting diverse modern applica-

ions and services [2]. As one of the main goals in the 5G network,
CC imposes enormous challenges to fulfill its vital performance.
t present, the demand for enhancing MCC technology becomes
ore and more urgent, especially for further improving both

he network communication capacity and spectrum efficiency. As
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one of the most critical techniques employed in MCC networks,
device-to-device (D2D) communication allows mobile devices to
perform direct peer-to-peer transmissions by reusing the licensed
spectrum allocated to cellular services, and to enhance relia-
bility for mission-critical communication by leveraging multiple
D2D connections [3]. Recently, D2D technology has attracted
the attention of academia and industry because of its ability
to provide mobile services with large capacity, high speed, and
guaranteed quality-of-service (QoS) [4]. In an emergency where
network infrastructure is absent, the D2D network is critical
for the (Mission-critical) MC site to exchange information and
provide MCC networks the MC voice and data services. D2D
communications can be in-band or out-band [5], which reuse the
non-orthogonal wireless resources of the cellular user by select-
ing a communication mode and performing data transmission
without a base station (BS) in D2D networks. D2D users inevitably
generate co-channel interference to cellular users when they
multiplex channel resources. As the interference intensifies, the
communication of cellular users may be interrupted [6]. Gener-
ally, there are three types of interference in the underlying cellu-
lar and D2D communication system, i.e., the D2D-to-cellular in-

terference, the cellular-to-D2D interference, and the D2D-to-D2D

icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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nterference [7]. At present, many studies have been conducted to
ddress these problems. They have proposed tremendous effec-
ive solutions to the channel interference of D2D users, amongst
hich maximizing resource utilization and improving the system
apacity gain the most attention of research on D2D communica-
ion. However, in most studies, game-theoretical approaches are
dopted, which is unsuitable for complicated communication sce-
arios due to their high computational complexity [8]. Recently,
einforcement learning (RL) is a prevalent and effective algo-
ithm to solve wireless communication problems, especially for
nterference management, resource allocation, and power con-
rol [9,10]. RL is a learning method with decision-making ability,
hich mainly includes agent, state, action, and policy. During
he learning process, an agent can make the decision, inter-
ct with the environment, and then automatically explore its
trategy to get the optimal policy. However, as the state and
ction spaces become more massive in a complex communication
etwork, it will be more difficult or even impossible to find
he optimal policy [11]. Deep reinforcement learning (DRL), a
ombination of RL and deep learning, has been developed to over-
ome the above shortcomings [12,13]. This paper aims to propose
single-objective optimization approach, namely, sophisticated

oint resource allocation and power control mechanism with DRL.
he method can mitigate interference and enhance the spectrum
fficiency as well.
In this paper, we investigate the resource allocation and power

ontrol problems in which the D2D pairs utilize the uplink re-
ources of cellular users. We consider a 5G network scenario that
nvolves multiple cells with multiple cellular users, D2D pairs,
nd a BS. Our goal is to maximize the total system capacity while
uaranteeing the QoS of cellular users in different MC services.
he main contributions of this work as follows:
(1) The algorithms of the D2D communications interference

roblem have been researched and compared in detail to further
eveal the issues and dig out the potential recommendation.

(2) The system model has been developed to meet the op-
imization goal by creating a DRL algorithm to jointly improve
esource allocation and power control for D2D users which con-
ume different services in cellular systems.
(3) The problem is decomposed into two separate sub-

roblems to clarify the breaking point, and this procedure helps
ith targeting the objectives of our solution and, subsequently,
he in-depth design of our objective optimization.

(4) Furthermore, this method achieved the goal of compre-
ensively improving the QoS of the system, such as optimizing
ystem capacity and simultaneously reducing interference.
The remainder of this paper is organized as follows. Sec-

ion 2 briefly introduces the related works of resource allocation
nd power control in D2D communications. Section 3 describes
he proposed system model and optimization goal. Also, Sec-
ion 4 provides the detailed design of the method, combining
oint resource allocation and power control with DRL. Section 5
roves our achievement by showing the performance evaluation
nd analysis of the proposed algorithm after running a series of
xperiments, and Section 6 finally concludes the paper.

. Related works

Recently, there are three main aspects in the management of
2D interference in D2D communications, namely mode selec-
ion, resource allocation, and power selection. Increasingly new
ethods have been proposed to reduce communication inter-

erence in D2D communication. In traditional communication
esearch, an interference avoidance mechanism has been intro-
uced in the hybrid cellular and the D2D system, mitigating the
nterference from the cellular transmission to D2D communica-
ion by users’ mode selection [14]. Moreover, the method of joint
2

mode selection and resource allocation scheme has been studied
to improve users’ throughput, extending the battery lifetime of
user equipment by facilitating the reuse of spectrum resources
between D2D and cellular links [15].

In addition to traditional communication methods, game the-
ory and RL methods have become a popular method for solv-
ing wireless communication interference management problems.
In [16], the author proposed joint scheduling and resource al-
location algorithms and adopt the Stackelberg game to improve
D2D communication performance, where cellular TIE and D2D TIE
are grouped into leader–follower pair. The author developed a
coalitional game with transferable utility. Each user intended to
maximize its efficiency and had the incentive to cooperate with
other users to form a strengthened user group, thus increasing
the opportunity to win its preferred spectrum resources [17].

The RL method has been used instead of the traditional way
and game theory to achieve resource allocation, mode selec-
tion, and power control. The author proposed two power control
methods with RL for D2D users, namely team-Q learning and
distributed-Q learning, to achieve power control in D2D commu-
nication [18]. They regard D2D communication as a multi-agent
system, and power control is achieved by maximizing system
capacity while maintaining the requirement of QoS from cellu-
lar users. The authors in [19] presented power control for D2D
communication, which used multi-agent reinforcement learning
(MARL) to maximize system throughput by adjusting the trans-
mitted power of each D2D user. In [20], the authors proposed
a joint mode selection and power adaptation approach using a
conjecture based multi-agent Q-learning algorithm.

Although RL has some advantages in solving some problems
in communication networks, it still has limitations. Specifically,
when confronting the complicated network system and the large
state–action space, the RL shows poor performance, and its con-
vergence speed may suffer.

Therefore, the DRL approach is to address emerging problems
in communications and networking [21]. In [22], the author aims
at maximizing the sum rate of a D2D network under the as-
sumption of realistic time-varying channels and D2D interference.
They proposed to use a centralized DRL transmission scheme
for D2D communications, in which transmission decisions are
made by one agent expertized in the D2D network. At present,
few articles are adopting the DRL method for resource allocation
in D2D communication. There are often large action spaces and
state space in joint power control and resource allocation issues.
Hence, Q-learning can no longer meet the task requirements.
Deep Q-Learning (DQL) can provide effective solutions for these
problems [23]. In our work, a joint channel and power allocation
algorithm with DQL has been investigated, which can be used
to solve the problem with high dimensional state space and
complexly discrete action space. In the next section, the system
model of D2D communication underlying cellular networks will
be introduced in detail.

3. System model

In this work, a small cellular communication system includes
two basic types of communication modes, a direct D2D commu-
nication mode, and a traditional cellular communication mode.

We consider that M cellular users and N D2D pairs are de-
ployed in each cell. Each D2D pair consists of a D2D transmitter
(DTn) and a D2D receiver (DRn) where D2D pairs reuse the same
spectrum resource as cellular users. In addition, we assume that
(1) in D2D communication, cellular users utilize the uplink (UL)
resources of a small cell, while D2D pairs reuse the uplink re-
sources non-orthogonally, (2) a cellular user and D2D pairs share
a same resource block and each resource block is allocated to
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ne cellular user and shared with multiple D2D pairs. As illus-
rated in Fig. 1, the D2D pairs reuse the UL resource in the
entral cell. Therefore, there are two kinds of interference, and
he one is D2D-to-cellular interference, the other is cellular-to-
2D interference [23]. In the multi-cell model, in addition to
he above interference, D2D communication interferes with the
ommunication of neighboring cells when neighboring cell users
se the identical spectrum. Cellular users and D2D users are
ubject to interference from nearby cell users.
We assume that the channel bandwidth is B, which is divided

nto K physical resource blocks (PRBs). Each channel bandwidth
s defined as bi =

B
K , i ∈ {1, 2, . . . , K }. In the multi-cellular

cenario, our goal is to learn an effective joint channel alloca-
ion and power control strategy for each D2D transmitter based
n different MCC services. We consider that D2D users have L
ervice types, denoted by Sl ∈ {S1, S2, . . . , SL}, and each service
as different requirements for channel transmission rates. We
onsider that a D2D pair can reuse multiple channel resources to
nsure successful transmission of packets while meeting the QoS
equirements of the entire communication system with minimal
ower consumption. Additionally, the signal to interference plus
oise ratio (SINR) of the cellular user can be expressed as γ

Cn
i . For

successful transmission, the SINR is above γ ∗:

γ
Cn
i > γ ∗, ∀i ∈ N (1)

where γ ∗ is a threshold in different service types. The SINR of the
nth D2D link on the ith channel is defined as:

γ
Dn
i =

gDn
i PDn

i

σ 2 + PCm
i · gCm

i +
∑N

x=1,x̸=n P
Dx
i · gDx

i + Na
(2)

here gDn
i denotes the channel gain between DTn and DRn, P

Dn
i is

the transmission power of the nth D2D link on the ith channel.
On the ith channel, PCm

i is the transmission power of the mth
cellular user, and PDx

i is the transmission power of the xth D2D
link. The gCm

i and gDx
i are the link gain of mth cellular user and

xth D2D link on the ith channel. Here, σ 2 is the power of the
Additive White Gaussian Noise (AWGN). Na is the interference
coming from neighboring cells, a represents the average noise of
other cells. It denotes as:

N = G ·

∑
Pz · d−2

z ∀z ∈ {1, 2, . . . , Z} (3)

where z is the number of neighboring cells, d is the distance
between two cells, and G is the link gain. Then, the SINR of the
mth cellular user on the ith channel is given by:

γ
Cm
i =

PCm
i · gCm

i

σ 2 +
∑N

y=1
∑K

j=1 P
Dy
j · gDy

j + Na

(4)

where PCm
i is the transmission power of the mth cellular user, gCm

i

is the link gain of the mth cellular user. PDy
j is the transmission

power of the yth D2D link that reuse the jth channel. Hence, the
system capacity of a cell is given by:

C = B
K∑

i=1

[

∑
n∈N

log 2
(
1 + γ

Dn
i

)
+ log 2

(
1 + γ

Cm
i

)
] (5)

In this paper, we assume that D2D users can reuse multiple
channels under different services. To guarantee the communica-
tion quality of cellular users, we consider the joint channel selec-
tion and power control method, which is a single-object optimal
problem. We focus on maximizing the total networking capacity
of the cellular system and meeting the QoS requirements.
3

4. Resource allocation and power control method with deep
reinforcement learning

The goal of this paper is that the D2D transmitter learns
an efficient joint channel selection and power control policy
after interacting with the environment. Generally, the increase
of the D2D users’ transmission power and the more interference
for the cellular users as a result of the increasingly D2D users
reuse channel. In our model, each D2D pair can adaptively learn
multi-channel selection and power control strategies, maximizing
system capacity and meeting service demands. The above prob-
lem is a decision-making problem that can be solved by adopting
RL methods. In a communication scenario, the D2D user can
select more than one channel, which complicates the decision-
making problem with large state and action spaces. Therefore, we
adopt a DRL method to solve the issues, which can significantly
improve the learning speed, especially the problems with large
state and action spaces [24]. In this section, we first introduce
the framework of the DRL algorithm with multiple users. Based
on that, we then design the resource allocation and power control
algorithm in D2D communication.

4.1. Deep reinforcement learning

We model the D2D interference problem as a Markov Decision
Processes (MDP), which is a decision-making problem. Generally,
MDP is defined as a tuple (St , At , P, R), in which (St , At , P , R) is a
set of states, a set of actions, state transition probabilities, and the
reward function, respectively [25,26]. The target of MDP is to find
a optimal policy, then solving the RL decision-making problem
(that is, to maximize the reward function). In MDP, the agent
first senses the environment state st ∈ St , and take a random
action at ∈ At by interacting with the environment. Then, the
agent generates a new state st+1 and gives an immediate reward
rt ∈ R. In the procedure, the policy is defined as π (a|s) =

[at | st ], which is a mapping from state to action. Further data
re generated through interaction between the agent and the
nvironment to optimize the strategy. After many iterations, the
gent learns an optimal policy π∗. Generally, the future reward is
enoted as:

t = rt+1 + Γ rt+2 + · · · =

∞∑
k=0

Γ krt+k+1, (r ∈ R) (6)

here Γ ∈ [0, 1] is a discount factor. When the agent adopts the
olicy π , the action-value function is defined as:

(st , at) = E[
∞∑
k=0

Γ krt+k+1
⏐⏐ st , at , π] (7)

The Q-value is evaluated as follows,

Q (st , at) = Q (st , at)+α[rt +Γ max
a

Q (st+1, at+1)−Q (st , at)] (8)

where α ∈ [0, 1] is the learning rate, rt + Γ maxa Q (st+1, at+1)

is the expected value. The process is repeated until the agent
obtains the optimal policy π∗. The optimal Q-value Q ∗ (st , at) can
be defined as:

Q ∗ (st , at) = Qπ∗

(st , at) (9)

The value function is:

V ∗ (s) = max
a

Q ∗ (st , at) (10)

Generally, the Q (st , at) is estimated by a linear function approx-
imator. However, a non-linear function approximator is used to
estimate the action-value function in the DRL, such as a neural
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Fig. 1. A scenario where a D2D link is located in the small cells (uplink and downlink).
Fig. 2. Deep reinforcement learning for D2D communication in multiple small
cells.

network (that is Q-network) [27]. In the DRL, the Q-value is
defined as:

Q(st , at , θ ) ≈ Q∗ (st , at) (11)

here θ is the weight of the network, and it also represents the
alue function. A Q-network can be trained to update θ through
he gradient descent. The loss function Li(θi) is denoted as:

i(θi) = [rj + Γ max
aj+1

Q
(
sj+1, aj+1; θi−1

)
− Q

(
sj, aj; θi

)
]
2 (12)

Hence, the update of the value function is given as follows:

θi+1 = θi + α

[
rj + Γ max

aj+1
Q

(
sj+1, aj+1; θi−1

)
− Q

(
sj, aj; θi

)]
× ∇Q

(
sj, aj; θi

)
(13)

4.2. Resource allocation and power control method

The DRL framework of D2D communications is illustrated
in Fig. 2. In the scenario, we assume that an agent is a D2D
transmitter in each D2D pair. In a cell, there are many D2D
users. The scenario is the multi-agent system. The environment
is multiple cellular users and D2D users. During the interaction
period between agents and the environment, the D2D transmitter
takes action, including select channel and power level. Then we
introduce the state, action space, reward function and update the
rule of channel allocation and power control problem.

4.2.1. State and action space of D2D users
We assume that the local SINR information of the D2D link is

available, and the information of the cellular user is also available.
4

We consider learning on one RB and dividing it into K PRBs. D2D
transmitter can reuse multiple (physical resource block) PRB and
control its power level to achieve optimal capacity under different
services. Hence, each agent has the same learning goal. In this
work, the environment is straightforward, including cellular users
and D2D links.

Agent: In our proposed model, we design D2D transmitters as
agents. Each agent is an individual with the abilities of learning
and decision-making. A D2D transmitter is expressed as DTx, 1 ≤

x ≤ N , where N denotes the number of the D2D link.
States: At the time t , the state is determined by the channel

and power level. We define the state space, including the channel
state of uses, the state of power level and the number of the D2D
pairs. It is defined as a three-dimensional matrix, as follows:

S (t) =

⎡⎢⎣ s11 (t) · · · s1K (t)
...

. . .
...

sN1 (t) · · · sNK (t)

⎤⎥⎦
=

⎡⎢⎣ [c11 (t) , pl11 (t)] . . . [c1K (t) , pl1K (t)]
...

. . .
...

[cN1(t), plN1 (t)] . . . [cNK (t) , plNK (t)]

⎤⎥⎦ (14)

where S (t) denotes state space, cNK (t) denotes the channel state
and pNl(t) denotes power level. We define cNK (t) as:{
cij = 1, the ith D2D user reuse jth channel
cij = 0, otherwise

(∀iϵ {1, 2, . . . ,N} , jϵ{1, 2, . . . , K }) (15)

In addition, plij (t) (∀iϵ {1, 2, . . . ,N} , jϵ {1, 2, . . . , K } ,

lϵ1, 2, . . . , L) denotes the ith D2D user selects the jth channel
and the lth power level. The transmission power is divided into L
levels. If there are K PRB resource blocks, the dimension of action
space is L ∗ K . Hence, the state is complicated in our learning
process. At the time t , the agent sends a communication request,
and when cellular users, agents, and other D2D users share a
same channel, there is interference between them. The huge state
space makes it difficult to learn information with Q-learning, so
we utilize the deep Q-learning to learn the high-dimensional
inputs. The state space is inputted to the deep Q-network. We
adopt a convolutional neural network (CNN) to learn features of
the three-dimensional matrix.

Action: At the time t , the action is defined as:

A (t) = {A1 (t) , A2(t)} (16)

where A1 (t) represents to select channel, and A2(t) represents to
select power level. More specifically, in our learning model, the
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ction is defined as follows:

A1 (t) =
(
ak1, a

k
2, . . . , a

k
n

)
, ∀k ∈ {1, 2, . . . , K }, n ∈ {1, 2, . . . ,N}

A2 (t) =
(
pk1, p

k
2, . . . , p

k
l

)
, ∀k ∈ {1, 2, . . . , K } , l ∈ {1, 2, . . . , L}

(17)

here k is the kth PRB, and n is the number of D2D pairs, akn
epresents that nth D2D transmitter select kth PRB. In addition, l
s the power level, and pkl represents the power level of the agent
nkth channel.

Reward function: Generally, the reward function is the learn-
ng goal. Our learning goal is to optimize the total system ca-
acity, so we define the system capacity as the reward function.
herefore, we assume that the reward function is related to
ystem capacity and constraints. The reward function is expressed
s:

t =

{
C, if the constraints are satisfied
−ζC, otherwise.

(18)

here C denotes system capacity. In the model, we propose
an approach based on different service types S of D2D users
o guarantee their communication requests and meet the QoS
emands of cellular users. Here, we propose the QoS demands
etric for the MCC scenario, where the QoS metric, namely total
ystem capacity. The target of our approach is maximizing the
otal system capacity and meanwhile maintaining the level of the
oS for D2D users. We define the constraints as follows:

γ
Cn
i ≥ τ0,

0 ≤ PDn
i ≤ Pmax,

Cc ≥ Cc,s,
(19)
CD,i ≥ CD,s,

5

where γ
Cn
i is the SINR of the cellular user, τ0 is the threshold of

SINR. To ensure the communication quality of the cellular link,
we consider the impact on the cellular user SINR when D2D
user reuses the spectrum resource. When the SINR is greater
than a threshold τ0, the maximum power at this time is set to
the transmit power of the D2D user. The PDn

i is the transmit
power of the D2D transmitter and Pmax is the maximum D2D
ransmit power. The Cc represent the bandwidth requirements of
he different type of services. The bandwidth requirements are
ifferent when the service arrives each time. Therefore, when the
gent performs channel selection and power control, it should
eet the service requirements.
Our method not only ensures the normal communication of

ellular users but also maximizes the multiplexing of channel
esources and optimize system capacity. When the above condi-
ions are met, the reward is C , otherwise, a penalty is given. The
t is an immediate reward. Long-term reward is the sum of all
mmediate rewards, and it denotes as:

t =

∞∑
k=0,t=0

Γ krt , (rt ∈ R) (20)

.2.2. Updating algorithm
We have described the system model in the previous section,

n which the D2D transmitter acts as an agent. The agent interacts
ith the environment, then takes action to the environment. In
he learning process, the agent continuously updates the policy
ccording to the rules of the DRL algorithm until the optimal
trategy is learned. Our approach combines channel selection and
ower selection, in which the agent has two different actions to
chieve the goal. Scenario with multiple D2D users and channels
ead to large state space. In our approach, when the target net-
ork is updated, two actions are output. The dimensions of each
ction are different.
We adopt a deep Q-learning network (DQN) to learn resource

llocation and power control policy. In the algorithm, we use a
NN instead of the Q-table to derive an approximate Q-value.
ur training network is shown in Fig. 3. It is a five-layer network
here the last layer is divided into two sub-layer, one for channel
election and the other for power selection. The output is two
-values.
The update rules are shown in Algorithm 1 and Algorithm

. Algorithm 1 shows the procedure of resource allocation and
ower control. Algorithm 2 mainly illustrates the update step
f DQN. The method of selecting the channel and power by the
2D transmitter can ensure the QoS of cellular users and reduce
nterference.

During training, the DQN uses CNN to approximate the Q-
alue function of the selected channel and power. Regardless of
hannel selection or power level selection, actions can be learned
y exploring the strategies under constraints. In this paper, we
hoose to use the Boltzmann distribution to balance exploitation
nd exploration. It is denoted by:

=
eQ

t
i,k,j(a)/τ∑

i e
Qt
i,k,j(a)/τ

(21)

where Q t
i,k,j(a) is the Q-value for action when D2D transmitter

select channel k and power j at time t . The τ is a tempera-
ture parameter, which controls the fluctuation of this Boltzmann
distribution.

Here, we use the data of experience replay to train the neural
network. Specifically, the state, action, reward and the next state
are stored in the memory database each time. Then the data is

sampled by uniform sampling, and the neural network is trained
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Fig. 3. Deep reinforcement learning – Convolution neural network.
y using the sampled data as shown in the algorithm of Algorithm
. In addition, we consider the Q-learning algorithm as the base-
ine in this paper, where the number of states and the number of
ctions in practice make the solution space become very large. In
his optimization problem, the number of state space is N · 2K ,
and the number of action space is K · L. Hence, the complexity
of the Q-learning algorithm to search the optimal solution is
O ((N · 2K ) · (K · L)) = O

(
2K 2NL

)
. In our paper, we adopt the

DQN algorithm to solve the optimization problem, which can
obtain feasible lower-complexity solutions. This is because that
DQN combines the Q-learning algorithm and neural network to
process optimization problem. DQN can solve a large state space
problem. It uses a neural network to approximate the Q-table
and does not traverse the Q-table completely in each search.
DQN is to update the calculation of network Q-value by training
the quantitative data minibatch to make actions. Therefore, the
computational complexity and computational time of DQN are
less than O

(
2K 2NL

)
.

6

5. Simulation and analysis

In this section, we present experiments to evaluate our pro-
posed joint channel selection and power control method. Our
experiments are based on an Ubuntu operating system (CPU
Intel core i7-4790 3.6 GHz; memory 16 GB, GPU NVIDIA Quadro
K2200, which contains 640 CUDA computing core units and 4 GB
graphics memory).

In our experiment, the deep neural network is shown in Fig. 3.
There are five layers, including three convolution layer and two
fully connected layers. The final layer has two output values,
and one represents the Q-value of channel selection; the other
represents the Q-value of power selection. The main simulation
parameters are presented in Table 1. The following results an-
alyzed the convergence performance of different services and
the convergence performance of various users under different
discount factors, as well as the cumulative distribution function
(CDF).
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Fig. 4. The convergence performance of different service under different discount factors.
Fig. 5. The convergence performance of different users.
able 1
he parameter of simulation.
Parameter Value

Cell radius 500 m
D2D communication distance 50 m
D2D transmit power [0–23 dB]
Resource block bandwidth 180 kHz
Pmax 24 dB
Noise power/RB −116 dB
path loss model between BS and users 15.3 + 37.6log(d(km))(dB)
path loss model between BS and users 28 + 40log10(d(km))(dB)
Macro BS antenna gain 17 dBi
User antenna gain 4 dBi
Learning rate 0.2
Discount factor 0.98, 0.985, 0.99
Exploration rate Dynamic
Email, paging and fax 5 Kbps
Voice service and audio phone 30 Kbps
Remote login and data on demand 64 Kbps

Fig. 4 presents the convergence performance for three types
f cellular users’ services under different discount factors. Three
arious services, including Email, paging and fax, Voice service
nd audio phone, and Remote login and data on demand [28].
or the above three services, the minim bandwidth requirement
f cellular users is 5 kbps, 30 kbps, and 60 kbps, respectively.
ellular users have different resource requirements for each ser-
ice. The number of D2D users is 6, which reuse channels of
ne cellular user. We assume that the power level is [0, 4.8, 9.6,
4.4, 19.2, 24] (dB). In three different services, the agent learns
he expected reward. The discount factors are gamma = 0.98,
gamma = 0.985, gamma = 0.99. Fig. 4(a) shows that the number
of iterations increases, the capacity can be gradually improved to
a stable value. When the service is the email, paging, and fax, the
convergence value is larger than the others. This is because the
demand for the cellular user is smaller, so there are more reusable
channel resources. As a result, the service of email, paging, and
fax has a better convergence performance than others. Similarly,

the same trend is seen in Fig. 4(b) and Fig. 4(c).

7

In addition, it can be seen that gamma = 0.98, gamma =

0.985, gamma = 0.99, the expected reward is increasing growth
in a type of service in Fig. 4(a), (b), (c). This is because when
gamma is set to be relatively large, transmitters will spend much
more time identifying and reinforcing good actions. Hence, the
value of the discount factor has an impact on our agent learning,
where the larger discount factor results in a larger expected
reward under the same services. With a larger discount factor,
the system capacity stands a better chance to reach optimal
convergence efficiency. The experiment proves that cellular com-
munications and D2D communications can coexist, and RBs can
be shared for their respective data transmissions. The proposed
joint resources allocation and power selection method can max-
imize system capacity. During the learning process, the agent
continuously updates the strategy to learn how to allocate re-
sources and select power. In Fig. 4, the initially expected reward is
low. This is because the agent was exploring the optimal strategy,
and then the curve gradually rises and tends to stabilize. The
optimal policy can be obtained faster through learning. The figure
shows that DQN has a good convergence in the joint resource
allocation and power selection, and the convergence time is short.

As shown in Fig. 5, we compare the expected reward of the
different users under three discount factors. Fig. 5(a) depicts the
expected rewards when the numbers of users are 3, 6, and 9
under gamma = 0.68. We can see that the expected reward is
the maximum value under three users. The system’s optimally
expected reward drops as the number of users increase, which
indicates the system performs better when there are fewer users.
This is because of the interference by D2D links as a result of the
number of D2D users. When the agent learns the strategy, more
users will have more action and state space. Hence, the expected
reward of a few users is higher than those with the many users
in D2D communication. Furthermore, we can yet find the value
of gamma has a major impact on the convergence performance in
Fig. 5(a), (b), (c). However, the convergence speed in Fig. 5(c) is
slower than in Fig. 5(b). This is because the agent learning process
consisting of more iterations and larger gamma provides the

agent with more efficient long-term observation to obtain better
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Fig. 6. The performance of different methods.

Fig. 7. The system capacity of different services.

learning efficiency. From the simulation results, each agent can
learn how to satisfy the cellular communication constraint while
minimizing D2D communications interference and maximizing
the total system capacity.

As illustrated in Fig. 6, our proposed algorithm outperforms
other existing D2D resource allocation algorithms under iden-
tical scenarios. As can be observed from the figure, we plot
the system sum-rate with different methods, including random
resource allocation (Random-RA), Q-learning resource allocation
(QL-RA), and the proposed DRL resource allocation (DRL-RA).
Fig. 6 shows that when the iteration increases, the rate per-
formance of users is improved, and our proposed method is
much better than other methods. Here, we set the gamma =0.99,
and the service type is ‘‘Remote login and data on-demand’’.
Compared to traditional resource allocation methods, cellular
UEs achieve reasonable rate performance when interference is
properly managed. D2D communication is more efficient.

Fig. 7 is showed that the maximization of system capacity as
the CDF value. The values are plotted for all the iterations in
the different services. It is illustrated in Fig. 7 that among the
three services, the system performance is better when the service
demand is smaller such as email, paging, and fax. The exploitation
of our method in channel allocation and power control is efficient,
increasing the system capacity.

6. Conclusion

This paper proposes a joint resource allocation and power con-
trol method with DRL in a sophisticated D2D communication. In
our proposed learning method, all D2D pairs learn the strategies
8

(channel selection and power control) by interacting with the en-
vironment. Furthermore, as the number of multiplexed channels
increases, the performance of the algorithm does not decrease.
Because of the different types of MCC service requirements, D2D
users can select a number of channels to transmit services as
soon as possible without affecting the normal communication of
cellular users. Experimental results show that the learning pro-
cess converges under different discount factors and users’ number
settings. The advantage of the proposed resource allocation and
power selection method is to maximize the total system capacity
according to different MCC services in the D2D network.
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