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Abstract— Machine learning (ML) based malicious traffic
detection is an emerging security paradigm, particularly for
zero-day attack detection, which is complementary to existing
rule based detection. However, the existing ML based detection
achieves low detection accuracy and low throughput incurred by
inefficient traffic features extraction. Thus, they cannot detect
attacks in realtime, especially in high throughput networks.
Particularly, these detection systems similar to the existing rule
based detection can be easily evaded by sophisticated attacks.
To this end, we propose Whisper, a realtime ML based malicious
traffic detection system that achieves both high accuracy and high
throughput by utilizing frequency domain features. It utilizes
sequential information represented by the frequency domain
features to achieve bounded information loss, which ensures
high detection accuracy, and meanwhile constrains the scale
of features to achieve high detection throughput. In particular,
attackers cannot easily interfere with the frequency domain
features and thus Whisper is robust against various evasion
attacks. Our experiments with 74 types of attacks demonstrate
that, compared with the state-of-the-art systems, Whisper can
accurately detect various sophisticated and stealthy attacks,
achieving at most 18.36% improvement of AUC, while achieving
two orders of magnitude throughput. Even under various evasion
attacks, Whisper is still able to maintain around 90% detection
accuracy.

Index Terms— Malicious traffic detection, machine learning,
frequency domain.

I. INTRODUCTION

TRADITIONAL malicious traffic detection identifies mali-
cious traffic by analyzing the features of traffic according
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to preconfigured rules, which aims to protect legitimate Inter-
net users from network attacks [1]–[3]. However, the rule-base
detection is unable to detect zero-day attacks [4]–[7] though it
can achieve high detection accuracy and detection throughput
in high bandwidth networks, e.g., in Internet backbone.

As a promising security paradigm, machine learning based
malicious traffic detection has been developed, particularly
as a complement of the traditional fixed rule based methods
(i.e., signature based NIDS) [1], [2], [8], [9]. Table I summa-
rizes and compares rule based and typical machine learning
based detection methods. Compared with rule based meth-
ods, machine learning based methods can effectively identify
zero-day malicious traffic [4], [5], [10]. Unfortunately, due
to the processing overhead of machine learning algorithms,
existing detection methods achieve low detection throughput
and are unable to process high-rate traffic. As a result, most
of these methods can only be deployed offline [11]–[16] so
that they cannot achieve realtime detection, particularly in high
performance networks (e.g., in 10 Gigabit networks) [17]–[19].

Meanwhile, attackers can easily interfere with and evade
these methods, e.g., injecting noises packets generated by
benign applications into attack traffic. Packet-level detec-
tion [17], [20], [21] that analyzes per-packet feature sequences
is unable to achieve robust detection. Actually, even in the
absence of the evasion attacks, the packet-level detection is
unable to detect sophisticated zero-day attacks. Traditional
flow-level methods [14]–[16], [19] detecting attacks by ana-
lyzing flow-level statistics incur significant detection latency.
Moreover, evasion attacks can easily bypass the flow-level
detection that uses coarse-grained flow-level statistics [22],
[23]. Thus, realtime robust machine learning based detection
that is ready for real deployment is still missing.

In this paper, we develop Whisper that aims to realize
realtime robust malicious traffic detection by utilizing machine
learning algorithms. Whisper effectively extracts and analyzes
the sequential information of network traffic by frequency
domain analysis [25], which extracts traffic features with low
information loss. Especially, the frequency domain features of
traffic can efficiently represent various packet ordering patterns
of traffic with low feature redundancy. Frequency domain
feature analysis with low information loss enables accurate and
robust detection, while low feature redundancy ensures high
throughput traffic detection. In particular, since the frequency
domain features represent fine-grained sequential information
of the packet sequences, which are not disturbed by various
evasions, Whisper can achieve robust detection. However,
it is non-trivial to extract and analyze the frequency domain
features from traffic because of the large-scale, complicated,
and dynamic patterns of traffic [22], [23].

To effectively perform frequency domain traffic feature
analysis, we develop a three-step frequency domain feature
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TABLE I

COMPARING THE EXISTING MALICIOUS TRAFFIC DETECTION METHODS

extraction. First, we encode per-packet feature sequences as
vectors, which reduces the data scale and the overhead of sub-
sequent processing. Second, we segment the encoded vectors
and perform Discrete Fourier Transformation (DFT) [25] on
each frame, which aims to extract the sequential information
of traffic. It allows statistical machine learning algorithms
to easily learn the patterns. Third, we perform logarithmic
transformation on the modulus of the frequency domain
representation produced by DFT, which prevents float point
overflows incurred by the numerical instability issue [26]
during the training of machine learning.

We propose an automatic parameter selection module to
select the encoding vector for efficient packet feature encod-
ing. To achieve this, we formulate the per-packet feature
encoding as a constrained optimization problem to minimize
mutual interference of the per-packet features during frequency
domain feature analysis. We transform the original problem
into an equivalent SMT problem and solve the problem by
an SMT solver. It ensures the detection accuracy by choosing
vectors, while effectively reducing manual efforts of selecting
encoding vectors. Moreover, inspired by the Nyquist-Shannon
sampling theorem [27], we develop a sampling module that
further enhances the detection efficiency by performing accu-
rate sampling without interference with the frequency domain
features. Finally, we utilize statistical machine learning to clus-
ter the patterns according to the frequency domain features.
Due to the rich feature presentation and lightweight machine
learning, Whisper realizes realtime detection of malicious
traffic in high throughput networks.

We theoretically prove that Whisper is more efficient
than packet-level and traditional flow-level detection methods.
We conduct a theoretical analysis to prove that the frequency
domain features ensure bounded information loss, which lays
the foundation for robust detection of Whisper. We develop a
traffic feature differential entropy model, a theoretical frame-
work to measure information loss of feature extraction from
traffic. First, we prove the information loss in processing
packet sequences in the existing flow-level methods, which
further demonstrates that it cannot accurately extract features.
Second, we prove that Whisper maintains the information
loss in the flow-level methods and validate that the frequency
domain features are more efficient. Third, we prove that
Whisper effectively reduces feature redundancy by the
decrease in the data scale of features.

We prototype Whisper with Intel’s Data Plane Development
Kit (DPDK) [28]. To extensively evaluate the performance of
the Whisper prototype, we replay 74 malicious traffic datasets
with the high throughput backbone network traffic. Besides
the typical traditional attacks, we collect and replay malicious

traffic generated by sophisticated attacks: (i) more stealthy
attacks, e.g., low-rate TCP DoS attacks [29]–[31] and stealthy
network scanning [32]; (ii) complicated multi-stage attacks,
e.g., TCP side-channel attacks [33]–[35] and TLS padding
oracle attacks [36]; (iii) various evasion attacks, e.g., attackers
inject different types of noise packets (i.e., packets gener-
ated by benign applications) in attack traffic to evade detec-
tion. According to our experimental results, we validate that
Whisper can detect the different types of attacks with
AUC ranging between 0.891 and 0.999 while achieving
1,310,000 PPS, i.e., two orders of magnitude throughput
more than the state-of-the-art methods. Particularly, Whisper
can detect various evasion attacks with 35% improvement of
AUC over the state-of-the-art methods. Furthermore, Whisper
achieves realtime detection with bounded 0.06 second latency
in high throughput networks.

In summary, the contributions of our paper are six-fold:
• We present Whisper, a novel malicious traffic detection

system by utilizing frequency domain analysis, which is
the first system built upon machine learning achieving
realtime and robust detection in high throughput net-
works.

• We perform frequency domain feature analysis to extract
the sequential information of traffic, which lays the
foundation for the detection accuracy, robustness, and
high throughput of Whisper.

• We develop automatic encoding vector selection for
Whisper to reduce manual efforts for parameter selection,
which ensures the detection accuracy while avoiding
manual parameter setting.

• We develop an accurate sampling method that reduces
the detection overhead with negligible accuracy loss.

• We develop a theoretical analysis framework to prove the
properties of Whisper.

• We prototype Whisper with Intel DPDK and use the
experiments with different types of replayed attack traffic
to validate the performance of Whisper.

The rest of the paper is organized as follows: Section II
introduces the threat model and the design goals of
Whisper. Section III presents the high-level design of Whisper.
In Section IV, we present the design details. In Section V,
we conduct a theoretical analysis. In Section VI, we experi-
mentally evaluate the performances of Whisper. Section VII
reviews related works and Section VIII concludes this paper.

II. THREAT MODEL AND DESIGN GOALS

A. Threat Model

We aim to develop a malicious traffic detection system
as a plug-in module of middlebox. The middlebox forwards
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Fig. 1. High-level design of Whisper.

the replicated traffic to the detection system through port
mirroring, which is similar to Cisco SPAN [37]. Thus, the
detection system does not interfere with benign traffic forward-
ing. We assume that the detection system does not have any
prior knowledge on threats, which means that it should be able
to deal with zero-day attacks [5], [7], [17]. Note that, we do
not consider defenses against the attacks detected by Whisper
and can deploy existing malicious traffic defenses [38], [39]
to throttle the detected traffic.

The developed detection system should be able to determine
whether traffic passing through the middlebox is benign or
malicious by monitoring ongoing traffic. We emphasize that
the malicious traffic detection is fully different from traffic
classification [40]–[43] that aims to classify whether traffic
is generated by a certain network application or a certain
user. We do not consider detecting passive attacks that do not
cause obvious traffic variance, e.g., eavesdropping attacks and
intercept attacks [44], [45].

B. Design Goals
In this paper, we aim to develop a realtime robust mali-

cious traffic detection system, which achieves high detection
accuracy and task-agnostic detection. Particularly, the system
should achieve the following two goals, which are not well
addressed in the literature.

Robust Accurate Detection. The system should be able
to detect various zero-day attacks. Especially, it can capture
different evasion attacks, which try to evade detection by
deliberately injecting noise packets, i.e., using various packets
generated by benign applications, into the attack traffic.

Realtime Detection with High Throughput. The system
should be able to be deployed in high throughput networks,
e.g., a 10 Gigabit Ethernet, while incurring low latency.

III. OVERVIEW OF WHISPER

In this section, we present our malicious traffic detection
system, Whisper. Whisper achieves high performance detec-
tion by encoding per-packet feature sequences as vectors
to reduce the overhead of subsequent feature processing.
Meanwhile, it extracts the sequential information of traffic via
frequency domain to ensure detection accuracy. In particular,
since the frequency domain features represent fine-grained
sequential information of the packet sequences, which are not
disturbed by the injected noise packets, Whisper can achieve
robust detection. Figure 1 shows the overview of Whisper.

High Speed Packet Parser Module. High speed packet
parser module extracts per-packet features, e.g., the packet
length and arriving time interval, at high speed to ensure the

processing efficiency in both training and detection phases.
This module provides the per-packet feature sequences to
the feature extraction module for extracting the frequency
domain features and the automatic parameter selection module
for determining the encoding vector. Note that, this mod-
ule dose not extract specific application related features and
thus Whisper achieves task agnostic detection. We use only
three per-packet features to reduce the encoding overhead in
the frequency feature extraction module, while ensuring the
detection effectiveness with the sequential patterns. Moreover,
as stated in Section II, application-layer payloads are inacces-
sible. Thus, these features allow us to detect attacks without
leaking user privacy.

Frequency Features Extraction Module. In both training
and detection phases, this module extracts the frequency
domain features from the per-packet feature sequences. This
module periodically polls the required information from the
high speed packet parser module with a fixed time interval.
After acquiring the extracted per-packet features, it encodes
the per-packet feature sequences as vectors and extracts the
sequential information via frequency domain. These features
with low redundancy are provided for the statistical clustering
module. However, it is difficult to extract the frequency domain
features of traffic in high throughput networks in realtime
because of the various complicated, irregular, and dynamic
flow patterns [22], [23]. We cannot apply deep learning
models, e.g., recurrent neural networks, to extract features due
to their long processing latency though they can extract more
richer features for detection. We will present the details of this
module in Section IV-A.

Automatic Parameter Selection Module. This module
calculates the encoding vector for the feature extraction mod-
ule. We decide the encoding vector by solving a constrained
optimization problem that reduces the mutual interference
of different per-packet features. In the training phase, this
module acquires the per-packet feature sequences and solves
an equivalent Satisfiability Modulo Theories (SMT) problem
to approximate the optimal solution of the original problem.
By enabling automatic parameter selection, we significantly
reduce the manual efforts for parameter selection. Therefore,
we can fix and accurately set the encoding vector in the
detection phase. We will describe the details of the module
in Section IV-B.

Interval Sampling Module. The module samples the
per-packet feature sequence of the traffic with a fixed interval
to further reduce the processing overhead. According to the
Nyquist-Shannon sampling theorem [27], our interval sam-
pling on the original feature sequence incurs low information
loss and has negligible effects on the frequency domain
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features. Meanwhile, it significantly reduces the scale of the
features and thus reduces the overhead of the subsequent
process, while maintaining the detection accuracy.

Statistical Clustering Module. In this module, we utilize a
lightweight statistical clustering algorithm to learn the patterns
of the frequency domain features from the feature extraction
module. In the training phase, this module calculates the
clustering centers of the frequency domain features of benign
traffic and the averaged training loss. In the detection phase,
this module calculates the distances between the frequency
domain features and the clustering centers. Whisper detects
traffic as malicious if the distances are significantly larger than
the training loss. We will elaborate on the statistical clustering
based detection in Section IV-D.

IV. DESIGN DETAILS

In this section, we present the design details of Whisper,
i.e., the design of three main modules in Whisper.

A. Frequency Feature Extraction Module
In this module, we extract the frequency domain features

from high speed traffic. We acquire the per-packet features of
N packets from the same flow by polling the high speed packet
parser module. We use the mathematical representation similar
to Bartos et al. [14] to denote the features. We use s(i) and M
to indicate the ith per-packet feature and the number of per-
packet features, respectively. Matrix S denotes the per-packet
features of all packets, where sik is defined as ith packet’s kth

property:

S = [s(1), . . . , s(i), . . . , s(M)] =

⎡
⎢⎣

s11 · · · s1M

...
. . .

...
sN1 · · · sNM

⎤
⎥⎦ . (1)

Packet Feature Encoding. We perform a linear transfor-
mation w on S to encode the features of a packet to a real
number vi. v denotes the vector representation of traffic:

v = Sw = [v1, . . . , vi, . . . , vN ]T, vi =
M�

k=1

sikwk. (2)

The feature encoding reduces the scale of features, which
significantly reduces the processing overhead of Whisper.
In Section IV-B, we will describe how Whisper automatically
selects parameters for the encoding vector w.

Vector Framing. Now we segment the vector representation
with the step length of Wseg. The goal of segmentation is to
reduce the complexity of the frequency domain features by
constraining the long-term dependence between packets. If the
frames are excessively long, the frequency domain features
will become too complex to learn in the statistical learning
module. Nf denotes the number of the frames. We obtain the
following equations:

fi = v[[(i − 1) × Wseg : i × Wseg]] (1 ≤ i ≤ Nf ), (3)

Nf =
	

N

Wseg



. (4)

Discrete Fourier Transformation. We perform the Discrete
Fourier Transformation (DFT) on each frame fi to extract the
sequential information via frequency domain and reduce the
information loss incurred by the flow-level methods. We can

acquire the frequency features of each frame as follows:1

Fi = F (fi) (1 ≤ i ≤ Nf ), (5)

Fik =
Wseg�
n=1

fine
−j 2π(n−1)(k−1)

Wseg (1 ≤ k ≤ Wseg), (6)

where Fik is a frequency component of ith frame with the
frequency of 2π(k−1)/Wseg. Note that, all frequency features
output by DFT are vectors with complex numbers, which
cannot be used directly as the input for machine learning
algorithms.

Calculating the Modulus of Complex Numbers. We
transform the complex numbers to real numbers by calculating
the modulus for the frequency domain representation. For sim-
plicity, we transform Fik to a coordinate plane representation:

Fik = aik + jbik, (7)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

aik =
Wseg�
n=1

fin cos
2π(n − 1)(k − 1)

Wseg

bik =
Wseg�
n=1

−fin sin
2π(n − 1)(k − 1)

Wseg
.

(8)

We calculate the modulus for Fik as pik in (9). For the ith

frame, we select the first half of the modulus as vector Pi.
Because the transformation results of DFT are conjugate, the
first half and the second half are symmetrical. Thus, we can
obtain:

pik = a2
ik + b2

ik (1 ≤ k ≤ Wseg), (9)

Pi = [pi1, . . . , piKf
]T (Kf =

	
Wseg

2



+ 1), (10)

Fik = F ∗
i(Wseg−k) ⇒ pik = pi(Wseg−k). (11)

Logarithmic Transformation. To make the frequency
domain features to be numerically stable [26] and prevent float
point overflow during the machine learning model training,
we perform a logarithmic transformation on Pi, and use
constant C to adjust the range of the frequency domain
features:

Ri =
ln(Pi + 1)

C
(1 ≤ i ≤ Nf ), (12)

RKf×Nf
= [R1, . . . , Ri, . . . , RNf

]. (13)

As the output of the features extraction module, the ith column
component of R is the frequency domain features of the ith

frame. Matrix R is the input for the clustering module.
Take an example, we collect three types of benign traffic

(90%) mixed with the malicious traffic (10%) in Wide Area
Network (WAN). We select 1500 continuous packets (N =
1500) from each type of traffic and extract three per-packet
features (M = 3) including the packet length, the protocol
type, and the arriving time interval. We fix the framing length
Wseg = 30. Therefore, Nf = 50 and Kf = 16. Then we
perform a min-max normalization operation on the frequency
domain features R and map the results to the RGB space.
We visualize the frequency domain features that are similar
to the Spectrogram in speech recognition [46]. As shown in
Figure 2, we observe that the area associated with the fre-
quency domain features of the malicious traffic is significantly
lighter than that of the benign traffic.

1j denotes an imaginary number.
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Fig. 2. We map the frequency domain features, which are extracted from the traffic with three types of typical attacks, to the RGB space, and observe that
a small number of malicious packets incur significant changes in the frequency domain features.

B. Automatic Parameters Selection Module

Now we determine the encoding vector w for the feature
extraction module that uses w to encode the per-packet feature
sequences and acquires the vector representation of the traffic.
In general, we formulate the encoding vector selection problem
as a constrained optimization problem, and transform the origi-
nal problem into an equivalent SMT problem. We approximate
the optimal solution of the original problem through solving
the SMT problem.

We assume that we can find a set of continuous functions
to describe the changes of each kind of the per-packet feature
s(i). Thus, we consider all obtained per-packet features are
the samples of the continuous functions, which are denoted as
hi(t) (1 ≤ i ≤ M). We need to find a vector w to amplify and
superpose all these functions. Our key optimization objective
is to minimize mutual interference and bound the overall
range when superposing the functions. We can first bound the
range of encoding vector w and the range of the superposition
function in the following:

Wmin ≤ wi ≤ Wmax (1 ≤ i ≤ M), (14)
M�
i=1

wihi(t) ≤ B, (15)

where Wmin, Wmax, B are constants. We constrain the order
preserving properties of the functions to ensure that different
types of per-packet features do not interfere with each other
when the feature extraction module performs packet encoding:

wihi(t) ≤ wi+1hi+1(t) (1 ≤ i ≤ M − 1). (16)

Second, we optimize w to maximize the distances between
the functions so that we can minimize the mutual interference
of the per-packet features and bound the ranges of all the
functions. Therefore, under the constrains of (14) (15) (16),
we obtain the optimization object:

ŵ = argmax
� +∞

0

wMhM (t) − w1h1(t)dt

−
M−1�
i=2

� +∞

0

|2wihi(t) − wi+1hi+1(t)

−wi−1hi−1(t)|dt. (17)

In practice, we cannot determine the convexity of the
optimization object because the closed-form representations of
hi(t) are not available. Thus, we reform the origin constrained
optimization problem to a Satisfiability Modulo Theories
(SMT) problem (19) with optimization object (18) to approx-
imate the optimal solution of (17). For the ith per-packet
feature, we perform a min-max normalization on si and use ni

to indicate the normalized vector. We list constrains (19). And
we obtain the satisfied (SAT) solutions of the SMT problem

and maximize the following objective:

�w = argmax
N�

i=1

wMnMi − w1n1i

−
M−1�
i=2

2winik − wi−1n(i−1)k

− wi+1n(i+1)k,

(18)

subjects to:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

wi ∈ [Wmin, Wmax]
M�
i=1

winik ≤ B

winik ≤ wi+1n(i+1)k

2winik ≤ wi−1n(i−1)k + wi+1n(i+1)k.

(19)

Note that, the goal of the last constraint in Eq.(19) is to
ensure that the absolute value in Eq.(17) is positive because
most SMT solvers do not support absolute value operations.

C. Interval Sampling Module

Now we sample the obtained per-packet features. According
to our studies, we observe that the per-packet feature sequence
S consists of slowly changing sub-sequences, which motivates
us to design the sampling strategy. Figure 3 shows the time
series of the per-packet features (i.e., the packet length and
the arrival interval) of two randomly selected flows in the
backbone traffic dataset [47]. We find that most parts of the
sequences change slowly (indicated by the arrows). Moreover,
we model the observed slow change property using the integral
of curvature. Specifically, following Section IV-B, we use Ωi

to indicate the integral of the curvature of a per-packet feature
sequence denoted by the continuous function hi(t). According
to the definition of the curvature for a single point, we obtain
a discrete estimate of Ωi:

Ωi =
1

tn − t1

� tn

t1

|h��
i (t)|

(1 + h�2
i (t))3/2

dt (20)

=
1

tn − t1
lim

k→∞

k�
i=1

tn − t1
k

· |h��
i (ti)|

(1 + h�2
i (ti))3/2

(21)

≈ 1
n − 2

n−1�
k=2

|s(i)
k+1 + s

(i)
k−1 − 2 · s(i)

k |
[1 + (s(i)

k+1 − s
(i)
k )2]3/2

, (22)

where ti = t1 + i
k · (tn − t1), and t1, tn are the start and

end time of the flow, s
(i)
k is the ith feature of the kth packet

(defined in (1)). Figure 4 shows the cumulative distribution
function (CDF) of the estimated curvature of the flows in
three real-world datasets [47] collected in 2020. We observe
that most feature sequences consist of massive slowly chang-
ing sub-sequences with low curvatures, which implies that
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Fig. 3. Time series of the per-packet feature sequences of Internet traffic.

Fig. 4. Cumulative distribution function of the integral of curvature.

Fig. 5. Distribution of the decomposed frequency domain features.

the repetitive and redundant features are widespread in the
per-packet feature sequences of the traffic.

To reduce the redundant features and the subsequent
processing overhead, we perform sampling on the original
feature sequence S. Specifically, this module samples and
excludes the packets of a proportion D using a fixed sampling
interval before constructing the feature sequence. To justify
the sampling, we sample the feature sequences (D = 50%)
and extract their frequency domain features according to (6)
for the same flows shown in Figure 3. Figure 5 compares the
sampled and the original sequences by mapping their extracted
frequency domain features from the high-dimensional complex
plane to the cartesian coordinate system using principal com-
ponent analysis (PCA). The sampling has negligible effects
on the distributions of the frequency domain features, while
significantly reducing the scale of the features.

The negligible effects of the interval sampling on the
frequency domain features can be explained according to the
Nyquist-Shannon sampling theorem [27]. It demonstrates that
the minimum sampling frequency without information loss
is twice the maximum frequency appearing in the sampled
signal. Figure 3 and 4 imply that the per-packet feature
sequences mainly consist of low-frequency components whose
frequencies are significantly lower than the frequency of
sampling the whole sequence. Thus, according to the sampling
theorem, the original sequences have redundant data that is
consistent with our empirical studies. We address this issue by
utilizing interval sampling to reduce the sampling frequency.
The reduced sampling frequency approaches the minimum
frequency indicated by the theorem. Thus, the sampling can
reduce the repetitive and redundant data without interference
with the features.

D. Statistical Clustering Module

Now we utilize the statistical clustering algorithm to learn
the patterns of the frequency domain features obtained from
the feature extraction module with the selected parameters.
We train the statistical clustering algorithm with only benign
traffic. In the training phase, this module calculates the cluster-
ing centers of the frequency domain features and the averaged
training loss. In order to improve the robustness of Whisper
and reduce false positive caused by the extreme values, we seg-
ment the frequency domain feature matrix R with a sampling
window of length Wwin. We use Nt to denote the number
of samples and l to denote the start points. We average the
sampling window on the dimension of the feature sequence
and use ri to indicate the input of the clustering algorithm.
We can obtain:

l = iWwin (0 ≤ i < Nt), Nt =
	

Nf

Wwin



, (23)

ri = mean(R[[l : l + Wwin]]). (24)

We perform the statistical clustering algorithm and acquire
all clustering centers to represent the benign traffic patterns.
We use Ck to denote the KC clustering centers, where (1 ≤
k ≤ KC), and then calculate the averaged training loss. For
each ri, we find the closest clustering center as Ĉi and we
take averaged L2-norm as the training loss:

Ĉi = argmin
Ck

�Ck − ri�2 (1 ≤ i ≤ Nt), (25)

train_loss =
1
Nt

Nt�
i=1

���ri − Ĉi

���
2
. (26)

In the detection phase, this module calculates the distances
between the frequency domain features of traffic and the
clustering centers. For each given frequency domain feature,
we sample Nt segments on R with length Wwin, which is the
same as the training phase. We can find the closest clustering
center Ĉi as an estimate of ri. We calculate the L2-norm as
the estimation error:

lossi = min(�ri − Ck�2) (1 ≤ k ≤ KC). (27)

If the estimation error lossi ≥ (φ × train_loss), we can con-
clude that the statistical clustering algorithm cannot understand
the frequency domain features of the traffic, which means the
traffic is malicious.

V. THEORETICAL ANALYSIS

In this section, we conduct a theoretical analysis to prove
that Whisper achieves lower information loss in feature
extraction than the packet-level and the traditional flow-
level methods, which ensures that Whisper extracts traffic
features accurately. All proofs can be found in [48]. Moreover,
we analyze the scale of the frequency domain features and the
algorithmic complexity.

A. Information Loss in Whisper
Traffic Feature Differential Entropy Model. First,

we develop the traffic feature differential entropy model,
a theoretical analysis framework that evaluates the efficiency
of traffic features by analyzing the information loss incurred
by feature extractions from an information theory perspec-
tive [49]. The framework aims to (i) model an observable
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packet-level feature as a stochastic process and observed
features extracted from ongoing packets as the state random
variables of the process; (ii) model feature extraction methods
as algebraic transformations of the state random variables;
(iii) evaluate the efficiency of the features by measuring the
information loss during the transformations.

We model a particular type of packet-level feature (e.g., the
packet length, and the time interval) as a discrete time stochas-
tic process S, which is used to model traffic feature extraction
by different detection methods. We use a random variable
vector �s = [s1, s2, . . . , sN ] to denote a packet-level feature
sequence extracted from N continuous packets, i.e., N random
variables from S. f indicates a feature extraction function that
transforms the original features �s for the input of machine
learning algorithms. According to Table I, in the packet-
level methods, f outputs the per-packet features sequence �s
directly. In the traditional flow-level methods, f calculates a
statistic of �s. In Whisper, f calculates the frequency domain
features of �s. We assume that S is a discrete time Gaussian
process, i.e., S ∼ GP(u(i), Σ(i, j)). For simplicity, we mark
Σ(i, i) as σ(i). We assume S is an independent process
and then we can obtain the covariance function of S, i.e.,
κ(xi, xj) = σ(i)δ(i, j). pi denotes the probability density
function of si. We use differential entropy [49] to measure
the information in the features using the unit of nat:

H(si) = −
� +∞

−∞
pi(s) ln pi(s)ds = lnKσ(i), (28)

where K =
√

2πe. We assume that the variance of each si is
large enough to ensure the significant change because a kind of
stable packet-level feature is meaningless to be extracted and
analyzed. Thus, we establish non-negative differential entropy
assumption, i.e., σ(i) ≥ K−1 to ensure H(si) ≥ 0.

Analysis of Traditional Flow-level Detection Methods.
We analyze the information loss in the feature extraction of
the traditional flow-level methods. We consider three types
of widely used statistical features in the traditional flow-level
methods [12], [19], [24], [50], [51]: (i) min-max features,
the feature extraction function f outputs the maximum or
minimum value of �s to extract flow-level features of traffic and
produces the output for machine learning algorithms. (ii) aver-
age features, f calculates the average number of �s to obtain
the flow-level features. (iii) variance features, f calculates the
variance of �s for machine learning algorithms. We analyze
the information loss when performing the statistical feature
extraction function f. Based on the probability distribution
of the state random variables and Equation (28), we obtain
the information loss of flow-level statistical features in the
traditional flow-level detection over the packet-level detection
and have the following properties of the features above.

Theorem 1 (The Lower Bound for Expected Information
Loss of the Min-Max Features): For the min-max statistical
features, the lower bound of expected information loss is:

E[ΔHflow−minmax] ≥ (N − 1) ln KE[σ]. (29)

Theorem 2 (The Lower Bound for Expected Information
Loss of the Average Features): The lower bound for the
expectation of information loss in the average features is:

E[ΔHflow−avg] ≥ ln
√

NKN−1E[σ]N−1. (30)

We can obtain that the equality of Theorem 1 and
Theorem 2 holds iff the stochastic process S is strictly
stationary.

Theorem 3 (The Lower Bound and Upper Bound for the
Information Loss of the Average Features): For the average
features, the upper and lower bounds of the information loss
in the metric of differential entropy is:

ln N ≤ ΔHflow−avg ≤ ln
√

NKN−1Q(σ)N−1, (31)

where Q(σ) is the square mean of the variances of the
per-packet features sequence �s.

Theorem 4 (The Information Loss of the Variance Features):
When the Gaussian process S is strictly stationary with zero
mean, i.e., u(i) = 0 and σ(i) = σ, for the variance features,
an estimate of the information loss is:

ΔHflow−var = N ln Kσ − ln 2σ2

�
π

N
. (32)

According to the theorems above, we can conclude that
the information loss in the traditional flow-level detection
methods increases approximately linearly with the length
of per-packet feature sequences. Thus, comparing with the
packet-level methods, the traditional flow-level methods can-
not effectively extract the features of traffic. Although the
traditional flow-level methods can adopt multiple statistical
features [14], [52], the number of packets in the feature
extraction (N ) is significantly larger than the number of
features. In Section VI-C, we will use experiments to show
that the traditional flow-level methods achieve low detection
accuracy.

Analysis of Whisper. Different from the traditional flow-
level methods, Whisper encodes per-packet features as vectors
and performs DFT on the vectors to extract the frequency
domain features of the traffic. We prove the low information
loss property of Whisper by comparing with the packet-level
methods (see Theorem 5) and the traditional flow-level meth-
ods (see Theorem 6) by leveraging the bounds of the infor-
mation loss in Theorem 1 - 4.

Theorem 5 (An Estimation of the Information Loss of
Whisper over the Packet-Level Methods): When the Gaussian
process S is strictly stationary with zero mean, i.e., u(i) =
0 and σ(i) = σ, we can acquire an estimate of the information
loss in Whisper when ignoring the logarithmic transformation:

ΔHWhisper = N ln
σ

w2
i

�
π

2e
−N ln N, (33)

where wi is the ith element of the encoding vector w.
Theorem 6 (An Estimation of the Information Loss Reduc-

tion of Whisper over the Traditional Flow-Level Methods):
With the same assumption in Theorem 5, compared with the
traditional flow-level methods that extract the average features,
Whisper reduces the information loss with an estimation:

ΔHWhisper−avg = ΔHflow−avg − ΔHWhisper (34)

= N ln 2ew2
i N + ln

√
N

Kσ
. (35)

Similarly, Whisper reduces the information loss in the
flow-level methods that use min-max features and variance
features. We present the estimations of reduced information
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Fig. 6. Information loss and reduced loss on the feasible region.

loss in the metric of differential entropy as follows:

ΔHWhisper−minmax = N ln 2ew2
i N − ln Kσ, (36)

ΔHWhisper−var = N ln 2ew2
i N − ln 2σ2

�
π

N
. (37)

According to Theorem 5, by using the packet-level methods
as a benchmark, we conclude that Whisper almost has no
information loss when the number of packets involved in
feature extraction is large. Thus, the feature efficiency of
Whisper is not worse than the packet-level methods. Moreover,
the packet-level methods have a large feature scale that results
in high overhead for machine learning (proof in Section V-C).

Based on Theorem 6, we conclude that the reduction of
the information loss in the traditional flow-level methods
increases more than linearly. Thus, by reducing the informa-
tion loss in the traditional flow-level methods, Whisper can
extract features from ongoing traffic more effectively than
the traditional flow-level methods. In Section VI-C, we will
measure the detection accuracy improvement of Whisper by
using experiments.

B. Numerical Analysis Results
To validate the analysis in real-world settings, we measure

the model parameters by using a real-world traffic dataset
and use the parameters to obtain the numerical results of the
amount of modeled information. Specifically, for the sequence
length parameter N , we obtain its distribution from the MAIW
traffic dataset (Jan. 2020). For the distribution parameter σ,
we use packet length and arrival interval as the instances for
the per-packet features and estimate σ for each flow in the
dataset via maximum likelihood estimate. Finally, we obtain
the distribution of σ. For both of the two parameters above,
we use the range between their 5th and 95th percentiles as the
feasible region of the parameters (denoted by D) to exclude
the extremums. For the weights in Whisper, we fix wi to 1.0 to
obtain the lower bounds of the improvements.

Figure 6 shows the amount of information loss and reduced
loss by Whisper on the feasible region D. We omit the
min-max feature because its numerical results are close to the
results of the average feature. From Figure 6(a), we observe
that the traditional average and variance flow features lose
at most 81.86 nat and 78.91 nat of information, respec-
tively. And Whisper loses at most 0.97 nat of information.
In Figure 6(b), we conclude that Whisper reduces at most
160.65 nat and 155.03 nat of information lost in the traditional
average feature and variance feature, respectively. The same
conclusions can be obtained in Figure 7, which plots the
amount of information loss and reduced loss when N is fixed
to its average. In Table II, we calculate the double integral
of information loss and reduced loss on the feasible region

Fig. 7. Information loss and reduced loss when fix N to its average.

TABLE II

INFORMATION LOSS AND REDUCED LOSS ON DIFFERENT FEATURES

D for packet length and arrival interval features. We conclude
that Whisper has only 26.68% and 25.64% information loss of
the traditional methods for the two per-packet features. And
it reduces 18.31% - 74.36% information loss incurred by the
coarse-grained flow-level features.

C. Analysis of Scalability and Overhead
Feature Scale Reduction of Whisper. Original per-packet

features are compressed in Whisper. Whisper reduces the input
data scale and the processing overhead in machine learning
algorithms. The compressed frequency domain features allow
us to apply the machine learning algorithm in high throughput
networks in practice. Compared with the packet-level methods,
Whisper achieves high compression ratio Cr with a theoretical
lower bound:

Cr =
size(R)
size(S)

=
KfNf

MN
≥

(N(1−D)
Wseg

)(Wseg
2 + 1)

MN
≥ 1 − D

2M
.

(38)

By reducing the feature scale, Whisper significantly reduces
the processing overhead in the packet-level methods and
achieves high throughput. In Section VI-E, we will show
the experimental results of Whisper to validate the analysis
results.

Overhead of Feature Extraction in Whisper. Whisper
incurs a low computational overhead of extracting the fre-
quency domain features from traffic. Particularly, Whisper
does not have an operation with high time or space complexity
that is higher than quadratic terms. The time complexity and
space complexity of Whisper are shown in Table III.

According to Table III, the computational complexity of
Whisper is proportional to the number of packets N . Most
of the consumption is incurred by matrix multiplications in
the packet encoding. Compared with the encoding, perform-
ing DFT on frames has relatively less computation over-
head and consumes less memory space because of the high
speed DFT operation, i.e., Fast Fourier Transformation (FFT).
In Section VI-E, we will validate the complexity of Whisper
by using the experimental results.
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TABLE III

COMPLEXITY OF THE FEATURE EXTRACTION MODULE

VI. EXPERIMENTAL EVALUATION

In this section, we prototype Whisper and evaluate its
performance by using 42 real-world attacks. In particular, the
experiments will answer the three questions:

1) If Whisper achieves higher detection accuracy than the
state-of-the-art method? (Section VI-C)

2) If Whisper is robust to detect attacks even if an attackers
try to evade the detection of Whisper by leveraging the
benign traffic? (Section VI-D)

3) If Whisper achieves high detection throughput and low
detection latency? (Section VI-E)

4) If Whisper ensures the detection accuracy with sampled
features? (Section VI-F)

A. Implementation
We prototype Whisper using C/C++ (GCC version 5.4.0)

and Python (version 3.8.0) with more than 3,500 lines of code
(LOC). The source code of Whisper can be found in [53].

High Speed Packet Parser Module. We leverage Intel Data
Plane Development Kit (DPDK) version 18.11.10 LTS [28] to
implement the data plane functions and ensure high perfor-
mance packet parsing in high throughput networks. We bind
the threads of Whisper on physical cores using DPDK APIs
to reduce the cost of context switching in CPUs. As discussed
in Section IV-A, we parse the three per-packet features, i.e.,
lengths, timestamps, and protocol types.

Frequency Domain Feature Extraction Module. We
leverage PyTorch [54] (version 1.6.0) to implement matrix
transforms (e.g., encoding and Discrete Fourier Transfor-
mation) of origin per-packet features and auto-encoders in
baselines.

Statistical Clustering Module. We leverage K-Means as
the clustering algorithm with the mlpack implementation
(version 3.4.0) [55] to cluster the frequency domain features.

Automatic Parameter Selection. We use Z3 SMT solver
(version 4.5.1) [56] to solve the SMT problem in Section IV-B,
i.e., determining the encoding vector in Whisper.

Moreover, we implement a traffic generating tool using
Intel DPDK to replay malicious traffic and benign traffic
simultaneously. We chose all hyper-parameters according to
the empirical studies on the six validation sets (see Figure 10).
The detailed settings of the hyper-parameters can be found
in Table IV.

B. Experiment Setup
Baselines. To measure the improvements achieved by

Whisper, we establish three baselines:
• Packet-level Detection. We use the state-of-the-art

machine learning based detection method, Kitsune [17].
It extracts per-packet features via flow state variables and
feeds the features to auto-encoders. We use the open

TABLE IV

HYPER-PARAMETER CONFIGURATIONS

source Kitsune implementation [57] and run the system
with the same hardware as Whisper.

• Flow-level Statistics Clustering (FSC). As far as we
know, there is no flow-level malicious traffic detec-
tion method that achieves task agnostic detection. Thus,
we establish 17 flow-level statistics according to the
existing studies [12], [14], [19], [24], [50] including
the maximum, minimum, variance, mean, range of the
per-packet features in Whisper, flow durations, and flow
byte counts. We perform a normalization for the flow-
level statistics. For a fair comparison, we use the same
clustering algorithm to Whisper.

• Flow-level Frequency Domain Features with Auto-
Encoder (FAE). We use the same frequency domain
features as Whisper and an auto-encoder model with
128 hidden states and Sigmoid activation function, which
is similar to the auto-encoder used in Kitsune. For the
training of the auto-encoder, we use the Adam optimizer
and set the batch size as 128, the training epoch as 200,
the learning rate as 0.01.

Testbed. We conduct the Whisper, FSC, and FAE exper-
iments on a testbed built on a DELL server with two
Intel Xeon E5645 CPUs (2 × 12 cores), Ubuntu 16.04
(Linux 4.15.0 LTS), 24GB memory, one Intel 10 Gbps NIC
with two ports that supports DPDK, and Intel 850nm SFP+
laser ports for optical fiber connections. We configure 8GB
huge page memory for DPDK (4GB/NUMA Node). We bind
8 physical cores for 8 NIC RX queues to extract per-packet
features and the other 8 cores for Whisper analysis threads,
which extract the frequency domain features of traffic and
perform statistical clustering. In summary, we use 17 of
24 cores to enable Whisper. Note that, since Kitsune cannot
handle high-rate traffic, we evaluate it with offline experiments
on the same testbed. We deploy DPDK traffic generators on the
other two servers with similar configurations. The reason why
we use two traffic generators is that the throughput of Whisper
exceeds the physical limit of 10 Gbps NIC, i.e., 13.22 Gbps.
We connect two flow generators with optical fibers to generate
high speed traffic.

Datasets. We use four recent datasets from the WIDE
MAWI 10 Gigabit backbone network [47]. We use 20%
benign traffic to train the machine learning algorithms. We use
the first 20% packets in MAWI 2020.06.10 dataset to calcu-
late the encoding vector via solving the SMT problem (see
Section IV-B). Meanwhile, we replay four groups of malicious
traffic combined with the benign traffic on the testbed:

• Traditional DoS and Scanning Attacks. We select five
active attacks from the Kitsune 2 [17] and a UDP DoS

2We exclude passive attack datasets without malicious flow but only victim
flow. Note that, in our threat model we do not consider attacks without
malicious packets.
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attack trace [58] to measure the accuracy of detecting
high-rate malicious flow. To further evaluate Whisper,
we collect new malicious traffic datasets on WAN includ-
ing Multi-Stage TCP Attacks, Stealthy TCP Attacks, and
Evasion Attacks.

• Multi-Stage TCP Attacks. TCP side-channel attacks
exploit the protocol implementations and hijack TCP
connections by generating forged probing packets. Nor-
mally, TCP side-channel attacks have several stages, e.g.,
active connection finding, sequence number guessing, and
acknowledgement number guessing. We implement two
recent TCP side-channel attacks [33], [34], which have
different numbers of attack stages. Moreover, we col-
lect another multi-stage attack, i.e., TLS padding oracle
attack [36].

• Stealthy TCP Attacks. The low-rate TCP DoS attacks gen-
erate low-rate burst traffic to trick TCP congestion control
algorithms and slow down their sending rates [29], [30],
[59]. Low-rate TCP DoS attacks are more stealthy than
flooding based DoS attacks. We construct the low-rate
TCP DoS attacks with different sending rates. Moreover,
we replay other low-rate attacks, e.g., stealthy vulnera-
bilities scanning [32], [60], [61].

• Evasion Attacks. We use evasion attack datasets to eval-
uate the robustness of Whisper, including three typical
evading strategies. (i) Injection: attackers can inject noise
packets (i.e., benign packets of network applications)
into malicious traffic to evade detection. For example,
an attacker can generate benign TLS traffic so that the
attacker sends malicious SSL renegotiation messages and
the benign TLS packets simultaneously. Basing on the
typical attacks above, we adjust the ratio of malicious
packets and benign packets, i.e., the ratio of 1:1, 1:2,
1:4, and 1:8, and the types of benign traffic to generate
28 datasets. (ii) Reducing packet rates: attackers reduce
the sending rate of malicious packets to evade detection.
We used the packet rates of the low-rate scanning for
8 vulnerable protocols disclosed in [62]. (iii) Traffic
encryption: attackers encrypt their malicious flows to
mimic benign encrypted flows. We use widely adopted
SSL/TLS malicious flows generated by SMTP-over-SSL
and 6 web exploiting tools that detect various web
injections, SSL vulnerabilities, XSS, and CSFR.

Metrics. We use the following metrics to evaluate the
detection accuracy: (i) true-positive rates (TPR), (ii) false-
positive rates (FPR), (iii) the area under ROC curve (AUC),
(vi) equal error rates (EER). Moreover, we measure the
throughput and processing latency to demonstrate that Whisper
achieves realtime detection.

C. Detection Accuracy
In this experiment, we evaluate the detection accuracy of

different systems by measuring TPR, FPR, AUC, and EER.
Table V illustrates the results. We find that Whisper can
detect all 14 attacks with AUC ranging between 0.932 and
0.999 and EER within 0.201. Figure 8 shows the scatter plots
of clustering results. For simplicity, we select two datasets with
2,000 benign and 2,000 malicious frequency domain features
and choose two dimensions of the frequency domain features
randomly. We observe that the malicious traffic has frequency
domain features far from the clustering centers. We present
the ROC curves of two datasets in Figure 9. We find that,
by leveraging the frequency domain features, detectors can

Fig. 8. Frequency domain features clustering results of Whisper.

Fig. 9. ROC of high-rate attack: SYN DoS and low-rate attack: IPID side-
channel attack.

detect low-rate malicious traffic in high throughput networks,
e.g., Whisper and FAE detect 138 Kbps IPID side-channel
malicious traffic with 0.932 and 0.973 AUC in the backbone
network at the speed of 5.276 Gbps, respectively. Similarly,
Whisper can also detect TCP cover timing channels by utiliz-
ing side-channel features [63], [64]. The increment of burst
intervals in low-rate TCP DoS attacks causes 9.0%, 7.0%,
0.10%, and 0.06% AUC decrease for Kitsune, FSC, FAE, and
Whisper, respectively. Thus, compared with the packet-level
and the traditional flow-level detection, burst intervals in the
low-rate TCP DoS attacks have a negligible effect on the
detection accuracy of Whisper and FAE. Whisper can detect
a variety of pulsing DoS attacks [65] by extracting their
obvious pulsing patterns in the frequency domain. However,
FAE cannot effectively detect some sophisticated attacks, e.g.,
the ACK throttling side-channel attack and the TLS padding
oracle attack, and only achieves only 39.09% AUC of Whisper.
Note that, Whisper accurately identifies 2.4 Gbps high-rate
malicious flows among 4.8 Gbps traffic online.

Kitsune cannot effectively detect the side-channel attacks
because it is unable to maintain enough states for the traffic.
We find that Kitsune’s offline processing speeds in the datasets
are less than 4000 packets per second (PPS), and the expected
time to complete the detection is more than 2 hours. The
side-channel attacks trick Kitsune to maintain massive flow
states by sending a larger number of probing packets. Different
from using flow states to preserve the flow context information
in Kitsune, Whisper preserves the flow-level context infor-
mation via the frequency domain analysis, which ensures the
ability to detect such attacks.

We observe that, with the same ML algorithm, i.e., auto-
encoder, the frequency domain features achieve higher accu-
racy (at most 15.72% AUC improvements and 95.79% EER
improvements) than the state-of-the-art packet-level features
and can detect more stealthy attacks. Under the five types of
stealthy TCP attacks, Kitsune achieves 0.837 - 0.920 AUC
and cannot detect the low-rate scanning of the side-channel
attack. Moreover, compared with FSC, Whisper achieves at
most 65.26% AUC improvements and 98.80% EER improve-
ments. Thus, we can conclude that the frequency domain
features allow Whisper to achieve higher detection accuracy
and outperform the packet-level methods and the traditional
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TABLE V

DETECTION ACCURACY OF WHISPER AND BASELINES ON 14 ATTACKS

Fig. 10. Detection accuracy of the ablation study for Whisper.

flow-level methods. The frequency domain features can rep-
resent fine-grained packet sequential information, e.g., the
flooding traffic with obvious periodicity exhibits the high
density in the high-frequency part of the frequency spectrum.

Moreover, we study the impact of the automatic parameter
selection on the detection accuracy. We manually set encoding
vectors to compare the results with automatically selected
parameters. We use six attacks as validation sets for the
manually selected encoding vector, and use 13 attacks to
test the generalization of the manually selected parameters.
Figure 11 shows the detection accuracy in terms of parameter
settings. We observe that the automatic parameter selection
module achieves 9.99% AUC improvements and 99.55% EER
improvements compared with manual parameter selection.
Besides, we conduct the experiment of the ablation study to
validate that all three packet features are indispensable. For
example, as shown in Figure 10, due to lack of packet features,
the incurred AUC decrease ranges between 23.6% - 29.4%.

D. Robustness of Detection
In order to validate the robustness of Whisper, we assume

that attackers know the existence of malicious traffic detection.
Attackers can construct evasion attacks, i.e., injecting various
benign traffic, reducing sending rates, and encrypting traffic,
to evade the detection.

Injection. For simplicity, we assume that attackers inject
benign TLS traffic and UDP video traffic into the malicious
traffic and disguise it as benign traffic for evasion. The reason
why we use TLS and UDP video traffic is that it contributes
to a high proportion of the benign traffic datasets, i.e., around
35% and 13%, respectively. Injecting the traffic can signif-
icantly interfere with traditional detection (see Figure 12).
We select and replay 7 malicious traffic patterns and mix

Fig. 11. Performance of the automatic parameter selection in comparison
with manually selected parameters.

them into different ratio of benign traffic, i.e., the ratio of
malicious traffic to the benign traffic ranging between 1:1
and 1:8. We do not inject the benign traffic with more ratio
because the effectiveness of attacks is already low at the ratio
of 1:8. We average the detection results with different ratio.
Figure 12 shows the averaged detection accuracy on different
attacks. The detailed detection accuracy results can be found
in our conference paper [48]. We observe that the evasion
attacks with higher benign traffic mix ratio are easier to
evade the detection. According to figure 12, we conclude that
attackers cannot evade Whisper by injecting benign traffic into
malicious traffic. However, the attackers evade other detection
systems.

For instance, Whisper has at most 10.46% AUC decrease
under the evasion attacks. But we observe that the existing
flow-level and packet-level detection methods are not robust
to the evasion attacks. For example, Kitsune has at most
7.98 times EER increase and 35.4% AUC decrease. Simi-
larly, attackers can effectively evade the traditional detection
methods using flow-level features, especially injecting more
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Fig. 12. Detection accuracy under evasion attacks with injected benign traffic.

Fig. 13. Detection accuracy under evasion attacks with reduced sending
rates.

benign traffic with the higher packet rate. The evasion attacks,
e.g, evasion OS scan and evasion TLS vulnerabilities scan,
lead to at most 11.59 times EER increase under the flow-level
methods (AUC ≤ 0.5). Whisper has stable detection accuracy
at different ratio, e.g., the averaged AUC decrease is bounded
by 3.0%, which is robust for the evasion attacks.

Reducing Packet Rates. In practice, attackers can reduce
the sending rates of malicious traffic to evade detection
and construct the stealthy attacks [62]. We use the low-rate
vulnerability exploiting targeting 8 typical protocols dis-
closed by Durumeric et al. [62]. Their slow packet rates
(≤ 1,000 PPS) are significantly lower than the brute-force
attacks in Section VI-C. Figure 13(a) shows that Whisper
retains 0.957 AUC averaged detection accuracy under the
evasions. However, two low-rate attacks (i.e., the evasion
attacks targeting RDP and SSH) completely evade Kitsune
(AUC ≤ 0.50). Similarly, in Figure 13(b), we observe that
Whisper reduces 50.87% EER of Kitsune on average. Thus,
we conclude that attackers cannot evade Whisper by reducing
the sending rates.

Traffic Encryption. Encrypted malicious traffic invalidates
the traditional methods because their flow features are close to
the features of benign traffic, e.g., HTTPS web traffic. To eval-
uate the robustness when attackers apply traffic encryption,
we collect 11 types of SSL/TLS encrypted malicious traffic
and present the detection accuracy in Figure 14. Due to space

Fig. 14. Detection accuracy under traffic encryption.

Fig. 15. Detection accuracy under other sophisticated evasion strategies.

limitations, we omit the detection accuracy of the baselines
because they cannot achieve acceptable accuracy (AUC ≥ 0.5)
on most datasets which means that encrypted traffic can easily
evade the baselines. However, Whisper retains 0.945 averaged
AUC and 0.095 averaged EER when detecting the encrypted
traffic generated by various exploiting tools and vulnerable
applications. Thus, we conclude that the traditional methods
are not robust to encrypted traffic and we realize robust
detection under traffic encryption by extracting fine-grained
packet sequential information via frequency domain.

Other Evasions. We also measure the effects of 13 other
evasion strategies on the detection accuracy. The strategies
include (i) injecting different types of benign traffic (i.e.,
ICMP, DNS, and outbound NAT traffic that includes various
types of benign traffic), (ii) changing the rate of sending
malicious packets according to the rate of benign TLS flows,
(iii) manipulating the packet length in the malicious traffic
according to the benign TLS packet length. Figure 15 shows
that the detection accuracy is not significantly impacted by
the attacks, which is consistent with the results above. Note
that, the attacks cannot be evaded by constructing time or
length features similar to the benign ones because Whisper
can capture the attacks by capturing the unchanged features
in the frequency domain.

In summary, Whisper can achieve robust detection
because the used frequency domain features represent robust
fine-grained sequential information of traffic. Malicious traffic
disguised as benign traffic does not incur significant changes
in the flow-level statistics. Thus, the flow-level features of
the malicious traffic are similar to the benign flows. More-
over, the packet-level methods (e.g., Kitsune) require the
flow statistics for detection. As a result, both packet-level
and traditional flow-level detection methods are unable to
capture such attacks. However, the sequential information of
the malicious traffic extracted by Whisper are significantly
different from the benign traffic. Thus, to our best knowledge,
Whisper is the first ML based method that achieves robust
detection under evasion attacks.

E. Detection Latency and Throughput

Detection Latency. To measure the latency, we replay
the backbone network traffic datasets with different traffic
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Fig. 16. Detection latency of Whisper. We present the CDF of overall latency in (a), the CDF of pure processing latency in (b), the box plot of latency in
different steps in (c).

Fig. 17. CDF and the average number of throughput: Whisper, FAE, and Kitsune.

rates. For simplicity, we use the low-rate TCP DoS attack
with a 0.5s burst interval as a typical attack and measure
the overall detection latency, i.e., the time interval between
sending the first malicious packet and detecting the traffic.
The overall detection latency includes the transmitting latency,
the queuing latency, and the processing latency. The cumu-
lative distribution function (CDF) of the overall detection
latency is shown in Figure 16(a). With four datasets, we find
that the detection latency of Whisper is between 0.047 and
0.133 second, which shows that Whisper achieves realtime
detection in high throughput networks. In order to accurately
measure the processing latency incurred by Whisper, we replay
the low-rate TCP DoS dataset with a 0.5s burst interval
to construct a light load network scenario and measure the
execution time of the four modules in Whisper. The CDF of the
processing latency is shown in Figure 16(b). We observe that
the processing latency of Whisper exhibits uniform distribution
because most of the latency is incurred by polling per-packet
features from the packet parser module in the light load
situation. Thus, we can conclude that the averaged processing
latency incurred by Whisper is only 0.0361 second, and the
queuing latency raised by Whisper is the majority.

We also analyze the latency raised by each step of Whisper
in Figure 16(c). We see that the measured latency in each step
is consistent with the computational complexity analysis in
Section V-C. The DFT, Modulus Calculation, and Log Trans-
formation have similar computational complexity and incur
similar processing latency. The most latency is raised from the
packet encoding (i.e., 5.20 × 10−3 second on average). The
statistical clustering module has averaged processing latency
of 1.30 × 10−4 second, which is significantly lower than the
packet encoding. We find that most of the latency is incurred
by the packet parsing module and the memory copy for parsing
per-packet features incurs the most latency.

Throughput. We replay four MAWI [47] backbone network
traffic datasets with the physical limit bandwidth of laser ports
(20 Gbps) to measure the throughput. We measure the through-
put of Whisper and FAE and validate that detection accuracy
does not decrease when reaching the maximum throughput.
We run Kitsune with the same hardware as Whisper and

measure the offline processing speed, i.e., we ignore the packet
parsing overhead in the online processing of Kitsune, because
it cannot handle high speed traffic. The CDF of the through-
put is shown in Figure 17. We find that Whisper achieves
11.35 Gbps to 13.22 Gbps average throughput, while Kitsune
achieves 112.52 Mbps. Whisper achieves high throughput
because it significantly reduces the processing overhead of
the machine learning. FAE achieves the averaged throughput
ranging between 11.28 Gbps and 13.18 Gbps, which is similar
to Whisper. Note that, FAE uses a similar auto-encoder model
in Kitsune and achieves 100 times higher throughput (though it
has limited detection ability). We conclude that the frequency
domain features used in Whisper enable higher throughput
than the packet-level methods. In summary, Whisper and
FAE achieve the most throughput, around 1.27 × 106 PPS.

F. Effectiveness of Interval Sampling
The interval sampling module (see Section IV-C) reduces

the processing overhead, which allows Whisper to increase the
throughput and reduce the latency of the detection. To accu-
rately measure the improvements of throughput, we truncate
the packets in benign traffic datasets to the first 200 bytes
and increase the packet rates until the packet parsing mod-
ule reaches its maximum throughput, and set the sampling
parameter D to 50%, 33%, 25%. Similar to previous exper-
iments, we plot the CDF of the detection throughput on
the four datasets. In Figure 18, we observe that the sam-
pling module increases 44.57%, 80.99%, 60.17%, 44.18%
averaged throughput when D = 50% on the datasets col-
lected in Jan. 2019, Jan. 2020, Mar. 2020, Jun. 2020, respec-
tively. By applying the sampling module, Whisper achieves
23.86 Gbps averaged throughput on the dataset collected in
Jan. 2020, which is higher than the throughput on other
datasets because the dataset includes higher throughput traf-
fic. Moreover, the improvements of throughput increase as
the increase of the sampling parameter D because Whisper
samples less per-packet features when D is larger. Similarly,
a higher D also reduces more detection latency. Figure 19
shows the averaged processing latency with different D on
the four datasets. Compared with the latency in Figure 16(b),
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Fig. 18. Throughput improvements by applying the sampling module.

Fig. 19. Latency improvements by applying the sampling module.

TABLE VI

IMPACTS OF THE SAMPLING MODULE ON DETECTION ACCURACY

the sampling model reduces 58.39% - 72.71% of the latency.
Moreover, the sampling module has negligible impacts on the
detection accuracy. Table VI exhibits the detection accuracy
with different sampling parameters. We observe that averaged
accuracy decrease is only 1.72%, 1.39%, and 0.55% when
D is 50%, 33%, and 25%, respectively. The sampling does
not incur a significant accuracy decrease. In summary, the
sampling module can increase the throughput and decrease
latency with the negligible accuracy loss.

VII. RELATED WORK

Machine Learning based NIDS. Machine learning based
Network Intrusion Detection Systems (NIDSes) can achieve
higher detection accuracy than the traditional signature based
NIDSes [8], [9]. In particular, compared with the signature
based NIDSes, they can detect zero-day attacks that have not

been uncovered [4], [5], [66]. For example, Nelms et al. [15]
and Invernizzi et al. [16] detect malware traffic by using
statistical machine learning approaches. Moreover, the spe-
cialized features of botnets have been used in botnet traffic
detection [67], [68]. Different from these methods, Whisper
detects various attack traffic including botnet traffic online.
Bartos et al. [14] developed an invariant of statistical features
based detection via matrix transformations, which is not scal-
able in large scale detection. Barradas et al. [69] developed
FlowLens which extracted the distribution of packet-level
features on data-planes. Luo et al. [65], [70] developed the
wavelet approaches to achieve generic pulsing attack detection.
Mirsky et al. [17] proposed Kitsune that leveraged lightweight
deep neural networks to reduce the processing overhead.
Whisper uses packet encoding and DFT to compress the
original per-packet features for reducing feature redundancy.
The compressed frequency domain features allow the machine
learning to be readily deployable for high performance
detection.

Traffic Classification. Machine learning algorithms are
widely used in traffic classification [40], [42], [43], [71]–[77].
For example, web fingerprinting aims to invalidate the Tor
anonymous services and infer the website that users are visit-
ing by using the features of TLS encrypted traffic [78]–[80].
Similar to Web fingerprinting, Ede et al. [43] used semi-
supervised learning to fingerprint mobile applications.
Siby et al. [42] applied traffic analysis to classify encrypted
DNS traffic and infer the activities of users. Bahramali et al.
[74] analyzed the features of various realtime communication
applications. Although traffic classification achieves a different
goal from malicious traffic detection, the extracted traffic
features in Whisper, i.e., the frequency domain features, can
be applied to perform traffic classifications.

Throttling Malicious Traffic. IP blacklists have been
widely used to throttle malicious traffic [81]. For instance,
Ramanathan et al. [82] proposed an IP blacklist aggregation
method to locate attackers. Moreover, programmable data
planes [19], [38], [39], [83]–[86] have been recently leveraged
to throttle various attack traffic, e.g., throttling different types
of DoS flows and covert channels. All these defenses are
orthogonal to our Whisper.

VIII. CONCLUSION

In this paper, we develop Whisper, a realtime malicious
traffic detection system that utilizes sequential information of
traffic via frequency domain analysis to enable robust attack
detection. The frequency domain features with bounded infor-
mation loss allow Whisper to achieve both high detection accu-
racy and high detection throughput. In particular, fine-grained
frequency domain features represent the ordering information
of packet sequences, which ensures robust detection and
prevents attackers from evading detection. In order to extract
the frequency domain features, Whisper encodes per-packet
feature sequences as vectors and uses DFT to extract sequen-
tial information of traffic in the perspective of frequency
domain, which enables efficient attack detection by utilizing a
lightweight clustering algorithm. We prove that the frequency
domain features have bounded information loss which is a
prerequisite of accuracy and robustness. In particular, we find
that feature sampling can effectively improve the detection
efficiency while retaining the detection accuracy. Extensive
experiments show that Whisper can detect various attacks in
high throughput networks. It achieves 0.999 AUC accuracy
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within 0.06 second and around 13.22 Gbps throughput. Espe-
cially, even under sophisticated evasion attacks, Whisper can
still detect malicious flows with high AUC ranging between
0.891 and 0.983.
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