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Abstract— Machine learning (ML) based malicious traffic1

detection is an emerging security paradigm, particularly for2

zero-day attack detection, which is complementary to existing3

rule based detection. However, the existing ML based detection4

achieves low detection accuracy and low throughput incurred by5

inefficient traffic features extraction. Thus, they cannot detect6

attacks in realtime, especially in high throughput networks.7

Particularly, these detection systems similar to the existing rule8

based detection can be easily evaded by sophisticated attacks.9

To this end, we propose Whisper, a realtime ML based malicious10

traffic detection system that achieves both high accuracy and high11

throughput by utilizing frequency domain features. It utilizes12

sequential information represented by the frequency domain13

features to achieve bounded information loss, which ensures14

high detection accuracy, and meanwhile constrains the scale15

of features to achieve high detection throughput. In particular,16

attackers cannot easily interfere with the frequency domain17

features and thus Whisper is robust against various evasion18

attacks. Our experiments with 74 types of attacks demonstrate19

that, compared with the state-of-the-art systems, Whisper can20

accurately detect various sophisticated and stealthy attacks,21

achieving at most 18.36% improvement of AUC, while achieving22

two orders of magnitude throughput. Even under various evasion23

attacks, Whisper is still able to maintain around 90% detection24

accuracy.25

Index Terms— Malicious traffic detection, machine learning,26

frequency domain.27

I. INTRODUCTION28

TRADITIONAL malicious traffic detection identifies mali-29

cious traffic by analyzing the features of traffic according30
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to preconfigured rules, which aims to protect legitimate Inter- 31

net users from network attacks [1]–[3]. However, the rule-base 32

detection is unable to detect zero-day attacks [4]–[7] though it 33

can achieve high detection accuracy and detection throughput 34

in high bandwidth networks, e.g., in Internet backbone. 35

As a promising security paradigm, machine learning based 36

malicious traffic detection has been developed, particularly 37

as a complement of the traditional fixed rule based methods 38

(i.e., signature based NIDS) [1], [2], [8], [9]. Table I summa- 39

rizes and compares rule based and typical machine learning 40

based detection methods. Compared with rule based meth- 41

ods, machine learning based methods can effectively identify 42

zero-day malicious traffic [4], [5], [10]. Unfortunately, due 43

to the processing overhead of machine learning algorithms, 44

existing detection methods achieve low detection throughput 45

and are unable to process high-rate traffic. As a result, most 46

of these methods can only be deployed offline [11]–[16] so 47

that they cannot achieve realtime detection, particularly in high 48

performance networks (e.g., in 10 Gigabit networks) [17]–[19]. 49

Meanwhile, attackers can easily interfere with and evade 50

these methods, e.g., injecting noises packets generated by 51

benign applications into attack traffic. Packet-level detec- 52

tion [17], [20], [21] that analyzes per-packet feature sequences 53

is unable to achieve robust detection. Actually, even in the 54

absence of the evasion attacks, the packet-level detection is 55

unable to detect sophisticated zero-day attacks. Traditional 56

flow-level methods [14]–[16], [19] detecting attacks by ana- 57

lyzing flow-level statistics incur significant detection latency. 58

Moreover, evasion attacks can easily bypass the flow-level 59

detection that uses coarse-grained flow-level statistics [22], 60

[23]. Thus, realtime robust machine learning based detection 61

that is ready for real deployment is still missing. 62

In this paper, we develop Whisper that aims to realize 63

realtime robust malicious traffic detection by utilizing machine 64

learning algorithms. Whisper effectively extracts and analyzes 65

the sequential information of network traffic by frequency 66

domain analysis [25], which extracts traffic features with low 67

information loss. Especially, the frequency domain features of 68

traffic can efficiently represent various packet ordering patterns 69

of traffic with low feature redundancy. Frequency domain 70

feature analysis with low information loss enables accurate and 71

robust detection, while low feature redundancy ensures high 72

throughput traffic detection. In particular, since the frequency 73

domain features represent fine-grained sequential information 74

of the packet sequences, which are not disturbed by various 75

evasions, Whisper can achieve robust detection. However, 76

it is non-trivial to extract and analyze the frequency domain 77

features from traffic because of the large-scale, complicated, 78

and dynamic patterns of traffic [22], [23]. 79

To effectively perform frequency domain traffic feature 80

analysis, we develop a three-step frequency domain feature 81
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TABLE I

COMPARING THE EXISTING MALICIOUS TRAFFIC DETECTION METHODS

extraction. First, we encode per-packet feature sequences as82

vectors, which reduces the data scale and the overhead of sub-83

sequent processing. Second, we segment the encoded vectors84

and perform Discrete Fourier Transformation (DFT) [25] on85

each frame, which aims to extract the sequential information86

of traffic. It allows statistical machine learning algorithms87

to easily learn the patterns. Third, we perform logarithmic88

transformation on the modulus of the frequency domain89

representation produced by DFT, which prevents float point90

overflows incurred by the numerical instability issue [26]91

during the training of machine learning.92

We propose an automatic parameter selection module to93

select the encoding vector for efficient packet feature encod-94

ing. To achieve this, we formulate the per-packet feature95

encoding as a constrained optimization problem to minimize96

mutual interference of the per-packet features during frequency97

domain feature analysis. We transform the original problem98

into an equivalent SMT problem and solve the problem by99

an SMT solver. It ensures the detection accuracy by choosing100

vectors, while effectively reducing manual efforts of selecting101

encoding vectors. Moreover, inspired by the Nyquist-Shannon102

sampling theorem [27], we develop a sampling module that103

further enhances the detection efficiency by performing accu-104

rate sampling without interference with the frequency domain105

features. Finally, we utilize statistical machine learning to clus-106

ter the patterns according to the frequency domain features.107

Due to the rich feature presentation and lightweight machine108

learning, Whisper realizes realtime detection of malicious109

traffic in high throughput networks.110

We theoretically prove that Whisper is more efficient111

than packet-level and traditional flow-level detection methods.112

We conduct a theoretical analysis to prove that the frequency113

domain features ensure bounded information loss, which lays114

the foundation for robust detection of Whisper. We develop a115

traffic feature differential entropy model, a theoretical frame-116

work to measure information loss of feature extraction from117

traffic. First, we prove the information loss in processing118

packet sequences in the existing flow-level methods, which119

further demonstrates that it cannot accurately extract features.120

Second, we prove that Whisper maintains the information121

loss in the flow-level methods and validate that the frequency122

domain features are more efficient. Third, we prove that123

Whisper effectively reduces feature redundancy by the124

decrease in the data scale of features.125

We prototype Whisper with Intel’s Data Plane Development126

Kit (DPDK) [28]. To extensively evaluate the performance of127

the Whisper prototype, we replay 74 malicious traffic datasets128

with the high throughput backbone network traffic. Besides129

the typical traditional attacks, we collect and replay malicious130

traffic generated by sophisticated attacks: (i) more stealthy 131

attacks, e.g., low-rate TCP DoS attacks [29]–[31] and stealthy 132

network scanning [32]; (ii) complicated multi-stage attacks, 133

e.g., TCP side-channel attacks [33]–[35] and TLS padding 134

oracle attacks [36]; (iii) various evasion attacks, e.g., attackers 135

inject different types of noise packets (i.e., packets gener- 136

ated by benign applications) in attack traffic to evade detec- 137

tion. According to our experimental results, we validate that 138

Whisper can detect the different types of attacks with 139

AUC ranging between 0.891 and 0.999 while achieving 140

1,310,000 PPS, i.e., two orders of magnitude throughput 141

more than the state-of-the-art methods. Particularly, Whisper 142

can detect various evasion attacks with 35% improvement of 143

AUC over the state-of-the-art methods. Furthermore, Whisper 144

achieves realtime detection with bounded 0.06 second latency 145

in high throughput networks. 146

In summary, the contributions of our paper are six-fold: 147

• We present Whisper, a novel malicious traffic detection 148

system by utilizing frequency domain analysis, which is 149

the first system built upon machine learning achieving 150

realtime and robust detection in high throughput net- 151

works. 152

• We perform frequency domain feature analysis to extract 153

the sequential information of traffic, which lays the 154

foundation for the detection accuracy, robustness, and 155

high throughput of Whisper. 156

• We develop automatic encoding vector selection for 157

Whisper to reduce manual efforts for parameter selection, 158

which ensures the detection accuracy while avoiding 159

manual parameter setting. 160

• We develop an accurate sampling method that reduces 161

the detection overhead with negligible accuracy loss. 162

• We develop a theoretical analysis framework to prove the 163

properties of Whisper. 164

• We prototype Whisper with Intel DPDK and use the 165

experiments with different types of replayed attack traffic 166

to validate the performance of Whisper. 167

The rest of the paper is organized as follows: Section II 168

introduces the threat model and the design goals of 169

Whisper. Section III presents the high-level design of Whisper. 170

In Section IV, we present the design details. In Section V, 171

we conduct a theoretical analysis. In Section VI, we experi- 172

mentally evaluate the performances of Whisper. Section VII 173

reviews related works and Section VIII concludes this paper. 174

II. THREAT MODEL AND DESIGN GOALS 175

A. Threat Model 176

We aim to develop a malicious traffic detection system 177

as a plug-in module of middlebox. The middlebox forwards 178
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Fig. 1. High-level design of Whisper.

the replicated traffic to the detection system through port179

mirroring, which is similar to Cisco SPAN [37]. Thus, the180

detection system does not interfere with benign traffic forward-181

ing. We assume that the detection system does not have any182

prior knowledge on threats, which means that it should be able183

to deal with zero-day attacks [5], [7], [17]. Note that, we do184

not consider defenses against the attacks detected by Whisper185

and can deploy existing malicious traffic defenses [38], [39]186

to throttle the detected traffic.187

The developed detection system should be able to determine188

whether traffic passing through the middlebox is benign or189

malicious by monitoring ongoing traffic. We emphasize that190

the malicious traffic detection is fully different from traffic191

classification [40]–[43] that aims to classify whether traffic192

is generated by a certain network application or a certain193

user. We do not consider detecting passive attacks that do not194

cause obvious traffic variance, e.g., eavesdropping attacks and195

intercept attacks [44], [45].196

B. Design Goals197

In this paper, we aim to develop a realtime robust mali-198

cious traffic detection system, which achieves high detection199

accuracy and task-agnostic detection. Particularly, the system200

should achieve the following two goals, which are not well201

addressed in the literature.202

Robust Accurate Detection. The system should be able203

to detect various zero-day attacks. Especially, it can capture204

different evasion attacks, which try to evade detection by205

deliberately injecting noise packets, i.e., using various packets206

generated by benign applications, into the attack traffic.207

Realtime Detection with High Throughput. The system208

should be able to be deployed in high throughput networks,209

e.g., a 10 Gigabit Ethernet, while incurring low latency.210

III. OVERVIEW OF WHISPER211

In this section, we present our malicious traffic detection212

system, Whisper. Whisper achieves high performance detec-213

tion by encoding per-packet feature sequences as vectors214

to reduce the overhead of subsequent feature processing.215

Meanwhile, it extracts the sequential information of traffic via216

frequency domain to ensure detection accuracy. In particular,217

since the frequency domain features represent fine-grained218

sequential information of the packet sequences, which are not219

disturbed by the injected noise packets, Whisper can achieve220

robust detection. Figure 1 shows the overview of Whisper.221

High Speed Packet Parser Module. High speed packet222

parser module extracts per-packet features, e.g., the packet223

length and arriving time interval, at high speed to ensure the224

processing efficiency in both training and detection phases. 225

This module provides the per-packet feature sequences to 226

the feature extraction module for extracting the frequency 227

domain features and the automatic parameter selection module 228

for determining the encoding vector. Note that, this mod- 229

ule dose not extract specific application related features and 230

thus Whisper achieves task agnostic detection. We use only 231

three per-packet features to reduce the encoding overhead in 232

the frequency feature extraction module, while ensuring the 233

detection effectiveness with the sequential patterns. Moreover, 234

as stated in Section II, application-layer payloads are inacces- 235

sible. Thus, these features allow us to detect attacks without 236

leaking user privacy. 237

Frequency Features Extraction Module. In both training 238

and detection phases, this module extracts the frequency 239

domain features from the per-packet feature sequences. This 240

module periodically polls the required information from the 241

high speed packet parser module with a fixed time interval. 242

After acquiring the extracted per-packet features, it encodes 243

the per-packet feature sequences as vectors and extracts the 244

sequential information via frequency domain. These features 245

with low redundancy are provided for the statistical clustering 246

module. However, it is difficult to extract the frequency domain 247

features of traffic in high throughput networks in realtime 248

because of the various complicated, irregular, and dynamic 249

flow patterns [22], [23]. We cannot apply deep learning 250

models, e.g., recurrent neural networks, to extract features due 251

to their long processing latency though they can extract more 252

richer features for detection. We will present the details of this 253

module in Section IV-A. 254

Automatic Parameter Selection Module. This module 255

calculates the encoding vector for the feature extraction mod- 256

ule. We decide the encoding vector by solving a constrained 257

optimization problem that reduces the mutual interference 258

of different per-packet features. In the training phase, this 259

module acquires the per-packet feature sequences and solves 260

an equivalent Satisfiability Modulo Theories (SMT) problem 261

to approximate the optimal solution of the original problem. 262

By enabling automatic parameter selection, we significantly 263

reduce the manual efforts for parameter selection. Therefore, 264

we can fix and accurately set the encoding vector in the 265

detection phase. We will describe the details of the module 266

in Section IV-B. 267

Interval Sampling Module. The module samples the 268

per-packet feature sequence of the traffic with a fixed interval 269

to further reduce the processing overhead. According to the 270

Nyquist-Shannon sampling theorem [27], our interval sam- 271

pling on the original feature sequence incurs low information 272

loss and has negligible effects on the frequency domain 273
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features. Meanwhile, it significantly reduces the scale of the274

features and thus reduces the overhead of the subsequent275

process, while maintaining the detection accuracy.276

Statistical Clustering Module. In this module, we utilize a277

lightweight statistical clustering algorithm to learn the patterns278

of the frequency domain features from the feature extraction279

module. In the training phase, this module calculates the280

clustering centers of the frequency domain features of benign281

traffic and the averaged training loss. In the detection phase,282

this module calculates the distances between the frequency283

domain features and the clustering centers. Whisper detects284

traffic as malicious if the distances are significantly larger than285

the training loss. We will elaborate on the statistical clustering286

based detection in Section IV-D.287

IV. DESIGN DETAILS288

In this section, we present the design details of Whisper,289

i.e., the design of three main modules in Whisper.290

A. Frequency Feature Extraction Module291

In this module, we extract the frequency domain features292

from high speed traffic. We acquire the per-packet features of293

N packets from the same flow by polling the high speed packet294

parser module. We use the mathematical representation similar295

to Bartos et al. [14] to denote the features. We use s(i) and M296

to indicate the ith per-packet feature and the number of per-297

packet features, respectively. Matrix S denotes the per-packet298

features of all packets, where sik is defined as ith packet’s kth
299

property:300

S = [s(1), . . . , s(i), . . . , s(M)] =

⎡
⎢⎣

s11 · · · s1M

...
. . .

...
sN1 · · · sNM

⎤
⎥⎦ . (1)301

Packet Feature Encoding. We perform a linear transfor-302

mation w on S to encode the features of a packet to a real303

number vi. v denotes the vector representation of traffic:304

v = Sw = [v1, . . . , vi, . . . , vN ]T, vi =
M�

k=1

sikwk. (2)305

The feature encoding reduces the scale of features, which306

significantly reduces the processing overhead of Whisper.307

In Section IV-B, we will describe how Whisper automatically308

selects parameters for the encoding vector w.309

Vector Framing. Now we segment the vector representation310

with the step length of Wseg. The goal of segmentation is to311

reduce the complexity of the frequency domain features by312

constraining the long-term dependence between packets. If the313

frames are excessively long, the frequency domain features314

will become too complex to learn in the statistical learning315

module. Nf denotes the number of the frames. We obtain the316

following equations:317

fi = v[[(i − 1) × Wseg : i × Wseg]] (1 ≤ i ≤ Nf ), (3)318

Nf =
	

N

Wseg



. (4)319

Discrete Fourier Transformation. We perform the Discrete320

Fourier Transformation (DFT) on each frame fi to extract the321

sequential information via frequency domain and reduce the322

information loss incurred by the flow-level methods. We can323

acquire the frequency features of each frame as follows:1 324

Fi = F (fi) (1 ≤ i ≤ Nf ), (5) 325

Fik =
Wseg�
n=1

fine
−j 2π(n−1)(k−1)

Wseg (1 ≤ k ≤ Wseg), (6) 326

where Fik is a frequency component of ith frame with the 327

frequency of 2π(k−1)/Wseg. Note that, all frequency features 328

output by DFT are vectors with complex numbers, which 329

cannot be used directly as the input for machine learning 330

algorithms. 331

Calculating the Modulus of Complex Numbers. We 332

transform the complex numbers to real numbers by calculating 333

the modulus for the frequency domain representation. For sim- 334

plicity, we transform Fik to a coordinate plane representation: 335

Fik = aik + jbik, (7) 336⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

aik =
Wseg�
n=1

fin cos
2π(n − 1)(k − 1)

Wseg

bik =
Wseg�
n=1

−fin sin
2π(n − 1)(k − 1)

Wseg
.

(8) 337

We calculate the modulus for Fik as pik in (9). For the ith 338

frame, we select the first half of the modulus as vector Pi. 339

Because the transformation results of DFT are conjugate, the 340

first half and the second half are symmetrical. Thus, we can 341

obtain: 342

pik = a2
ik + b2

ik (1 ≤ k ≤ Wseg), (9) 343

Pi = [pi1, . . . , piKf
]T (Kf =

	
Wseg

2



+ 1), (10) 344

Fik = F ∗
i(Wseg−k) ⇒ pik = pi(Wseg−k). (11) 345

Logarithmic Transformation. To make the frequency 346

domain features to be numerically stable [26] and prevent float 347

point overflow during the machine learning model training, 348

we perform a logarithmic transformation on Pi, and use 349

constant C to adjust the range of the frequency domain 350

features: 351

Ri =
ln(Pi + 1)

C
(1 ≤ i ≤ Nf ), (12) 352

RKf×Nf
= [R1, . . . , Ri, . . . , RNf

]. (13) 353

As the output of the features extraction module, the ith column 354

component of R is the frequency domain features of the ith 355

frame. Matrix R is the input for the clustering module. 356

Take an example, we collect three types of benign traffic 357

(90%) mixed with the malicious traffic (10%) in Wide Area 358

Network (WAN). We select 1500 continuous packets (N = 359

1500) from each type of traffic and extract three per-packet 360

features (M = 3) including the packet length, the protocol 361

type, and the arriving time interval. We fix the framing length 362

Wseg = 30. Therefore, Nf = 50 and Kf = 16. Then we 363

perform a min-max normalization operation on the frequency 364

domain features R and map the results to the RGB space. 365

We visualize the frequency domain features that are similar 366

to the Spectrogram in speech recognition [46]. As shown in 367

Figure 2, we observe that the area associated with the fre- 368

quency domain features of the malicious traffic is significantly 369

lighter than that of the benign traffic. 370

1j denotes an imaginary number.
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Fig. 2. We map the frequency domain features, which are extracted from the traffic with three types of typical attacks, to the RGB space, and observe that
a small number of malicious packets incur significant changes in the frequency domain features.

B. Automatic Parameters Selection Module371

Now we determine the encoding vector w for the feature372

extraction module that uses w to encode the per-packet feature373

sequences and acquires the vector representation of the traffic.374

In general, we formulate the encoding vector selection problem375

as a constrained optimization problem, and transform the origi-376

nal problem into an equivalent SMT problem. We approximate377

the optimal solution of the original problem through solving378

the SMT problem.379

We assume that we can find a set of continuous functions380

to describe the changes of each kind of the per-packet feature381

s(i). Thus, we consider all obtained per-packet features are382

the samples of the continuous functions, which are denoted as383

hi(t) (1 ≤ i ≤ M). We need to find a vector w to amplify and384

superpose all these functions. Our key optimization objective385

is to minimize mutual interference and bound the overall386

range when superposing the functions. We can first bound the387

range of encoding vector w and the range of the superposition388

function in the following:389

Wmin ≤ wi ≤ Wmax (1 ≤ i ≤ M), (14)390

M�
i=1

wihi(t) ≤ B, (15)391

where Wmin, Wmax, B are constants. We constrain the order392

preserving properties of the functions to ensure that different393

types of per-packet features do not interfere with each other394

when the feature extraction module performs packet encoding:395

wihi(t) ≤ wi+1hi+1(t) (1 ≤ i ≤ M − 1). (16)396

Second, we optimize w to maximize the distances between397

the functions so that we can minimize the mutual interference398

of the per-packet features and bound the ranges of all the399

functions. Therefore, under the constrains of (14) (15) (16),400

we obtain the optimization object:401

ŵ = argmax
� +∞

0

wMhM (t) − w1h1(t)dt402

−
M−1�
i=2

� +∞

0

|2wihi(t) − wi+1hi+1(t)403

−wi−1hi−1(t)|dt. (17)404

In practice, we cannot determine the convexity of the405

optimization object because the closed-form representations of406

hi(t) are not available. Thus, we reform the origin constrained407

optimization problem to a Satisfiability Modulo Theories408

(SMT) problem (19) with optimization object (18) to approx-409

imate the optimal solution of (17). For the ith per-packet410

feature, we perform a min-max normalization on si and use ni411

to indicate the normalized vector. We list constrains (19). And412

we obtain the satisfied (SAT) solutions of the SMT problem413

and maximize the following objective: 414

�w = argmax
N�

i=1

wMnMi − w1n1i 415

−
M−1�
i=2

2winik − wi−1n(i−1)k 416

− wi+1n(i+1)k, 417

(18) 418

subjects to:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

wi ∈ [Wmin, Wmax]
M�
i=1

winik ≤ B

winik ≤ wi+1n(i+1)k

2winik ≤ wi−1n(i−1)k + wi+1n(i+1)k.

(19) 419

Note that, the goal of the last constraint in Eq.(19) is to 420

ensure that the absolute value in Eq.(17) is positive because 421

most SMT solvers do not support absolute value operations. 422

C. Interval Sampling Module 423

Now we sample the obtained per-packet features. According 424

to our studies, we observe that the per-packet feature sequence 425

S consists of slowly changing sub-sequences, which motivates 426

us to design the sampling strategy. Figure 3 shows the time 427

series of the per-packet features (i.e., the packet length and 428

the arrival interval) of two randomly selected flows in the 429

backbone traffic dataset [47]. We find that most parts of the 430

sequences change slowly (indicated by the arrows). Moreover, 431

we model the observed slow change property using the integral 432

of curvature. Specifically, following Section IV-B, we use Ωi 433

to indicate the integral of the curvature of a per-packet feature 434

sequence denoted by the continuous function hi(t). According 435

to the definition of the curvature for a single point, we obtain 436

a discrete estimate of Ωi: 437

Ωi =
1

tn − t1

� tn

t1

|h��
i (t)|

(1 + h�2
i (t))3/2

dt (20) 438

=
1

tn − t1
lim

k→∞

k�
i=1

tn − t1
k

· |h��
i (ti)|

(1 + h�2
i (ti))3/2

(21) 439

≈ 1
n − 2

n−1�
k=2

|s(i)
k+1 + s

(i)
k−1 − 2 · s(i)

k |
[1 + (s(i)

k+1 − s
(i)
k )2]3/2

, (22) 440

where ti = t1 + i
k · (tn − t1), and t1, tn are the start and 441

end time of the flow, s
(i)
k is the ith feature of the kth packet 442

(defined in (1)). Figure 4 shows the cumulative distribution 443

function (CDF) of the estimated curvature of the flows in 444

three real-world datasets [47] collected in 2020. We observe 445

that most feature sequences consist of massive slowly chang- 446

ing sub-sequences with low curvatures, which implies that 447
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Fig. 3. Time series of the per-packet feature sequences of Internet traffic.

Fig. 4. Cumulative distribution function of the integral of curvature.

Fig. 5. Distribution of the decomposed frequency domain features.

the repetitive and redundant features are widespread in the448

per-packet feature sequences of the traffic.449

To reduce the redundant features and the subsequent450

processing overhead, we perform sampling on the original451

feature sequence S. Specifically, this module samples and452

excludes the packets of a proportion D using a fixed sampling453

interval before constructing the feature sequence. To justify454

the sampling, we sample the feature sequences (D = 50%)455

and extract their frequency domain features according to (6)456

for the same flows shown in Figure 3. Figure 5 compares the457

sampled and the original sequences by mapping their extracted458

frequency domain features from the high-dimensional complex459

plane to the cartesian coordinate system using principal com-460

ponent analysis (PCA). The sampling has negligible effects461

on the distributions of the frequency domain features, while462

significantly reducing the scale of the features.463

The negligible effects of the interval sampling on the464

frequency domain features can be explained according to the465

Nyquist-Shannon sampling theorem [27]. It demonstrates that466

the minimum sampling frequency without information loss467

is twice the maximum frequency appearing in the sampled468

signal. Figure 3 and 4 imply that the per-packet feature469

sequences mainly consist of low-frequency components whose470

frequencies are significantly lower than the frequency of471

sampling the whole sequence. Thus, according to the sampling472

theorem, the original sequences have redundant data that is473

consistent with our empirical studies. We address this issue by474

utilizing interval sampling to reduce the sampling frequency.475

The reduced sampling frequency approaches the minimum476

frequency indicated by the theorem. Thus, the sampling can477

reduce the repetitive and redundant data without interference478

with the features.479

D. Statistical Clustering Module 480

Now we utilize the statistical clustering algorithm to learn 481

the patterns of the frequency domain features obtained from 482

the feature extraction module with the selected parameters. 483

We train the statistical clustering algorithm with only benign 484

traffic. In the training phase, this module calculates the cluster- 485

ing centers of the frequency domain features and the averaged 486

training loss. In order to improve the robustness of Whisper 487

and reduce false positive caused by the extreme values, we seg- 488

ment the frequency domain feature matrix R with a sampling 489

window of length Wwin. We use Nt to denote the number 490

of samples and l to denote the start points. We average the 491

sampling window on the dimension of the feature sequence 492

and use ri to indicate the input of the clustering algorithm. 493

We can obtain: 494

l = iWwin (0 ≤ i < Nt), Nt =
	

Nf

Wwin



, (23) 495

ri = mean(R[[l : l + Wwin]]). (24) 496

We perform the statistical clustering algorithm and acquire 497

all clustering centers to represent the benign traffic patterns. 498

We use Ck to denote the KC clustering centers, where (1 ≤ 499

k ≤ KC), and then calculate the averaged training loss. For 500

each ri, we find the closest clustering center as Ĉi and we 501

take averaged L2-norm as the training loss: 502

Ĉi = argmin
Ck

�Ck − ri�2 (1 ≤ i ≤ Nt), (25) 503

train_loss =
1
Nt

Nt�
i=1

���ri − Ĉi

���
2
. (26) 504

In the detection phase, this module calculates the distances 505

between the frequency domain features of traffic and the 506

clustering centers. For each given frequency domain feature, 507

we sample Nt segments on R with length Wwin, which is the 508

same as the training phase. We can find the closest clustering 509

center Ĉi as an estimate of ri. We calculate the L2-norm as 510

the estimation error: 511

lossi = min(�ri − Ck�2) (1 ≤ k ≤ KC). (27) 512

If the estimation error lossi ≥ (φ × train_loss), we can con- 513

clude that the statistical clustering algorithm cannot understand 514

the frequency domain features of the traffic, which means the 515

traffic is malicious. 516

V. THEORETICAL ANALYSIS 517

In this section, we conduct a theoretical analysis to prove 518

that Whisper achieves lower information loss in feature 519

extraction than the packet-level and the traditional flow- 520

level methods, which ensures that Whisper extracts traffic 521

features accurately. All proofs can be found in [48]. Moreover, 522

we analyze the scale of the frequency domain features and the 523

algorithmic complexity. 524

A. Information Loss in Whisper 525

Traffic Feature Differential Entropy Model. First, 526

we develop the traffic feature differential entropy model, 527

a theoretical analysis framework that evaluates the efficiency 528

of traffic features by analyzing the information loss incurred 529

by feature extractions from an information theory perspec- 530

tive [49]. The framework aims to (i) model an observable 531
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packet-level feature as a stochastic process and observed532

features extracted from ongoing packets as the state random533

variables of the process; (ii) model feature extraction methods534

as algebraic transformations of the state random variables;535

(iii) evaluate the efficiency of the features by measuring the536

information loss during the transformations.537

We model a particular type of packet-level feature (e.g., the538

packet length, and the time interval) as a discrete time stochas-539

tic process S, which is used to model traffic feature extraction540

by different detection methods. We use a random variable541

vector �s = [s1, s2, . . . , sN ] to denote a packet-level feature542

sequence extracted from N continuous packets, i.e., N random543

variables from S. f indicates a feature extraction function that544

transforms the original features �s for the input of machine545

learning algorithms. According to Table I, in the packet-546

level methods, f outputs the per-packet features sequence �s547

directly. In the traditional flow-level methods, f calculates a548

statistic of �s. In Whisper, f calculates the frequency domain549

features of �s. We assume that S is a discrete time Gaussian550

process, i.e., S ∼ GP(u(i), Σ(i, j)). For simplicity, we mark551

Σ(i, i) as σ(i). We assume S is an independent process552

and then we can obtain the covariance function of S, i.e.,553

κ(xi, xj) = σ(i)δ(i, j). pi denotes the probability density554

function of si. We use differential entropy [49] to measure555

the information in the features using the unit of nat:556

H(si) = −
� +∞

−∞
pi(s) ln pi(s)ds = lnKσ(i), (28)557

where K =
√

2πe. We assume that the variance of each si is558

large enough to ensure the significant change because a kind of559

stable packet-level feature is meaningless to be extracted and560

analyzed. Thus, we establish non-negative differential entropy561

assumption, i.e., σ(i) ≥ K−1 to ensure H(si) ≥ 0.562

Analysis of Traditional Flow-level Detection Methods.563

We analyze the information loss in the feature extraction of564

the traditional flow-level methods. We consider three types565

of widely used statistical features in the traditional flow-level566

methods [12], [19], [24], [50], [51]: (i) min-max features,567

the feature extraction function f outputs the maximum or568

minimum value of �s to extract flow-level features of traffic and569

produces the output for machine learning algorithms. (ii) aver-570

age features, f calculates the average number of �s to obtain571

the flow-level features. (iii) variance features, f calculates the572

variance of �s for machine learning algorithms. We analyze573

the information loss when performing the statistical feature574

extraction function f. Based on the probability distribution575

of the state random variables and Equation (28), we obtain576

the information loss of flow-level statistical features in the577

traditional flow-level detection over the packet-level detection578

and have the following properties of the features above.579

Theorem 1 (The Lower Bound for Expected Information580

Loss of the Min-Max Features): For the min-max statistical581

features, the lower bound of expected information loss is:582

E[ΔHflow−minmax] ≥ (N − 1) ln KE[σ]. (29)583

Theorem 2 (The Lower Bound for Expected Information584

Loss of the Average Features): The lower bound for the585

expectation of information loss in the average features is:586

E[ΔHflow−avg] ≥ ln
√

NKN−1E[σ]N−1. (30)587

We can obtain that the equality of Theorem 1 and 588

Theorem 2 holds iff the stochastic process S is strictly 589

stationary. 590

Theorem 3 (The Lower Bound and Upper Bound for the 591

Information Loss of the Average Features): For the average 592

features, the upper and lower bounds of the information loss 593

in the metric of differential entropy is: 594

ln N ≤ ΔHflow−avg ≤ ln
√

NKN−1Q(σ)N−1, (31) 595

where Q(σ) is the square mean of the variances of the 596

per-packet features sequence �s. 597

Theorem 4 (The Information Loss of the Variance Features): 598

When the Gaussian process S is strictly stationary with zero 599

mean, i.e., u(i) = 0 and σ(i) = σ, for the variance features, 600

an estimate of the information loss is: 601

ΔHflow−var = N ln Kσ − ln 2σ2

�
π

N
. (32) 602

According to the theorems above, we can conclude that 603

the information loss in the traditional flow-level detection 604

methods increases approximately linearly with the length 605

of per-packet feature sequences. Thus, comparing with the 606

packet-level methods, the traditional flow-level methods can- 607

not effectively extract the features of traffic. Although the 608

traditional flow-level methods can adopt multiple statistical 609

features [14], [52], the number of packets in the feature 610

extraction (N ) is significantly larger than the number of 611

features. In Section VI-C, we will use experiments to show 612

that the traditional flow-level methods achieve low detection 613

accuracy. 614

Analysis of Whisper. Different from the traditional flow- 615

level methods, Whisper encodes per-packet features as vectors 616

and performs DFT on the vectors to extract the frequency 617

domain features of the traffic. We prove the low information 618

loss property of Whisper by comparing with the packet-level 619

methods (see Theorem 5) and the traditional flow-level meth- 620

ods (see Theorem 6) by leveraging the bounds of the infor- 621

mation loss in Theorem 1 - 4. 622

Theorem 5 (An Estimation of the Information Loss of 623

Whisper over the Packet-Level Methods): When the Gaussian 624

process S is strictly stationary with zero mean, i.e., u(i) = 625

0 and σ(i) = σ, we can acquire an estimate of the information 626

loss in Whisper when ignoring the logarithmic transformation: 627

ΔHWhisper = N ln
σ

w2
i

�
π

2e
−N ln N, (33) 628

where wi is the ith element of the encoding vector w. 629

Theorem 6 (An Estimation of the Information Loss Reduc- 630

tion of Whisper over the Traditional Flow-Level Methods): 631

With the same assumption in Theorem 5, compared with the 632

traditional flow-level methods that extract the average features, 633

Whisper reduces the information loss with an estimation: 634

ΔHWhisper−avg = ΔHflow−avg − ΔHWhisper (34) 635

= N ln 2ew2
i N + ln

√
N

Kσ
. (35) 636

Similarly, Whisper reduces the information loss in the 637

flow-level methods that use min-max features and variance 638

features. We present the estimations of reduced information 639

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Tsinghua University. Downloaded on August 10,2022 at 02:20:36 UTC from IEEE Xplore.  Restrictions apply. 



8 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 6. Information loss and reduced loss on the feasible region.

loss in the metric of differential entropy as follows:640

ΔHWhisper−minmax = N ln 2ew2
i N − ln Kσ, (36)641

ΔHWhisper−var = N ln 2ew2
i N − ln 2σ2

�
π

N
. (37)642

According to Theorem 5, by using the packet-level methods643

as a benchmark, we conclude that Whisper almost has no644

information loss when the number of packets involved in645

feature extraction is large. Thus, the feature efficiency of646

Whisper is not worse than the packet-level methods. Moreover,647

the packet-level methods have a large feature scale that results648

in high overhead for machine learning (proof in Section V-C).649

Based on Theorem 6, we conclude that the reduction of650

the information loss in the traditional flow-level methods651

increases more than linearly. Thus, by reducing the informa-652

tion loss in the traditional flow-level methods, Whisper can653

extract features from ongoing traffic more effectively than654

the traditional flow-level methods. In Section VI-C, we will655

measure the detection accuracy improvement of Whisper by656

using experiments.657

B. Numerical Analysis Results658

To validate the analysis in real-world settings, we measure659

the model parameters by using a real-world traffic dataset660

and use the parameters to obtain the numerical results of the661

amount of modeled information. Specifically, for the sequence662

length parameter N , we obtain its distribution from the MAIW663

traffic dataset (Jan. 2020). For the distribution parameter σ,664

we use packet length and arrival interval as the instances for665

the per-packet features and estimate σ for each flow in the666

dataset via maximum likelihood estimate. Finally, we obtain667

the distribution of σ. For both of the two parameters above,668

we use the range between their 5th and 95th percentiles as the669

feasible region of the parameters (denoted by D) to exclude670

the extremums. For the weights in Whisper, we fix wi to 1.0 to671

obtain the lower bounds of the improvements.672

Figure 6 shows the amount of information loss and reduced673

loss by Whisper on the feasible region D. We omit the674

min-max feature because its numerical results are close to the675

results of the average feature. From Figure 6(a), we observe676

that the traditional average and variance flow features lose677

at most 81.86 nat and 78.91 nat of information, respec-678

tively. And Whisper loses at most 0.97 nat of information.679

In Figure 6(b), we conclude that Whisper reduces at most680

160.65 nat and 155.03 nat of information lost in the traditional681

average feature and variance feature, respectively. The same682

conclusions can be obtained in Figure 7, which plots the683

amount of information loss and reduced loss when N is fixed684

to its average. In Table II, we calculate the double integral685

of information loss and reduced loss on the feasible region686

Fig. 7. Information loss and reduced loss when fix N to its average.

TABLE II

INFORMATION LOSS AND REDUCED LOSS ON DIFFERENT FEATURES

D for packet length and arrival interval features. We conclude 687

that Whisper has only 26.68% and 25.64% information loss of 688

the traditional methods for the two per-packet features. And 689

it reduces 18.31% - 74.36% information loss incurred by the 690

coarse-grained flow-level features. 691

C. Analysis of Scalability and Overhead 692

Feature Scale Reduction of Whisper. Original per-packet 693

features are compressed in Whisper. Whisper reduces the input 694

data scale and the processing overhead in machine learning 695

algorithms. The compressed frequency domain features allow 696

us to apply the machine learning algorithm in high throughput 697

networks in practice. Compared with the packet-level methods, 698

Whisper achieves high compression ratio Cr with a theoretical 699

lower bound: 700

Cr =
size(R)
size(S)

=
KfNf

MN
≥

(N(1−D)
Wseg

)(Wseg
2 + 1)

MN
≥ 1 − D

2M
. 701

(38) 702

By reducing the feature scale, Whisper significantly reduces 703

the processing overhead in the packet-level methods and 704

achieves high throughput. In Section VI-E, we will show 705

the experimental results of Whisper to validate the analysis 706

results. 707

Overhead of Feature Extraction in Whisper. Whisper 708

incurs a low computational overhead of extracting the fre- 709

quency domain features from traffic. Particularly, Whisper 710

does not have an operation with high time or space complexity 711

that is higher than quadratic terms. The time complexity and 712

space complexity of Whisper are shown in Table III. 713

According to Table III, the computational complexity of 714

Whisper is proportional to the number of packets N . Most 715

of the consumption is incurred by matrix multiplications in 716

the packet encoding. Compared with the encoding, perform- 717

ing DFT on frames has relatively less computation over- 718

head and consumes less memory space because of the high 719

speed DFT operation, i.e., Fast Fourier Transformation (FFT). 720

In Section VI-E, we will validate the complexity of Whisper 721

by using the experimental results. 722
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TABLE III

COMPLEXITY OF THE FEATURE EXTRACTION MODULE

VI. EXPERIMENTAL EVALUATION723

In this section, we prototype Whisper and evaluate its724

performance by using 42 real-world attacks. In particular, the725

experiments will answer the three questions:726

1) If Whisper achieves higher detection accuracy than the727

state-of-the-art method? (Section VI-C)728

2) If Whisper is robust to detect attacks even if an attackers729

try to evade the detection of Whisper by leveraging the730

benign traffic? (Section VI-D)731

3) If Whisper achieves high detection throughput and low732

detection latency? (Section VI-E)733

4) If Whisper ensures the detection accuracy with sampled734

features? (Section VI-F)735

A. Implementation736

We prototype Whisper using C/C++ (GCC version 5.4.0)737

and Python (version 3.8.0) with more than 3,500 lines of code738

(LOC). The source code of Whisper can be found in [53].739

High Speed Packet Parser Module. We leverage Intel Data740

Plane Development Kit (DPDK) version 18.11.10 LTS [28] to741

implement the data plane functions and ensure high perfor-742

mance packet parsing in high throughput networks. We bind743

the threads of Whisper on physical cores using DPDK APIs744

to reduce the cost of context switching in CPUs. As discussed745

in Section IV-A, we parse the three per-packet features, i.e.,746

lengths, timestamps, and protocol types.747

Frequency Domain Feature Extraction Module. We748

leverage PyTorch [54] (version 1.6.0) to implement matrix749

transforms (e.g., encoding and Discrete Fourier Transfor-750

mation) of origin per-packet features and auto-encoders in751

baselines.752

Statistical Clustering Module. We leverage K-Means as753

the clustering algorithm with the mlpack implementation754

(version 3.4.0) [55] to cluster the frequency domain features.755

Automatic Parameter Selection. We use Z3 SMT solver756

(version 4.5.1) [56] to solve the SMT problem in Section IV-B,757

i.e., determining the encoding vector in Whisper.758

Moreover, we implement a traffic generating tool using759

Intel DPDK to replay malicious traffic and benign traffic760

simultaneously. We chose all hyper-parameters according to761

the empirical studies on the six validation sets (see Figure 10).762

The detailed settings of the hyper-parameters can be found763

in Table IV.764

B. Experiment Setup765

Baselines. To measure the improvements achieved by766

Whisper, we establish three baselines:767

• Packet-level Detection. We use the state-of-the-art768

machine learning based detection method, Kitsune [17].769

It extracts per-packet features via flow state variables and770

feeds the features to auto-encoders. We use the open771

TABLE IV

HYPER-PARAMETER CONFIGURATIONS

source Kitsune implementation [57] and run the system 772

with the same hardware as Whisper. 773

• Flow-level Statistics Clustering (FSC). As far as we 774

know, there is no flow-level malicious traffic detec- 775

tion method that achieves task agnostic detection. Thus, 776

we establish 17 flow-level statistics according to the 777

existing studies [12], [14], [19], [24], [50] including 778

the maximum, minimum, variance, mean, range of the 779

per-packet features in Whisper, flow durations, and flow 780

byte counts. We perform a normalization for the flow- 781

level statistics. For a fair comparison, we use the same 782

clustering algorithm to Whisper. 783

• Flow-level Frequency Domain Features with Auto- 784

Encoder (FAE). We use the same frequency domain 785

features as Whisper and an auto-encoder model with 786

128 hidden states and Sigmoid activation function, which 787

is similar to the auto-encoder used in Kitsune. For the 788

training of the auto-encoder, we use the Adam optimizer 789

and set the batch size as 128, the training epoch as 200, 790

the learning rate as 0.01. 791

Testbed. We conduct the Whisper, FSC, and FAE exper- 792

iments on a testbed built on a DELL server with two 793

Intel Xeon E5645 CPUs (2 × 12 cores), Ubuntu 16.04 794

(Linux 4.15.0 LTS), 24GB memory, one Intel 10 Gbps NIC 795

with two ports that supports DPDK, and Intel 850nm SFP+ 796

laser ports for optical fiber connections. We configure 8GB 797

huge page memory for DPDK (4GB/NUMA Node). We bind 798

8 physical cores for 8 NIC RX queues to extract per-packet 799

features and the other 8 cores for Whisper analysis threads, 800

which extract the frequency domain features of traffic and 801

perform statistical clustering. In summary, we use 17 of 802

24 cores to enable Whisper. Note that, since Kitsune cannot 803

handle high-rate traffic, we evaluate it with offline experiments 804

on the same testbed. We deploy DPDK traffic generators on the 805

other two servers with similar configurations. The reason why 806

we use two traffic generators is that the throughput of Whisper 807

exceeds the physical limit of 10 Gbps NIC, i.e., 13.22 Gbps. 808

We connect two flow generators with optical fibers to generate 809

high speed traffic. 810

Datasets. We use four recent datasets from the WIDE 811

MAWI 10 Gigabit backbone network [47]. We use 20% 812

benign traffic to train the machine learning algorithms. We use 813

the first 20% packets in MAWI 2020.06.10 dataset to calcu- 814

late the encoding vector via solving the SMT problem (see 815

Section IV-B). Meanwhile, we replay four groups of malicious 816

traffic combined with the benign traffic on the testbed: 817

• Traditional DoS and Scanning Attacks. We select five 818

active attacks from the Kitsune 2 [17] and a UDP DoS 819

2We exclude passive attack datasets without malicious flow but only victim
flow. Note that, in our threat model we do not consider attacks without
malicious packets.
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attack trace [58] to measure the accuracy of detecting820

high-rate malicious flow. To further evaluate Whisper,821

we collect new malicious traffic datasets on WAN includ-822

ing Multi-Stage TCP Attacks, Stealthy TCP Attacks, and823

Evasion Attacks.824

• Multi-Stage TCP Attacks. TCP side-channel attacks825

exploit the protocol implementations and hijack TCP826

connections by generating forged probing packets. Nor-827

mally, TCP side-channel attacks have several stages, e.g.,828

active connection finding, sequence number guessing, and829

acknowledgement number guessing. We implement two830

recent TCP side-channel attacks [33], [34], which have831

different numbers of attack stages. Moreover, we col-832

lect another multi-stage attack, i.e., TLS padding oracle833

attack [36].834

• Stealthy TCP Attacks. The low-rate TCP DoS attacks gen-835

erate low-rate burst traffic to trick TCP congestion control836

algorithms and slow down their sending rates [29], [30],837

[59]. Low-rate TCP DoS attacks are more stealthy than838

flooding based DoS attacks. We construct the low-rate839

TCP DoS attacks with different sending rates. Moreover,840

we replay other low-rate attacks, e.g., stealthy vulnera-841

bilities scanning [32], [60], [61].842

• Evasion Attacks. We use evasion attack datasets to eval-843

uate the robustness of Whisper, including three typical844

evading strategies. (i) Injection: attackers can inject noise845

packets (i.e., benign packets of network applications)846

into malicious traffic to evade detection. For example,847

an attacker can generate benign TLS traffic so that the848

attacker sends malicious SSL renegotiation messages and849

the benign TLS packets simultaneously. Basing on the850

typical attacks above, we adjust the ratio of malicious851

packets and benign packets, i.e., the ratio of 1:1, 1:2,852

1:4, and 1:8, and the types of benign traffic to generate853

28 datasets. (ii) Reducing packet rates: attackers reduce854

the sending rate of malicious packets to evade detection.855

We used the packet rates of the low-rate scanning for856

8 vulnerable protocols disclosed in [62]. (iii) Traffic857

encryption: attackers encrypt their malicious flows to858

mimic benign encrypted flows. We use widely adopted859

SSL/TLS malicious flows generated by SMTP-over-SSL860

and 6 web exploiting tools that detect various web861

injections, SSL vulnerabilities, XSS, and CSFR.862

Metrics. We use the following metrics to evaluate the863

detection accuracy: (i) true-positive rates (TPR), (ii) false-864

positive rates (FPR), (iii) the area under ROC curve (AUC),865

(vi) equal error rates (EER). Moreover, we measure the866

throughput and processing latency to demonstrate that Whisper867

achieves realtime detection.868

C. Detection Accuracy869

In this experiment, we evaluate the detection accuracy of870

different systems by measuring TPR, FPR, AUC, and EER.871

Table V illustrates the results. We find that Whisper can872

detect all 14 attacks with AUC ranging between 0.932 and873

0.999 and EER within 0.201. Figure 8 shows the scatter plots874

of clustering results. For simplicity, we select two datasets with875

2,000 benign and 2,000 malicious frequency domain features876

and choose two dimensions of the frequency domain features877

randomly. We observe that the malicious traffic has frequency878

domain features far from the clustering centers. We present879

the ROC curves of two datasets in Figure 9. We find that,880

by leveraging the frequency domain features, detectors can881

Fig. 8. Frequency domain features clustering results of Whisper.

Fig. 9. ROC of high-rate attack: SYN DoS and low-rate attack: IPID side-
channel attack.

detect low-rate malicious traffic in high throughput networks, 882

e.g., Whisper and FAE detect 138 Kbps IPID side-channel 883

malicious traffic with 0.932 and 0.973 AUC in the backbone 884

network at the speed of 5.276 Gbps, respectively. Similarly, 885

Whisper can also detect TCP cover timing channels by utiliz- 886

ing side-channel features [63], [64]. The increment of burst 887

intervals in low-rate TCP DoS attacks causes 9.0%, 7.0%, 888

0.10%, and 0.06% AUC decrease for Kitsune, FSC, FAE, and 889

Whisper, respectively. Thus, compared with the packet-level 890

and the traditional flow-level detection, burst intervals in the 891

low-rate TCP DoS attacks have a negligible effect on the 892

detection accuracy of Whisper and FAE. Whisper can detect 893

a variety of pulsing DoS attacks [65] by extracting their 894

obvious pulsing patterns in the frequency domain. However, 895

FAE cannot effectively detect some sophisticated attacks, e.g., 896

the ACK throttling side-channel attack and the TLS padding 897

oracle attack, and only achieves only 39.09% AUC of Whisper. 898

Note that, Whisper accurately identifies 2.4 Gbps high-rate 899

malicious flows among 4.8 Gbps traffic online. 900

Kitsune cannot effectively detect the side-channel attacks 901

because it is unable to maintain enough states for the traffic. 902

We find that Kitsune’s offline processing speeds in the datasets 903

are less than 4000 packets per second (PPS), and the expected 904

time to complete the detection is more than 2 hours. The 905

side-channel attacks trick Kitsune to maintain massive flow 906

states by sending a larger number of probing packets. Different 907

from using flow states to preserve the flow context information 908

in Kitsune, Whisper preserves the flow-level context infor- 909

mation via the frequency domain analysis, which ensures the 910

ability to detect such attacks. 911

We observe that, with the same ML algorithm, i.e., auto- 912

encoder, the frequency domain features achieve higher accu- 913

racy (at most 15.72% AUC improvements and 95.79% EER 914

improvements) than the state-of-the-art packet-level features 915

and can detect more stealthy attacks. Under the five types of 916

stealthy TCP attacks, Kitsune achieves 0.837 - 0.920 AUC 917

and cannot detect the low-rate scanning of the side-channel 918

attack. Moreover, compared with FSC, Whisper achieves at 919

most 65.26% AUC improvements and 98.80% EER improve- 920

ments. Thus, we can conclude that the frequency domain 921

features allow Whisper to achieve higher detection accuracy 922

and outperform the packet-level methods and the traditional 923
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TABLE V

DETECTION ACCURACY OF WHISPER AND BASELINES ON 14 ATTACKS

Fig. 10. Detection accuracy of the ablation study for Whisper.

flow-level methods. The frequency domain features can rep-924

resent fine-grained packet sequential information, e.g., the925

flooding traffic with obvious periodicity exhibits the high926

density in the high-frequency part of the frequency spectrum.927

Moreover, we study the impact of the automatic parameter928

selection on the detection accuracy. We manually set encoding929

vectors to compare the results with automatically selected930

parameters. We use six attacks as validation sets for the931

manually selected encoding vector, and use 13 attacks to932

test the generalization of the manually selected parameters.933

Figure 11 shows the detection accuracy in terms of parameter934

settings. We observe that the automatic parameter selection935

module achieves 9.99% AUC improvements and 99.55% EER936

improvements compared with manual parameter selection.937

Besides, we conduct the experiment of the ablation study to938

validate that all three packet features are indispensable. For939

example, as shown in Figure 10, due to lack of packet features,940

the incurred AUC decrease ranges between 23.6% - 29.4%.941

D. Robustness of Detection942

In order to validate the robustness of Whisper, we assume943

that attackers know the existence of malicious traffic detection.944

Attackers can construct evasion attacks, i.e., injecting various945

benign traffic, reducing sending rates, and encrypting traffic,946

to evade the detection.947

Injection. For simplicity, we assume that attackers inject948

benign TLS traffic and UDP video traffic into the malicious949

traffic and disguise it as benign traffic for evasion. The reason950

why we use TLS and UDP video traffic is that it contributes951

to a high proportion of the benign traffic datasets, i.e., around952

35% and 13%, respectively. Injecting the traffic can signif-953

icantly interfere with traditional detection (see Figure 12).954

We select and replay 7 malicious traffic patterns and mix955

Fig. 11. Performance of the automatic parameter selection in comparison
with manually selected parameters.

them into different ratio of benign traffic, i.e., the ratio of 956

malicious traffic to the benign traffic ranging between 1:1 957

and 1:8. We do not inject the benign traffic with more ratio 958

because the effectiveness of attacks is already low at the ratio 959

of 1:8. We average the detection results with different ratio. 960

Figure 12 shows the averaged detection accuracy on different 961

attacks. The detailed detection accuracy results can be found 962

in our conference paper [48]. We observe that the evasion 963

attacks with higher benign traffic mix ratio are easier to 964

evade the detection. According to figure 12, we conclude that 965

attackers cannot evade Whisper by injecting benign traffic into 966

malicious traffic. However, the attackers evade other detection 967

systems. 968

For instance, Whisper has at most 10.46% AUC decrease 969

under the evasion attacks. But we observe that the existing 970

flow-level and packet-level detection methods are not robust 971

to the evasion attacks. For example, Kitsune has at most 972

7.98 times EER increase and 35.4% AUC decrease. Simi- 973

larly, attackers can effectively evade the traditional detection 974

methods using flow-level features, especially injecting more 975
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Fig. 12. Detection accuracy under evasion attacks with injected benign traffic.

Fig. 13. Detection accuracy under evasion attacks with reduced sending
rates.

benign traffic with the higher packet rate. The evasion attacks,976

e.g, evasion OS scan and evasion TLS vulnerabilities scan,977

lead to at most 11.59 times EER increase under the flow-level978

methods (AUC ≤ 0.5). Whisper has stable detection accuracy979

at different ratio, e.g., the averaged AUC decrease is bounded980

by 3.0%, which is robust for the evasion attacks.981

Reducing Packet Rates. In practice, attackers can reduce982

the sending rates of malicious traffic to evade detection983

and construct the stealthy attacks [62]. We use the low-rate984

vulnerability exploiting targeting 8 typical protocols dis-985

closed by Durumeric et al. [62]. Their slow packet rates986

(≤ 1,000 PPS) are significantly lower than the brute-force987

attacks in Section VI-C. Figure 13(a) shows that Whisper988

retains 0.957 AUC averaged detection accuracy under the989

evasions. However, two low-rate attacks (i.e., the evasion990

attacks targeting RDP and SSH) completely evade Kitsune991

(AUC ≤ 0.50). Similarly, in Figure 13(b), we observe that992

Whisper reduces 50.87% EER of Kitsune on average. Thus,993

we conclude that attackers cannot evade Whisper by reducing994

the sending rates.995

Traffic Encryption. Encrypted malicious traffic invalidates996

the traditional methods because their flow features are close to997

the features of benign traffic, e.g., HTTPS web traffic. To eval-998

uate the robustness when attackers apply traffic encryption,999

we collect 11 types of SSL/TLS encrypted malicious traffic1000

and present the detection accuracy in Figure 14. Due to space1001

Fig. 14. Detection accuracy under traffic encryption.

Fig. 15. Detection accuracy under other sophisticated evasion strategies.

limitations, we omit the detection accuracy of the baselines 1002

because they cannot achieve acceptable accuracy (AUC ≥ 0.5) 1003

on most datasets which means that encrypted traffic can easily 1004

evade the baselines. However, Whisper retains 0.945 averaged 1005

AUC and 0.095 averaged EER when detecting the encrypted 1006

traffic generated by various exploiting tools and vulnerable 1007

applications. Thus, we conclude that the traditional methods 1008

are not robust to encrypted traffic and we realize robust 1009

detection under traffic encryption by extracting fine-grained 1010

packet sequential information via frequency domain. 1011

Other Evasions. We also measure the effects of 13 other 1012

evasion strategies on the detection accuracy. The strategies 1013

include (i) injecting different types of benign traffic (i.e., 1014

ICMP, DNS, and outbound NAT traffic that includes various 1015

types of benign traffic), (ii) changing the rate of sending 1016

malicious packets according to the rate of benign TLS flows, 1017

(iii) manipulating the packet length in the malicious traffic 1018

according to the benign TLS packet length. Figure 15 shows 1019

that the detection accuracy is not significantly impacted by 1020

the attacks, which is consistent with the results above. Note 1021

that, the attacks cannot be evaded by constructing time or 1022

length features similar to the benign ones because Whisper 1023

can capture the attacks by capturing the unchanged features 1024

in the frequency domain. 1025

In summary, Whisper can achieve robust detection 1026

because the used frequency domain features represent robust 1027

fine-grained sequential information of traffic. Malicious traffic 1028

disguised as benign traffic does not incur significant changes 1029

in the flow-level statistics. Thus, the flow-level features of 1030

the malicious traffic are similar to the benign flows. More- 1031

over, the packet-level methods (e.g., Kitsune) require the 1032

flow statistics for detection. As a result, both packet-level 1033

and traditional flow-level detection methods are unable to 1034

capture such attacks. However, the sequential information of 1035

the malicious traffic extracted by Whisper are significantly 1036

different from the benign traffic. Thus, to our best knowledge, 1037

Whisper is the first ML based method that achieves robust 1038

detection under evasion attacks. 1039

E. Detection Latency and Throughput 1040

Detection Latency. To measure the latency, we replay 1041

the backbone network traffic datasets with different traffic 1042
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Fig. 16. Detection latency of Whisper. We present the CDF of overall latency in (a), the CDF of pure processing latency in (b), the box plot of latency in
different steps in (c).

Fig. 17. CDF and the average number of throughput: Whisper, FAE, and Kitsune.

rates. For simplicity, we use the low-rate TCP DoS attack1043

with a 0.5s burst interval as a typical attack and measure1044

the overall detection latency, i.e., the time interval between1045

sending the first malicious packet and detecting the traffic.1046

The overall detection latency includes the transmitting latency,1047

the queuing latency, and the processing latency. The cumu-1048

lative distribution function (CDF) of the overall detection1049

latency is shown in Figure 16(a). With four datasets, we find1050

that the detection latency of Whisper is between 0.047 and1051

0.133 second, which shows that Whisper achieves realtime1052

detection in high throughput networks. In order to accurately1053

measure the processing latency incurred by Whisper, we replay1054

the low-rate TCP DoS dataset with a 0.5s burst interval1055

to construct a light load network scenario and measure the1056

execution time of the four modules in Whisper. The CDF of the1057

processing latency is shown in Figure 16(b). We observe that1058

the processing latency of Whisper exhibits uniform distribution1059

because most of the latency is incurred by polling per-packet1060

features from the packet parser module in the light load1061

situation. Thus, we can conclude that the averaged processing1062

latency incurred by Whisper is only 0.0361 second, and the1063

queuing latency raised by Whisper is the majority.1064

We also analyze the latency raised by each step of Whisper1065

in Figure 16(c). We see that the measured latency in each step1066

is consistent with the computational complexity analysis in1067

Section V-C. The DFT, Modulus Calculation, and Log Trans-1068

formation have similar computational complexity and incur1069

similar processing latency. The most latency is raised from the1070

packet encoding (i.e., 5.20 × 10−3 second on average). The1071

statistical clustering module has averaged processing latency1072

of 1.30 × 10−4 second, which is significantly lower than the1073

packet encoding. We find that most of the latency is incurred1074

by the packet parsing module and the memory copy for parsing1075

per-packet features incurs the most latency.1076

Throughput. We replay four MAWI [47] backbone network1077

traffic datasets with the physical limit bandwidth of laser ports1078

(20 Gbps) to measure the throughput. We measure the through-1079

put of Whisper and FAE and validate that detection accuracy1080

does not decrease when reaching the maximum throughput.1081

We run Kitsune with the same hardware as Whisper and1082

measure the offline processing speed, i.e., we ignore the packet 1083

parsing overhead in the online processing of Kitsune, because 1084

it cannot handle high speed traffic. The CDF of the through- 1085

put is shown in Figure 17. We find that Whisper achieves 1086

11.35 Gbps to 13.22 Gbps average throughput, while Kitsune 1087

achieves 112.52 Mbps. Whisper achieves high throughput 1088

because it significantly reduces the processing overhead of 1089

the machine learning. FAE achieves the averaged throughput 1090

ranging between 11.28 Gbps and 13.18 Gbps, which is similar 1091

to Whisper. Note that, FAE uses a similar auto-encoder model 1092

in Kitsune and achieves 100 times higher throughput (though it 1093

has limited detection ability). We conclude that the frequency 1094

domain features used in Whisper enable higher throughput 1095

than the packet-level methods. In summary, Whisper and 1096

FAE achieve the most throughput, around 1.27 × 106 PPS. 1097

F. Effectiveness of Interval Sampling 1098

The interval sampling module (see Section IV-C) reduces 1099

the processing overhead, which allows Whisper to increase the 1100

throughput and reduce the latency of the detection. To accu- 1101

rately measure the improvements of throughput, we truncate 1102

the packets in benign traffic datasets to the first 200 bytes 1103

and increase the packet rates until the packet parsing mod- 1104

ule reaches its maximum throughput, and set the sampling 1105

parameter D to 50%, 33%, 25%. Similar to previous exper- 1106

iments, we plot the CDF of the detection throughput on 1107

the four datasets. In Figure 18, we observe that the sam- 1108

pling module increases 44.57%, 80.99%, 60.17%, 44.18% 1109

averaged throughput when D = 50% on the datasets col- 1110

lected in Jan. 2019, Jan. 2020, Mar. 2020, Jun. 2020, respec- 1111

tively. By applying the sampling module, Whisper achieves 1112

23.86 Gbps averaged throughput on the dataset collected in 1113

Jan. 2020, which is higher than the throughput on other 1114

datasets because the dataset includes higher throughput traf- 1115

fic. Moreover, the improvements of throughput increase as 1116

the increase of the sampling parameter D because Whisper 1117

samples less per-packet features when D is larger. Similarly, 1118

a higher D also reduces more detection latency. Figure 19 1119

shows the averaged processing latency with different D on 1120

the four datasets. Compared with the latency in Figure 16(b), 1121
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Fig. 18. Throughput improvements by applying the sampling module.

Fig. 19. Latency improvements by applying the sampling module.

TABLE VI

IMPACTS OF THE SAMPLING MODULE ON DETECTION ACCURACY

the sampling model reduces 58.39% - 72.71% of the latency.1122

Moreover, the sampling module has negligible impacts on the1123

detection accuracy. Table VI exhibits the detection accuracy1124

with different sampling parameters. We observe that averaged1125

accuracy decrease is only 1.72%, 1.39%, and 0.55% when1126

D is 50%, 33%, and 25%, respectively. The sampling does1127

not incur a significant accuracy decrease. In summary, the1128

sampling module can increase the throughput and decrease1129

latency with the negligible accuracy loss.1130

VII. RELATED WORK1131

Machine Learning based NIDS. Machine learning based1132

Network Intrusion Detection Systems (NIDSes) can achieve1133

higher detection accuracy than the traditional signature based1134

NIDSes [8], [9]. In particular, compared with the signature1135

based NIDSes, they can detect zero-day attacks that have not1136

been uncovered [4], [5], [66]. For example, Nelms et al. [15] 1137

and Invernizzi et al. [16] detect malware traffic by using 1138

statistical machine learning approaches. Moreover, the spe- 1139

cialized features of botnets have been used in botnet traffic 1140

detection [67], [68]. Different from these methods, Whisper 1141

detects various attack traffic including botnet traffic online. 1142

Bartos et al. [14] developed an invariant of statistical features 1143

based detection via matrix transformations, which is not scal- 1144

able in large scale detection. Barradas et al. [69] developed 1145

FlowLens which extracted the distribution of packet-level 1146

features on data-planes. Luo et al. [65], [70] developed the 1147

wavelet approaches to achieve generic pulsing attack detection. 1148

Mirsky et al. [17] proposed Kitsune that leveraged lightweight 1149

deep neural networks to reduce the processing overhead. 1150

Whisper uses packet encoding and DFT to compress the 1151

original per-packet features for reducing feature redundancy. 1152

The compressed frequency domain features allow the machine 1153

learning to be readily deployable for high performance 1154

detection. 1155

Traffic Classification. Machine learning algorithms are 1156

widely used in traffic classification [40], [42], [43], [71]–[77]. 1157

For example, web fingerprinting aims to invalidate the Tor 1158

anonymous services and infer the website that users are visit- 1159

ing by using the features of TLS encrypted traffic [78]–[80]. 1160

Similar to Web fingerprinting, Ede et al. [43] used semi- 1161

supervised learning to fingerprint mobile applications. 1162

Siby et al. [42] applied traffic analysis to classify encrypted 1163

DNS traffic and infer the activities of users. Bahramali et al. 1164

[74] analyzed the features of various realtime communication 1165

applications. Although traffic classification achieves a different 1166

goal from malicious traffic detection, the extracted traffic 1167

features in Whisper, i.e., the frequency domain features, can 1168

be applied to perform traffic classifications. 1169

Throttling Malicious Traffic. IP blacklists have been 1170

widely used to throttle malicious traffic [81]. For instance, 1171

Ramanathan et al. [82] proposed an IP blacklist aggregation 1172

method to locate attackers. Moreover, programmable data 1173

planes [19], [38], [39], [83]–[86] have been recently leveraged 1174

to throttle various attack traffic, e.g., throttling different types 1175

of DoS flows and covert channels. All these defenses are 1176

orthogonal to our Whisper. 1177

VIII. CONCLUSION 1178

In this paper, we develop Whisper, a realtime malicious 1179

traffic detection system that utilizes sequential information of 1180

traffic via frequency domain analysis to enable robust attack 1181

detection. The frequency domain features with bounded infor- 1182

mation loss allow Whisper to achieve both high detection accu- 1183

racy and high detection throughput. In particular, fine-grained 1184

frequency domain features represent the ordering information 1185

of packet sequences, which ensures robust detection and 1186

prevents attackers from evading detection. In order to extract 1187

the frequency domain features, Whisper encodes per-packet 1188

feature sequences as vectors and uses DFT to extract sequen- 1189

tial information of traffic in the perspective of frequency 1190

domain, which enables efficient attack detection by utilizing a 1191

lightweight clustering algorithm. We prove that the frequency 1192

domain features have bounded information loss which is a 1193

prerequisite of accuracy and robustness. In particular, we find 1194

that feature sampling can effectively improve the detection 1195

efficiency while retaining the detection accuracy. Extensive 1196

experiments show that Whisper can detect various attacks in 1197

high throughput networks. It achieves 0.999 AUC accuracy 1198
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within 0.06 second and around 13.22 Gbps throughput. Espe-1199

cially, even under sophisticated evasion attacks, Whisper can1200

still detect malicious flows with high AUC ranging between1201

0.891 and 0.983.1202
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