
2972 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 4, AUGUST 2024

Flow Interaction Graph Analysis: Unknown
Encrypted Malicious Traffic Detection

Chuanpu Fu , Qi Li , Senior Member, IEEE, and Ke Xu , Fellow, IEEE, Member, ACM

Abstract— Nowadays traffic on the Internet has been widely
encrypted to protect its confidentiality and privacy. However,
traffic encryption is always abused by attackers to conceal
their malicious behaviors. Since encrypted malicious traffic
is similar to benign flows, it can easily evade traditional
detection. In particular, the existing encrypted traffic detection
methods are supervised which rely on the prior knowledge
of known attacks (e.g., labeled datasets). Detecting unknown
encrypted malicious traffic, which does not require prior
knowledge, is still an open problem. In this paper, we propose
HyperVision, an unsupervised machine learning (ML) based
malicious traffic detection system. Particularly, HyperVision is
able to detect unknown patterns of encrypted malicious traffic
by utilizing a graph built upon flow interaction patterns, instead
of learning the features of specific known attacks. We develop
an unsupervised graph learning method to detect abnormal
interaction patterns by analyzing the graph features, which allows
HyperVision to detect unknown attacks without requiring any
labeled datasets. Moreover, we establish an information theory
model to prove the effectiveness of HyperVision. We show the
performance of HyperVision by real-world experiments with
140 attacks. The experimental results illustrate that HyperVision
outperforms the state-of-the-art methods by 13.9% accuracy
improvement. Moreover, HyperVision achieves 15.82 Mpps
detection throughput with the average detection latency of 0.29s.

Index Terms— Malicious traffic detection, machine learning,
graph learning.

I. INTRODUCTION

TRAFFIC encryption has been widely adopted to pro-
tect the information delivered on the Internet. Over

80% websites adopted HTTPS to prevent data breach in
2019 [1], [2]. However, the cipher-suite for such protection
is double-edged. In particular, the encrypted traffic also
allows attackers to conceal their malicious behaviors, e.g.,
malware campaigns [3], exploiting vulnerabilities [4], and data

Manuscript received 24 April 2023; revised 17 September 2023;
accepted 17 February 2024; approved by IEEE/ACM TRANSACTIONS ON
NETWORKING Editor Z. Lin. Date of publication 19 March 2024; date of
current version 20 August 2024. This work was supported in part by the
National Key Research and Development Program of China under Grant
2022YFB3102301; in part by Beijing Outstanding Young Scientist Program
under Grant BJJWZYJH01201910003011; in part by China National Funds
for Distinguished Young Scientists under Grant 61825204; and in part by the
National Natural Science Foundation of China under Grant 62132011, Grant
61932016, and Grant 62221003. (Corresponding author: Ke Xu.)

Chuanpu Fu and Ke Xu are with the Department of Computer Science
and Technology, Tsinghua University, Beijing 100084, China (e-mail:
fuchuanpu@gmail.com; xuke@tsinghua.edu.cn).

Qi Li is with the Institute for Network Sciences and Cyberspace, Tsinghua
University, Beijing 100084, China (e-mail: qli01@tsinghua.edu.cn).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TNET.2024.3370851, provided by the authors.

Digital Object Identifier 10.1109/TNET.2024.3370851

exfiltration [5]. The ratio of encrypted malicious traffic on the
Internet is growing significantly [3], [6], [7] and exceeds 70%
of the entire malicious traffic [1].

However, encrypted malicious traffic detection is not well
addressed due to the low-rate and diverse traffic patterns [3],
[5], [8]. The traditional signature based methods that leverage
deep packet inspection (DPI) are invalid under the attacks
with the encrypted payloads [9]. Table I compares the
existing malicious traffic detection methods. Different from
plain-text malicious traffic, the encrypted traffic has similar
features to benign flows and thus can evade existing ML
based detection systems as well [2], [3], [7]. Particularly,
existing encrypted traffic detection methods are supervised
which rely on the prior knowledge of known attacks. For
model training, they extract features from labeled datasets [3],
[6], [7]. Thus, they are unable to detect a broad spectrum
of attacks with encrypted traffic [4], [5], [8], [10], which
are constructed with unknown patterns [11]. Besides, these
methods are incapable of detecting both attacks constructed
with and without encrypted traffic and unable to achieve
generic detection because features of encrypted and non-
encrypted attack traffic are significantly different [3], [7].

In a nutshell, the existing methods cannot detect encrypted
malicious traffic with unknown patterns by learning traffic
features of a single flow [3], [6]. However, it is still feasible to
detect such attack traffic because these attacks involve multiple
attack steps with different flow interactions among attackers
and victims, which are distinct from benign flow interactions
patterns [8], [12], [13], [14], [15]. For example, the encrypted
flow interactions between spam bots and SMTP servers are
significantly different from the legitimate communications [15]
even if the single flow of the attack is similar to the benign one.
Thus, this paper explores utilizing flow interaction patterns for
malicious traffic detection.

To the end, we propose HyperVision, a realtime detection
system that aims to capture encrypted malicious traffic.
In particular, it can detect encrypted malicious flows with
unknown patterns by identifying abnormal flow interactions,
i.e., the interaction patterns that are distinct from benign ones.
To achieve this, we build a graph to represent flow interaction
patterns which allows HyperVision to perform detection on
both encrypted and plain-text malicious traffic by learning the
graph structural features. Meanwhile, by learning the graph
structural features, it realizes unsupervised detection, which
does not require model training with labeled datasets.

However, it is challenging to build the graph for realtime
detection. We cannot simply use IP addresses as vertices and
flows as edges to construct the graph because the resulting
dense graph cannot be analyzed by graph learning methods. To
address this issue, we utilize two strategies to record different

1558-2566 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 01,2024 at 09:18:21 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4568-6125
https://orcid.org/0000-0001-8776-8730
https://orcid.org/0000-0003-2587-8517

FU et al.: FLOW INTERACTION GRAPH ANALYSIS: UNKNOWN ENCRYPTED MALICIOUS TRAFFIC DETECTION 2973

TABLE I
THE COMPARISON WITH THE EXISTING METHODS OF MALICIOUS TRAFFIC DETECTION

sizes of flows, and process the interaction patterns of short and
long flows separately in the graph. Specifically, it aggregates
the short flows based on the similarity of massive short flows
on the Internet, which reduces the density of the graph, and
extracts distribution based features for long flows, which can
effectively preserve flow interaction information.

We design a four-step lightweight unsupervised graph
learning approach to detect encrypted malicious traffic by
utilizing the rich flow interaction information maintained on
the graph. First, for efficient graph learning, we analyze
the connectivity of the graph by extracting the connected
components and identify abnormal components by clustering
the high-level statistical features. Second, we pre-cluster the
edges according to the observed local adjacency in edge
features, which significantly reduces the feature processing
overhead and ensures realtime detection. Third, we extract
critical vertices by solving a vertex cover problem to minimize
the number of clustering. Finally, we cluster each critical
vertex according to its connected edges, which are in the
centers of the clusters produced by the pre-clustering, and thus
obtain abnormal edges indicating encrypted malicious traffic.

Moreover, to quantify the benefits of the graph based
flow recording of HyperVision over the existing approaches,
we develop a flow recording entropy model, an information
theory based framework that theoretically analyzes the amount
of information retained by the existing data sources of
malicious traffic detection systems. By using this framework,
we show that the existing sampling based and event based
traffic data sources (e.g., NetFlow [21] and Zeek [22]) cannot
retain high-fidelity traffic information. Thus, they are unable to
record flow interaction information for the detection. But the
graph in HyperVision captures near-optimal traffic information
for the graph learning based detection and the amount of
the information maintained in the graph approaches the
theoretical up-bound of the idealized data source with infinite
storage according to the data processing inequality [23].
Also, the analysis results demonstrate that the graph in
HyperVision achieves higher information density (i.e., amount
of traffic information per unit of storage) than all existing data
sources, which is the foundation of the accurate and efficient
detection.

We prototype HyperVision with Intel’s Data Plane Develop-
ment Kit (DPDK) [24]. To extensively evaluate the prototype,
we replayed 92 attack datasets including 80 new datasets
collected in our virtual private cloud (VPC) with more than
1,500 instances. In the VPC, we collected 48 typical encrypted

malicious traffic, including (i) encrypted flooding traffic, e.g.,
flooding target links [10]; (ii) web attacks, e.g., exploiting
web vulnerabilities [4]; (iii) malware campaigns, including
connectivity testing, dependency update, and downloading.
We observe that HyperVision achieves 13.9% accuracy
improvements over five state-of-the-art methods. It detects all
encrypted malicious traffic in an unsupervised manner with
more than 0.86 F1, where 44 of the real-world stealthy traffic
cannot be identified by all the baselines, e.g., an advanced
side-channel attack exploiting the CVE-2020-36516 [14] and
many newly discovered cryptojacking attacks [25]. Besides,
real-world use cases show that HyperVision raises negligible
false alarms, which can be easily filtered out. Moreover,
HyperVision achieves on average more than 100 Gb/s
detection throughput with the average detection latency of
0.29s.

In summary, the contributions of our paper are six-fold:
• We propose HyperVision, the first realtime unsupervised

detection for encrypted malicious traffic with unknown
patterns by utilizing the flow interaction graph.

• We develop several algorithms to build the graph that
allows us to accurately capture interaction patterns among
various flows.

• We design a lightweight unsupervised graph learning
method to detect encrypted traffic via graph features.

• We develop a theoretical analysis framework established
by information theory to show that the graph captures
near-optimal traffic interaction information.

• We utilize a dimension reduction method that sig-
nificantly increases detection throughput and reduces
detection latency.

• We prototype HyperVision and use the extensive
experiments with various real-world encrypted malicious
traffic to validate its accuracy, efficiency, and robustness.

The rest of the paper is organized as follows:
Section II introduces the threat model of HyperVision.
Section III presents the high-level design of HyperVision.
In section IV, V, and VI, we describe the detailed designs.
In Section VII, we conduct the theoretical analysis.
In Section VIII, we experimentally evaluate the performances.
Section IX reviews related works and Section X concludes
this paper.

II. THREAT MODEL AND DESIGN GOALS

We aim to develop a realtime system (i.e., HyperVision)
to detect encrypted malicious traffic. It performs detection

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 01,2024 at 09:18:21 UTC from IEEE Xplore. Restrictions apply.

2974 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 4, AUGUST 2024

Fig. 1. The overview of HyperVision.

according to the traffic replicated by routers through port
mirroring [26], which ensures that the system will not interfere
with traffic forwarding. After identifying encrypted malicious
traffic, it can cooperate with the existing on-path malicious
traffic defenses [27], [28], [29] to throttle the detected traffic.
To perform detection on encrypted traffic, we cannot parse and
analyze application layer headers and payloads.

In this paper, we focus on detecting active attacks
constructed with encrypted traffic. We do not consider passive
attacks that do not generate traffic to victims, e.g., traffic
eavesdropping [30] and passive traffic analysis [31]. According
to the existing studies [12], [13], [32], [33], [34], [35],
attackers utilize reconnaissance steps to probe the information
of victims, e.g., the password of a victim [8], the TCP
sequence number of a TLS connection [14], [36], and the
randomized memory layout of a web server [37], which
cannot be accessed directly by attackers due to lack of prior
knowledge. Note that, these attacks are normally constructed
with many addresses owned or faked by attackers.

The design goals of HyperVision are as follows: First,
it should be able to achieve generic detection, i.e., detect
attacks constructed with encrypted or non-encrypted traffic,
which ensures that the attacks cannot evade detection by traffic
encryption [3], [5]. Second, it is able to achieve realtime
high-speed traffic processing, which means that it can identify
whether the passing through encrypted traffic is malicious,
while incurring low detection latency. Third, the performed
detection by HyperVision is unsupervised, which means that it
does not require any prior knowledge of encrypted malicious
traffic. That is, it should be able to deal with attacks with
unknown patterns, i.e., zero-day attacks, which have not been
disclosed [38]. Thus, we do not use any labeled traffic datasets
for ML training. These issues cannot be well addressed by the
existing detection methods [2].

III. OVERVIEW OF HYPERVISION

In this section, we present the high-level design of
HyperVision. Normally, patterns of each flow in the encrypted
malicious traffic, i.e., single-flow patterns, may be similar
to benign flows, which allow them to evade the existing
detection. However, the malicious behaviors appearing in the
interaction patterns between the attackers and victims will be

more distinct from the benign ones. Thus, in HyperVision,
we construct a graph to represent interaction patterns among
flows, and detect abnormal interactions via unsupervised graph
learning. Meanwhile, it realizes generic detection by analyzing
flows regardless of the traffic type and can detect encrypted
and non-encrypted malicious traffic. Figure 1 shows three
key parts of HyperVision, i.e., graph construction, graph pre-
processing, and abnormal interaction detection.

Graph Construction. HyperVision collects network flows
for graph construction. Meanwhile, it classifies the flows into
short and long ones and records their interaction patterns
separately for the purpose of reducing the density of the
graph. In the graph, it uses different addresses as vertices
that connect the edges associated with short and long flows,
respectively. It aggregates the massive similar short flows
to construct one edge for a group of short flows, and thus
reduces the overhead for maintaining flow interaction patterns.
Moreover, it records the distributions of packet features for
long flows to construct the edges associated with long flows,
which ensures high-fidelity recorded flow interaction patterns,
while addressing the issue of coarse-grained flow features in
the traditional methods [39]. We will detail how HyperVision
maintains the high-fidelity flow interaction patterns in the
graph in Section IV.

Graph Pre-Processing. We pre-process the built interaction
graph to reduce the overhead of processing the graph by
extracting connected components and cluster the components
using high-level statistics. In particular, the clustering can
detect the components with only benign interaction patterns
accurately and thus filters these benign components to reduce
the scale of the graph. Moreover, we perform pre-clustering
and use the generated cluster centers to represent the edges in
the identified clusters. We will detail the graph pre-processing
in Section V, and further improve the efficiency of the pre-
clustering via dimension reduction.

Malicious Traffic Detection Based on the Graph. We
achieve unsupervised encrypted malicious traffic detection by
analyzing the graph features. We identify critical vertices in
the graph by solving a vertex cover problem, which ensures
that the clustering based graph learning processes all edges
with the minimum number of clustering. For each selected
vertex, we cluster all connected edges according to their
flow features and structural features that represent the flow

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 01,2024 at 09:18:21 UTC from IEEE Xplore. Restrictions apply.

FU et al.: FLOW INTERACTION GRAPH ANALYSIS: UNKNOWN ENCRYPTED MALICIOUS TRAFFIC DETECTION 2975

Fig. 2. The real-world flow features distribution of short and long flows.

Fig. 3. HyperVision aggregates short flows to reduce the dense graph.

interaction patterns. HyperVision can identify abnormal edges
in real time by computing the loss function of the clustering.
We will describe the details of graph learning based detection
in Section VI.

IV. GRAPH CONSTRUCTION

In this section, we present the design details of constructing
the flow interaction graph that maintains interaction patterns
among various flows. In particular, we classify different
flows, i.e., short and long flows, and aggregate short flows,
Meanwhile, we record feature distributions for long flows,
respectively, for efficient graph construction. In Section VII,
we will show that the graph retains the near-optimal
information for detection.

A. Flow Classification
In order to efficiently analyze flows captured on the Internet,

we need to avoid the dependency explosion among flows
during the graph construction. We classify the collected
flows into short and long flows, according to the flow size
distribution [40] (see Figure 2), and then reduce the density of
the graph (shown in Figure 3). Figure 2 shows the distribution
of flow completion time (FCT) and flow length of the MAWI
Internet traffic dataset [41]. We use first 5% (13×106) packets
collected on a randomly selected day in Jan. 2020 to plot the
figure. According to the figure, we observe that only 5.52%
flows have FCT > 2.0s, which is similar to the ratios in other
months, e.g., 5.34% in March and 5.18% in April. However,
93.70% packets in the dataset are long flows with only 2.36%
proportion. Inspired by the observations, we apply different
flow collection strategies for the short and long flows.

We poll the per-packet information from a data-plane
high-speed packet parsing engine and obtain their source
and destination addresses, port numbers, and per-packet
features, including protocols, lengths, and arrival intervals.
These features can be extracted from both encrypted
and plain-text traffic for generic detection. We develop
a flow classification algorithm to classify the traffic (see
Algorithm 1 in Appendix A, see the Supplementary Material).
It maintains a timer TIME_NOW, a hash table that uses
HASH(SRC, DST, SRC_PORT, DST_PORT) as key and the
collected flows indicated by the sequences of their per-
packet features as values. It traverses the hash table every

Fig. 4. The number and size of the buckets for feature distribution analysis.

JUDGE_INTERVAL second according to TIME_NOW and
judges the flow completion when the last packet arrived before
PKT_TIMEOUT second of TIME_NOW. When the flows are
completed, we classify them as long flows if the flows have
more than FLOW_LINE packets. Otherwise, we classify them
as short flows. As shown in Figure 2(b), we can accurately
classify short and long flows. The definitions of the hyper-
parameters can be found in Table VI (see Appendix A in
the Supplementary Material). Note that, we poll the state-less
per-packet information from data-plane, while not maintaining
flow states (e.g., a state machine [42]) on the data-plane to
prevent attackers manipulating the states, e.g., side-channel
attack [43] and evading detection [44].

B. Short Flow Aggregation
We need to reduce the density of the graph for analysis.

As shown in Figure 3(a), the graph will be very dense for
analysis if we use traditional four-tuple flows as edges, which
is similar to the dependency explosion problem in provenance
analysis [45], [46]. We observe that most short flows have
almost the same per-packet feature sequences. For instance, the
encrypted flows of repetitive SSH cracking attempts originated
from specific attackers [8]. Thus, we perform the short flow
aggregation to represent similar flows using one edge after the
classification.

We design an algorithm to aggregate short flows (see
Algorithm 2 in Appendix A, the Supplementary Material).
A set of flows can be aggregated when all the following
requirements are satisfied: (i) the flows have the same source
and/or destination addresses, which implies similar behaviors
generated from the addresses; (ii) the flows have the same
protocol type; (iii) the number of the flows is large enough,
i.e., when the number of the short flows reaches the threshold
AGG_LINE, which ensures that the flows are repetitive enough.
Next, we construct an edge for the short flows, which preserves
a single feature sequence for all the aggregated flows,
including protocols, lengths, and arrival intervals between
packets. By this way, we can effectively reduce storage
overhead for realtime detection. In summary, four types of
edges associated with short flows exist on the graph, i.e.,
source address aggregated, destination address aggregated,
both addresses aggregated, and without aggregation. Thus,
a vertex connected to the edge can denote a group of addresses
or a single address.

Figure 3 compares the graph using traditional flows as edges
and our aggregated graph by using the real-world backbone
traffic dataset, which is same to that used in Figure 2. The
diameter of a vertex indicates the number of addresses denoted
by the vertex and the depth of the color indicates the repeated
edges. In Figure 3(b), we observe that the algorithm reduces
93.94% vertices and 94.04% edges. The edge highlighted
in green indicates short flows (i.e., 2.38 Kpps, from PH)
exploiting a vulnerability. Note that, flow aggregation is

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 01,2024 at 09:18:21 UTC from IEEE Xplore. Restrictions apply.

2976 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 4, AUGUST 2024

Fig. 5. The statistical features of the components.

performed upon receiving the traffic to minimize storage
overhead, enabling in-memory graph maintenance for real-
time detection.

C. Feature Distribution Analysis for Long Flows
Now we use histograms to represent the per-packet feature

distributions (e.g., arrival intervals) of a long flow, and thus
avoid preserving their long per-packet feature sequences, since
the features in long flows are centrally distributed. Specifically,
we maintain a hash table to construct the histogram for each
per-packet feature sequence in each long flow. According to
our empirical study, we set the buckets widths for packet-
length and arrival interval as 10 bytes and 1 ms, respectively,
to trade off between the fitting accuracy and overhead.
We calculate the hash code by dividing the per-packet features
by the bucket width and increase the counter indexed by the
hash code. Finally, we record the hash codes and the associated
counters as the histograms. Note that, the coarse-grained flow
statistics, e.g., numbers of packets [39], are insufficient for
encrypted malicious traffic detection [6], which also lose the
flow interaction information [47]. Note that, we do not extract
the distributions for short flows, since the histograms are
ineffective to represent short per-packet feature sequences.
Thus, we directly preserve feature sequences for short flows.

Figure 4 shows the number of the used buckets and
the maximum bucket size for the long flows in the same
dataset shown in Figure 2. We confirm the centralized feature
distribution, i.e., most packets in the long flows have similar
packet lengths and arrival intervals. Specifically, in Figure 4(a),
we fit the distribution of packet length using only 11 buckets
on average, and most of the buckets collect more than
200 packets (see Figure 4(b)), which demonstrate that the
histogram based fitting is effective with low storage overhead.
Similarly, the fitting for arrival interval uses 121 buckets on
average and realizes 71 packets per bucket high utilization.
Besides, we use the same method for protocol. We use the
mask of protocols as the hash code and use smaller numbers
of buckets to realize more efficient fitting due to the limited
number of protocol types. Note that, duplicated edges between
two vertices represent concurrent flows between two hosts.
It implies that features of concurrent flows are individually
extracted.

V. GRAPH PRE-PROCESSING

In this section, we pre-process the flow interaction graph
to identify key components and pre-cluster the edges, which
can enable realtime graph learning based detection against
encrypted malicious traffic with unknown patterns.

A. Connectivity Analysis
To perform the connectivity analysis of the graph, we obtain

the connected components by using depth-first search (DFS)

Fig. 6. The sparsity of edges in the graph feature space.

Fig. 7. Critical vertices identification via solving the vertex cover problem.

and split the graph by the components. Figure 5(a) presents
the size distribution of the identified components of the MAWI
traffic dataset [41] collected in Jan. 2020. We observe that
most components contain few edges with similar interaction
patterns. Thus, we perform a clustering on the high-level
statistics for the connected components to capture the
abnormal components that have over one order of magnitude
clustering loss than normal components as clustering outliers.
Specifically, we extract five features to profile the components,
including: (i) the number of long flows; (ii) the number of
short flows; (iii) the number of edges denoting short flows;
(iv) the number of bytes in long flows; and (v) the number of
bytes in short flows. We perform a min-max normalization
and acquire the centers using the density based clustering,
i.e., DBSCAN [48]. For each component, we calculate the
Euclidean distance to its nearest center. We detect an abnormal
component when its distance is over the 99th percentile of all
the distances based on our empirical study.

Figure 5(b) shows an instance of the clustering, where the
diameters indicate the scale of the traffic on the components (in
the unit of bytes). We observe that most components are small,
and a high ratio of huge components is classified as abnormal.
All edges associated with the normal components are labeled
as benign traffic, and the edges associated with the abnormal
components will be further processed by the following steps.

B. Edge Pre-Clustering
Now we further need to process and pre-cluster the graph

for efficient detection. As shown in Figure 5, the abnormal
components in the graph have massive vertices and edges.
In particular, we cannot directly apply graph representation
learning, e.g., graph neural network (GNN), for realtime
detection. Figure 6 shows the edges from the components
in the graph structural feature space. We observe that the
distribution of the edges is sparse, i.e., most edges are adjacent
to massive similar edges in the feature space. To utilize the
sparsity, we perform pre-clustering using DBSCAN [48] that
leverages KD-Tree for efficient local search and select the
cluster centers of the identified clusters to represent all edges
in each cluster to reduce the overhead for graph processing.

Specifically, we extract eight and four graph structural
features (see Table V in Appendix A, the Supplementary
Material) for the edges associated with short and long flow,
respectively, e.g., the in-degree of the source vertex of an
edge associated with a long flow. These degree features of
malicious traffic are significantly distinct from the benign

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 01,2024 at 09:18:21 UTC from IEEE Xplore. Restrictions apply.

FU et al.: FLOW INTERACTION GRAPH ANALYSIS: UNKNOWN ENCRYPTED MALICIOUS TRAFFIC DETECTION 2977

ones, e.g., the vertices denoting spam bots have higher out-
degrees than benign clients due to their frequent interactions
with servers. Then, we perform a min-max normalization
for the features, and adopt a small search range ϵ and a
large minimum number of points for DBSCAN clustering (see
Section VIII-A for the setting of hyper-parameters) to avoid
including irrelevant edges in the clusters, which may incur
false positives. Moreover, some edges cannot be clustered
and should be treated as outliers, which will be processed
as clusters with only one edge.

VI. MALICIOUS TRAFFIC DETECTION

In this section, we detect encrypted malicious traffic
by identifying abnormal interaction patterns on the graph.
In particular, we cluster edges connected to the same critical
vertex and detects outliers as malicious traffic (see Figure 7).

A. Identifying Critical Vertices
To efficiently learn the interaction patterns of the traffic,

we do not perform clustering for all edges directly but
cluster edges connected to critical vertices. For each connected
component, we select a subset of all vertices in the connected
component as the critical vertices according to the following
conditions: (i) the source and/or destination vertices of each
edge in the component are in the subset, which ensures that
all the edges are connected to more than one critical vertices
and clustered at least once; and (ii) the number of selected
vertices in the subset is minimized, which aims to minimize
the number of clustering to reduce the overhead of graph
learning. Finding such a subset of vertices is an optimization
problem and equivalent to the vertex cover problem [49],
which was proved to be NP Complete (NPC). We select all
edges and all vertices on each component to solve the problem.
And we reformulate the problem to a Satisfiability Modulo
Theories (SMT) problem that can be effectively solved by
using Z3 SMT solver [50]. Since we pre-cluster the massive
edges and reduce the scale of the problem (see Section V-
B), the NPC problem can be solved in real time. Note that,
employing thresholds to select vertices with high degrees as
critical vertices is not a suitable approach. Unlike the vertex
cover problem, the method does not guarantee that every edge
is connected to at least one critical vertex. Consequently,
any remaining unconnected edges will not be considered in
clustering analysis conducted for each critical vertex.

B. Edge Feature Clustering for Detection
Now we cluster the edges connected to each critical vertex

to identify abnormal interaction patterns. In this step, we use
the structural features in Section V-B, and the flow features
extracted from the per-packet feature sequences of short flows
or the fitted feature distributions of long flows (see all the
features in Appendix A, see the Supplementary Material).
We employ degree based features because a vertex with
a high degree denotes an abnormal user flooding massive
attack flows, such as password cracking [8]. Different from
existing methods, we do not analyze protocol specific features
(e.g., fields in TLS headers) to achieve generic detection for
various protocols. We use the lightweight K-Means algorithm
to cluster the edges associated with short and long flows,
respectively, and calculate the clustering loss that indicates
the degree of maliciousness for malicious flow detection.

losscenter(edge) = min
Ci∈{C1,...,CK}

||Ci − f(edge)||2, (1)

losscluster(edge) = TimeRange(C(edge)), (2)
losscount(edge) log2(Size(C(edge)) + 1), (3)

loss(edge) = αlosscenter(edge)− βlosscluster(edge)
+ γlosscount(edge), (4)

where K is the number of obtained cluster centers, Ci is the
ith center, f(edge) is the feature vector, C(edge) contains all
edges in the cluster of edge produced by pre-clustering, and
TimeRange calculates the time range covered by the flows
denoted by the edges.

According to Equation (4), the loss has three parts: (i)
losscenter in (1) is the Euclidean distance to the cluster centers
which indicates the difference from other edges connected
to the critical vertex; (ii) losscluster in (2) indicates the time
range covered by the cluster identified by the pre-clustering
in Section V-B which implies long lasting interaction patterns
tend to be benign; (iii) losscount in (3) is the number of flows
denoted by the edges, which means a burst of massive flows
implies malicious behaviors. Moreover, we used weights:
α, β, γ to balance the loss terms. Finally, it detects the
associated flows as malicious when the loss of an edge is
larger than a threshold.

VII. THEORETICAL ANALYSIS

In this section, we develop a theoretical analysis framework,
i.e., flow recording entropy model, to analyze the information
preserved in the graph of HyperVision for graph learning based
detection. The detailed analysis can be found in Appendix C,
see the Supplementary Material.

A. Information Entropy Based Analysis

We develop the framework that aims to quantitatively
evaluate the information retained by the exiting traffic
recording modes, which decide the data representations for
malicious traffic detection, by using three metrics: (i) the
amount of information, i.e., the average Shannon entropy
obtained by recording one packet; (ii) the scale of data, i.e.,
the space used to store the information; (iii) the density
of information, i.e., the amount of information on a unit
of storage. By using this framework, we model the graph
based traffic recording mode used by HyperVision as well
as three typical types of flow recording modes, i.e., (i)
idealized mode that records and stores the whole per-
packet feature sequence; (ii) event based mode (e.g., Zeek)
that records specific events [3], [17]; and (iii) sampling
based mode (e.g., NetFlow) that records coarse-grained flow
information [18], [51].

We model a flow, i.e., a sequence of per-packet features,
as a sequence of random variables represented by an aperiodic
irreducible discrete-time Markov chain (DTMC). Let G =
{V, E} denote the state diagram of the DTMC, where V is the
set of states (i.e., the values of the variables) and E denotes
the edges. We define s = |V| as the number of different states
and use W = [wij]s×s to denote the weight matrix of G. All
of the weights are equal and normalized:

∀ 1 ≤ i, j, m, n ≤ s, (wij = wmn) ∨ (wij = 0 ∨ wmn = 0),

wi =
s∑

j=1

wij , 1 =
s∑

i=1

wi. (5)

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 01,2024 at 09:18:21 UTC from IEEE Xplore. Restrictions apply.

2978 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 4, AUGUST 2024

The state transition is performed based on the weights, i.e.,
the transition probability matrix P = [Pij], Pij = wij/wi.
Therefore, the DTMC has a stationary distribution µ:

µP = µ,

1 =
s∑

j=1

µj
⇒ µj = wj , ∀ 1 ≤ j ≤ s. (6)

Assume that the stationary distribution is a binomial
distribution with the parameter: 0.1 ≤ p ≤ 0.9 to approach
Gaussian distribution with low skewness:

µ ∼ B(s, p)
App.−→ N (sp, sp(1− p)). (7)

Based on the distribution, we obtain the entropy rate of the
DTMC which is the expected Shannon entropy increase for
each step in the state transition, i.e., the expected Shannon
entropy of each random variable in the sequence, (using nat
as unit, 1 nat ≈ 1.44 bit):

H[G] =
s∑

i=1

µi

s∑
j=1

pij ln
1

pij
= −

s∑
i=1

s∑
j=1

wij ln wij

+
s∑

j=1

wj ln wj

= ln |E| − 1
2

ln 2πsep(1− p). (8)

Moreover, for the real-world flow size distribution,
we assume that the length of the sequence of random variables
obeys a geometric distribution with high skewness, i.e., L ∼
G(q) with a parameter: 0.5 ≤ q ≤ 0.9. H, L, and D denote
the expectation of the metrics, i.e., the amount of information,
the scale of data, and the density, respectively.

Idealized Recording Mode. The idealized recording
mode has infinite storage and captures optimal fidelity
traffic information by recording each random variable from
the sequence without any processing. Thus, the obtained
information entropy of the idealized mode grows at the entropy
rate of the DTMC:

HIdeal = E[LH[G]] =
1
q

ln |E| − 1
2q

ln 2πsep(1− p). (9)

According to data processing inequality [23], the infor-
mation retained in the idealized recording mode reaches the
optimal value. It implies that processing of the observed per-
packet features denoted by the random variables may incur
information loss. In the following sections, we will show that
the other mode incurs information loss.

We can obtain the scale of data and the density of
information for the idealized recording mode as follows:

LIdeal = E[L] =
1
q
. (10)

DIdeal =
HIdeal

LIdeal
= H[G]. (11)

Graph Based Recording Mode of HyperVision. Hyper-
Vision applies different strategies to process short and long
flows for the graph construction. Let K denote the threshold
for classifying the flows. When L < K, it collects all random
variables from the sequence for short flows. Otherwise,
it collects the histogram to fit the distribution for long

flows. Then, we can obtain the lower bound to estimate the
information entropy in the graph of HyperVision :

HH.V. =
1− (Kq + 1)(1− q)K

q
H[G] +

1
4
s(1− q)K

×[(1+s) ln ps+2 ln 2πe+2q ln K−2s(1+p+γ)].
(12)

We can also obtain the expected data scale and the density:

LH.V. = s(1− q)K +
1− (Kq + 1)(1− q)K

Cq
, (13)

where C is the average number of flows denoted by an edge
associated with short flows.

DH.V. =
HH.V.

LH.V.
. (14)

Sampling Based Recording Mode. Similarly, the sampling
based mode extracts and records flow statistics for the
detection. We analyze the accumulative statistics (e.g. the
total number of bytes) that are widely adopted [21], [39]. Let
⟨s1, s2, . . . , sL⟩ denote the sequence of random variables, and
XSamp. =

∑L
i=1 si indicates the flow statistic to be recorded.

We can obtain a tight lower bound as an estimation for the
amount of information and the other metrics as follows:

HSamp. = H[XSamp.] =
1
2

ln 2πesp(1− p) +
ln 2
2

q(1− q).

(15)
LSamp. = 1. (16)
DSamp. = HSamp. (17)

Event Based Recording Mode. The event based recording
mode inspects each random variable in the sequence and
records events with a small probability. Since the observation
that the event based methods do not generate repetitive events
for a long flow with a larger s, for simplicity, we assume that
the probability is ps ∝ 1/s. Then, we can obtain the amount of
information, the scale of data, and the density of information
for event based recording mode as follows:

HEve. = −2θ ln θ, (18)

where θ = ζ
η , ζ = q − qps, and η = q − ps(q − 1).

LEve. = −ps

η
. (19)

DEve. =
2ζ

ps
ln θ. (20)

B. Analysis Results
We perform numerical studies to compare the flow recording

modes in real-world setting. We select three per-packet
features: protocol, length, and the arrival interval (in ms) as the
instances of the DTMC, then we measure the parameters of
the DTMC, i.e., |E| and |V| according to the first 106 packets
in the MAWI dataset on Jan. 2020 [41]. We also measure K,
C, and estimate the geometric distribution parameter q via the
second moment. We have the following three key results.

(1) HyperVision maintains more information using the
graph than the existing methods. Figure 8 shows the results
on the feasible region (F = {0.1 ≤ p ≤ 0.9, 0.5 ≤
q ≤ 0.9}). We observe that HyperVision maintains at least

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 01,2024 at 09:18:21 UTC from IEEE Xplore. Restrictions apply.

FU et al.: FLOW INTERACTION GRAPH ANALYSIS: UNKNOWN ENCRYPTED MALICIOUS TRAFFIC DETECTION 2979

Fig. 8. The traffic information retained by different recording modes on the feasible region of the parameters.

2.37 and 1.34 times information entropy than traditional flow
sampling and event based flow recording. Thus, the traditional
detection methods cannot retain high-fidelity flow interaction
information. Actually, they only analyze the features of
a single flow, which can be evaded by encrypted traffic.
According to Figure 8(b), HyperVision has 69.69% data scale
of the sampling based mode. It implies that the data scale
is the key challenge for the existing methods to utilize flow
interaction patterns. We well address this issue by using the
compact graph for maintaining the interactions among flows.

(2) HyperVision maintains near-optimal information using
the graph. According to Figure 8(a), we observe that the
information maintained by the graph almost equals to the
theoretical optimum, with the difference ranging from 4.6 ×
10−9 to 2.6 nat. When the parameter of the geometric
distribution of L approaches 0.9, the flow information loss
is larger because of the increasing ratio of long flows that
incur more information loss. Figure 20 (see Appendix C
in the Supplementary Material) compares the information in
HyperVision and the idealized system when q = 0.59 and
p = 0.8. We have similar results. The gaps between the graph
mode and the optimal mode are only 0.056 and 0.021.

(c) HyperVision has higher information density than the
existing methods. Figure 8(c) shows that HyperVision realizes
1.46, 1.54, and 2.39 times information density than the existing
methods, respectively. Although the idealized system realizes
the optimal amount of traffic information, the density is
only 78.55% of HyperVision in the worst case, as shown
in Figure 8(d). From Table VII in Appendix C, see the
Supplementary Material, we find that, for all kinds of per-
packet features, HyperVision can increase the density ranging
between 35.51% and 47.27% due to the different recording
strategies for short and long flows.

In summary, the flow interaction graph provides high-
fidelity and low-redundancy traffic information with obvious
flow interaction patterns, which ensures that HyperVision
achieves realtime and unsupervised detection, particularly,
detecting encrypted malicious traffic with unknown patterns.

VIII. EXPERIMENTAL EVALUATION

A. Experiment Setup
Implementation. We prototype HyperVision with more

than 8,000 Line of Code (LOC). The prototype is compiled
by gcc 9.3.0 and cmake 3.16.3. We use DPDK [24] version
19.11.9 encapsulated by libpcap++ [52] version 21.05 to
implement the high-speed data-plane module. The graph
construction module maintains the graph in memory for
realtime detection. The graph learning module detects the
encrypted malicious traffic on the interaction graph. It uses
DBSCAN and K-Means in mlpack [53] (version 3.4.2) for

clustering and Z3 SMT Solver [50] (version 4.8) to identify
the critical vertices.

Testbed. We deploy HyperVision on a testbed built upon
DELL servers (PowerEdge R410, produced in 2012) with two
Intel Xeon E5645 CPUs (2 × 12 cores), Ubuntu 20.04.2
(Linux 5.11.0), Docker 20.10.7, 24GB memory, one Intel
82599ES 10 Gb/s NIC, and two Intel 850nm SFP+ laser ports
for optical fiber connections. We configure 6GB huge page
memory for DPDK (3GB/NUMA Node) and bind 8 threads
on 8 physical cores for 16 NIC RX queues to parse the per-
packet features from high-speed traffic. We use 8 cores for
in-memory graph construction, and 7 cores are used for graph
learning, the rest one core is used as DPDK master core.

Datasets. We use real-world backbone network traffic
datasets from the vantage-G of WIDE MAWI project [41]
in AS2500, Tokyo Japan, Jan. ∼ Jun. 2020 as background
traffic. The vantage transits traffic from/to its BGP peers
and providers using 10 Gb/s fiber linked to its IXP (DIX-
IE), and the traffic is collected using port mirroring, which
is consistent with our threat model and the physical testbed
described above. We remove the attack traffic with obvious
patterns in the background traffic dataset according to the rules
defined by the existing studies [11], [54], [55], e.g., traffic
will be detected as scanning traffic if it has scanned over
10% IPv4 addresses [11]. We generate the malicious traffic
by constructing real attacks or replaying the existing traces
in our testbed. Specifically, we collect malicious traffic in our
virtual private cloud (VPC) with more than 1,500 instances.
We manipulate the instances to perform attacks according to
the real-world measurements [11], [13], [32], [54], [55], [56],
[57] and the same settings in the existing studies [10], [14],
[58], [59]. We classify 80 new datasets used in our experiments
(see Table VIII for details) into four groups, three of which
are encrypted malicious traffic:

• Traditional brute force attack. Although HyperVision
focuses on encrypted traffic, we generate 28 kinds of
traditional flooding attacks to verify its generic detection
and the correctness of baselines including 18 high-rate and
10 low-rate attacks: (i) the brute scanning with the real
packet rates [11]; (ii) the source spoofing DDoS with various
rates [32]; (iii) the amplification attacks [55]; (iv) probing
vulnerable applications [11], [60]. We collected the traffic
in our VPC to avoid interference with real services.

• Encrypted flooding traffic. Different from the brute force
flooding, the encrypted flooding is generated by repetitive
attack behaviors which target specific applications: (i)
the link flooding generates encrypted low-rate flows, e.g.,
the low-rate TCP attacks [58], [61] and the Crossfire
attack [10], to congest links; (ii) injecting encrypted flows
that exploits protocol vulnerabilities by flooding attack

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 01,2024 at 09:18:21 UTC from IEEE Xplore. Restrictions apply.

2980 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 4, AUGUST 2024

TABLE II
THE AVERAGE ACCURACY ON THE GROUPS OF DATASETS

traffic and inject packets into the channel [14], [59], [62];
(iii) the password cracking performs slow attempts to
hijack the encrypted communication protocols [8], [63].
We perform SSH cracking in the VPC with the scale of
SSH servers in the ASes reachable to AS2500.

• Encrypted web malicious traffic. Web malicious traffic
is normally encrypted by HTTPS. We collect the traffic
generated by seven widely used web attacks including
automatic vulnerabilities discovery (including XSS, CSRF,
various injections) [4], SSL vulnerabilities detection [64],
and crawlers. We also collect the SMTP-over-TLS spam
traffic that lures victims to visit the phishing sites [15].

• Malware generated encrypted traffic. The traffic of malware
campaigns is low-rate and encrypted, e.g., malware
component update or delivery [65], command and control
(C&C) channel [18], and data exfiltration [5]. We use the
malware infection statistics published in 2020 [57] and
probed active addresses from the adopted vantage [66],
[67] to estimate the number of visible victims. We use the
same number of instances to replay public malware traffic
datasets [68], [69] to mimic malware campaigns, which is
similar to the existing study [70].
The malicious traffic is replayed with the background traffic

datasets on the physical testbed simultaneously according to
their original packet rates [41] which is the same as the
existing studies [38], [51], [71]. Specifically, each dataset
contains 12∼15 million packets and the replay lasts 45s
and the first 75% time does not contain malicious traffic
for collecting flow interactions and training the baselines.
Note that, the rates of the encrypted attack flows in our
datasets are only 0.01 ∼ 8.79 Kpps which consume only
0.01% ∼ 0.72% bandwidth. We will show that these stealthy
attacks evade most baselines.

To eliminate the impact of the dataset bias, we also use
12 existing datasets including the Kitsune datasets [19],
the CIC-DDoS2019 datasets [72], and the CIC-IDS2017
datasets [73], which are collected in the real-world. In par-
ticular, the traffic in two CIC datasets [72], [73] lasts 6∼8
hours under multiple attacks, which aims to verify the long-run
performances of HyperVision. Besides, we generate 48 evasion
attack datasets for robustness analysis according to a recent
study [38]. These details can be found in Section VIII-B.

Baselines. We use five state-of-the-art generic malicious
traffic detection methods as baselines:
• Jaqen (sampling based recording and signature based

detection). Jaqen [51] uses Sketches to obtain flow statistics
and applies the threshold based detection. We prototype
Jaqen on the testbed, and adjust the signatures for each
statistic and each attack to obtain the best accuracy.

• FlowLens (sampling based recording and ML based
detection). FlowLens [20] uses sampled flow distribution
and supervised learning, i.e., random forest. We use the
hyper-parameter setting with the best accuracy used in the
paper to retrain the ML model.

• Whisper (flow-level features and ML based detection).
Whisper [38], [74] extracts the frequency domain features
of flows and uses clustering to learn the features. We deploy
Whisper on the physical testbed without modifications and
then retrain the clustering model.

• Kitsune (packet-level features and DL based detection).
Kitsune extracts per-packet features and uses autoencoders
to learn the features which is an unsupervised method [19].
We use its default hyper-parameters and retrain the model.

• DeepLog (event based recording and DL based detection).
DeepLog is a general log analyzer using LSTN RNN [17].
We use the logs of connections for detection and its original
hyper-parameter setting to achieve the best accuracy.
Note that, in the baselines above, we do not include DPI-

based encrypted malicious traffic detection because they are
unable to investigate encrypted payloads [9]. Also, we do not
compare the task-specific detection methods [6], [7] because
they cannot achieve acceptable detection accuracy. Features in
FlowLens, Kitsune, and Whisper are similar to them, e.g., flow
features [7], packet header features [3], and time-series [6].

Metrics. We mainly use AUC (i.e., the area under a receiver
operating characteristic curve) and F1 score because they
are most widely used in the literature [17], [18], [19], [37],
[38], [75], [76]. Also, we use other six metrics to validate
the improvements of HyperVision, which can be found in
Section VIII-B.

Hyper-parameter Selection. We conduct four-fold cross
validation to avoid overfitting and hyper-parameter bias.
Specifically, the datasets are equally partitioned into four
subsets. Each subset is used once as a validation set to tune
the hyper-parameters via the empirical study and the remaining
three subsets are used as testing sets. Finally, four results are
averaged to produce final results. Moreover, our ablation study
shows that the different threshold settings incur at most 5.2%
accuracy loss. Therefore, the hyper-parameter selection has
limited impacts on the detection results.

B. Accuracy Evaluation
Table II summarizes the detection accuracy and the

improvements of HyperVision over the existing methods.
In general, HyperVision achieves average F1 ranging between
0.927 and 0.978 and average AUC ranging between 0.974 and
0.993 on the 80 datasets, which are 35% and 13%
improvements over the best accuracy of the baselines. In
44 datasets, none of the baselines achieves F1 higher than
0.80, which means that they are not effective to detect the
attacks. Due to the page limits, we do not show the failed
detection results of these baselines.

Traditional Brute Force Attacks. First, we measure the
performance of the baselines by using the flooding attacks

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 01,2024 at 09:18:21 UTC from IEEE Xplore. Restrictions apply.

FU et al.: FLOW INTERACTION GRAPH ANALYSIS: UNKNOWN ENCRYPTED MALICIOUS TRAFFIC DETECTION 2981

TABLE III
DETECTION ACCURACY OF HYPERVISION AND THE BASELINES ON TRADITIONAL BRUTE FORCE ATTACKS

Fig. 9. ROC and PRC of HyperVision and all the baselines.

with short flows. Although HyperVision is designed for
encrypted malicious traffic detection, we find that it can also
detect traditional attacks accurately. The results are shown
in Table III. HyperVision has 0.992 ∼ 0.999 AUC and
0.929 ∼ 0.999 F1, which achieves at most 13.4% and 1.3%
improvement of F1 and AUC over the best performance of
the baselines. The ROC and PRC results are illustrated in
Figure 9. According to Figure 9(a) and 9(b), we observe that
HyperVision has less false positives while achieving similar
accuracy. Figure 9(c) and Figure 9(d) show that the PRC of
HyperVision is largely better than the baselines, which means
that it has a higher precision when all methods reach the same
recall.

Second, by comparing HyperVision with Jaqen, we can
see that HyperVision can realize higher accuracy (i.e., a
19.4% F1 improvement) than Jaqen with the best threshold
set manually. That is, the unsupervised method allows
reducing manual design efforts. Moreover, it has 56.3% AUC
improvement over the typical supervised ML based method
(FlowLens). Note that, we assume that HyperVision cannot
acquire labeled datasets for training, which is more realistic.
Also, it outperforms Whisper with 11.6% AUC, which is an
unsupervised detection in high-speed network. We observe
that Kitsune and DeepLog have lower accuracy because they
cannot afford high-speed backbone traffic.

Third, we measure the detection accuracy of probing
vulnerable applications. As shown in Figure 10, we see that
HyperVision can detect the low-rate attacks with 0.920 ∼
0.994 F1 and 0.916 ∼ 0.999 AUC under 6 ∼ 268 attackers
with 17.6 ∼ 97.9 Kpps total bandwidth. It also achieves
at most 46.8% F1 and 27.3% AUC improvements over the
baselines that have a more significant accuracy decrease than
the high-rate attacks. For example, FlowLens only achieves
averagely 0.684 F1, which is only 77% under the high-rate
attacks. Although Jaqen can be deployed on programmable
switches, its thresholds are invalided by the low-rate attacks.
And Whisper is unable to detect the attacks with two datasets.
Moreover, Kitsune and DeepLog cannot detect the attacks
because of the low rate of malicious packets (≤ 1.2%).

The reason why HyperVision can detect the slow probing
while maintaining the similar accuracy to the high-rate attacks
is that the graph preserves flow interaction patterns. Although
the flows from a single attacker are slow, e.g., at least 244 pps,
HyperVision can record and analyze their interaction patterns.
Specifically, each flow in the stealthy attack traffic can be
represented by an edge in the graph, while the vertices in the
graph indicate the addresses generating the traffic. Thus, the
traffic can be captured by identifying vertices with large out-
degrees (i.e., a large number of edges). Moreover, the brute
force attacks validate that our method is effective to capture
the DDoS traffic because it utilizes the short flow aggregation
to construct the edge associated with short flows and avoids
inspecting each short spoofing flow. Besides, the experiment
results also show that the critical vertices denote the addresses
of major active flows, e.g., web servers, DNS servers, and
scanners. Note that, we exclude the results of the baselines
that cannot detect encrypted traffic with lower rates in the
following sections due to the page limits.

Encrypted Flooding Traffic. Figure 11 shows the detection
accuracy under flooding attacks using encrypted traffic.
Generally, HyperVision achieves 0.856 ∼ 0.981 F1 and
0.917 ∼ 0.998 AUC, which are 58.7% and 25.3% accuracy
improvements over the baselines that can detect such attacks.
Specifically, as shown in Figure 11(a) and 11(b), we observe
that HyperVision can accurately detect the link flooding traffic
consists of various encrypted traffic with different parameters.
For instance, it can detect the Crossfire attack using HTTPS
web requests generated by different sizes of botnets [10]

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 01,2024 at 09:18:21 UTC from IEEE Xplore. Restrictions apply.

2982 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 4, AUGUST 2024

Fig. 10. Heatmap of accuracy for probing vulnerabilities.

Fig. 11. Detection accuracy of encrypted flooding traffic.

Fig. 12. Accuracy of encrypted web attack traffic detection.

with at most 0.939 F1. The massive web traffic generated by
bots, which is low-rate (≤ 4Kbps) and encrypted, evades the
detection of Whisper and FlowLens (F1 ≤ 0.8). As shown in
Figure 13(a), HyperVision can detect the attack efficiently by
splitting the botnet clusters into a single connected component
to exclude the interference from the similar benign web traffic,
where the inner layer denotes botnets and the outer denotes
decoy servers.

Moreover, we find that HyperVision can detect low-rate
TCP DoS attacks that use burst encrypted video traffic for
at most 0.995 AUC and 0.938 F1. Although Whisper has
slightly better AUC in some cases, we find that it cannot

Fig. 13. Subgraph with various encrypted malicious traffic.

TABLE IV
DETECTION ACCURACY UNDER VARIOUS EVASION ATTACKS

achieve high accuracy on all scenarios. As a result, it has
only 55.5% AUC in the worse case. Moreover, HyperVision
can aggregate the short flows in the SSH connection injection
attacks and achieves more than 0.95 F1. The attacks exploiting
protocol vulnerabilities realize low-rate packet injection and
evade the detection of FlowLens (i.e., AUC ≤ 0.774, F1 ≤
0.513). Figure 11(c) and 11(d) illustrate that HyperVision can
identify slow and persisted password attempts for the channels
with over 0.881 F1 and 0.917 AUC, which are 1.19 and
1.28 times improvements over FlowLens and Whisper. The
reason is that HyperVision maintains the interaction patterns
of attackers using the graph, e.g., the massive short flows for
login attempts shown as red edges in Figure 13(b).

Encrypted Web Malicious Traffic. Figure 12 presents
the detection accuracy of the encrypted traffic generated by
various web vulnerabilities discovery. HyperVision achieves
0.985 average AUC and 0.957 average F1 (i.e., 2.8% and
75.2% increase compared to Whisper). The flow based
ML detection cannot detect web encrypted malicious traffic
because the traffic has single-flow patterns that are almost
same to benign web access flows. HyperVision can accurately
detect the encrypted web malicious traffic, because, as shown
in Figure 13(c), it captures the traffic from the frequent

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 01,2024 at 09:18:21 UTC from IEEE Xplore. Restrictions apply.

FU et al.: FLOW INTERACTION GRAPH ANALYSIS: UNKNOWN ENCRYPTED MALICIOUS TRAFFIC DETECTION 2983

Fig. 14. HyperVision can detect various encrypted malware traffic.

interactions as the edges associated with long flows, and
identifies the malicious traffic (denoted by red edges)
generated by the attacker (denoted by the green vertex) by
clustering the edges associated with benign web traffic that
are connected to the same critical vertex (denoted by the red
solid vertex).

Encrypted Malware Traffic. We show the detection
accuracy of encrypted malware traffic in Figure 14. Note
that, the encrypted malware traffic is hard to detect for
the baselines because it is slow and persistent. However,
HyperVision accurately detects the malware campaigns with
at least 0.964 AUC and 0.891 F1. Specifically, it captures the
C&C servers of spyware for exfiltration as abnormal critical
vertices that are connected by massive infected hosts in the
graph. As a result, it detects the encrypted malicious traffic
of the malware with at least 0.942 F1. For example, to detect
Sality P2P botnet shown in Figure 13(d), HyperVision collects
the interactions among similar P2P bots, aggregates the
encrypted short flows as edges, and finally clusters the edges
with higher loss than benign interaction patterns. Similarly,
it can capture the static servers of adware, malware component
delivery servers, the infected miner pools as abnormal vertices.
Note that, the low-rate malicious flows (at least 0.814 pps)
are represented as the edges associated with short flows
connected to critical vertices. Meanwhile, the massive long
flows with almost 100% encrypted packet proportion are
represented as the edges associated with long flows to the
vertices. Therefore, a critical vertex connected with the edges
indicates the malware campaign that is significantly different
from benign vertices with large degrees, e.g., benign websites.

Robustness Analysis According to a recent study [38],
we validate the robustness of HyperVision against three typical
evasion strategies: (i) Obfuscation: attackers inject benign TLS
traffic and UDP video traffic into attack traffic. We set the ratio
of malicious packets and benign packets to 1:4, which can
evade most existing detection methods [19], [20]. (ii) Reducing
sending rates: attackers reduce their sending rates by 50%. (iii)
Manipulating traffic features: attackers fake packet length to
mimic the benign flows used in (i). According to the three
strategies, we generate 48 evasion attack datasets based on
16 traditional attacks.

Table IV illustrates that HyperVision incurs negligible
accuracy decrease when detecting the evasion attacks.
In particular, the decreased accuracy is bounded by 6.12%
F1. And the average accuracy decreases incurred by the
three evasion strategies are 0.005%, 0.001%, and 0.005%,
respectively. Therefore, HyperVision is robust against all the
evasion strategies. The reason why these evasion techniques
decrease negligible accuracy is that they only manipulate the
patterns of a single flow. HyperVision can still detect the
evasion attacks by learning the interaction patterns among
various flows.

Detection Accuracy of Other Datasets. We use 12 existing
datasets to eliminate the impact of dataset bias. From Table IX,

we can see that HyperVision achieves 7.8%, 11.0%, 5.1%
F1 improvements over the best accuracy of the baselines on
Kitsune datasets [19], CIC-IDS2017 datasets [73], and CIC-
DDoS2019 datasets [72], respectively. In addition, we validate
the long-run performance of HyperVision, by using the
CIC datasets [72], [73]. Specifically, the experiments show
that HyperVision achieves over 0.95 F1 and 0.99 AUC in
long-run detection (6∼8 hours). The results also verify that
the accumulation of detection errors cannot interfere with
HyperVision, and HyperVision can detect multiple attacks
simultaneously even in the presence of attacks with changed
addresses [73]. Moreover, the memory consumption of the
compact graph is bounded by 15.6 GB.

Other Metrics for Detection Accuracy. We use other six
metrics to evaluate the performance of HyperVision. Figure 15
depicts the results. In general, HyperVision has at least 34.3%,
11.2%, 40.9%, and 9.4% improvements on F2, accuracy,
precision, and recall, respectively. And we conclude that
HyperVision can achieve both high precision and recall (≥
0.96). From the metrics of detection errors, we observe that
HyperVision reduces 4.1 times and 160.1 times EER and FPR
over the existing methods.

Impacts of False Postives. Our experiments show that the
number of false positives (FPs) can be bounded by 41.36 FPs
per minute, which is 10.07, 10.33, and 55.46 times lower
than FlowLens, Jaqen, and Kitsune, respectively. For instance,
when detecting encrypted flooding traffic, the average number
of FPs raised by HyperVision is only 4.39 alarms per minute,
which is 17.39 times lower than the lowest value of the
baselines. The reason why HyperVision rarely rises FPs is
that, it excludes majorities of benign flows in the graph pre-
processing module (see Section V-A), which prevents the
benign traffic from triggering FPs.

In addition, we find that these FPs can be easily filtered
out by analyzing graph features. Specifically, we apply
thresholds on four graph features, i.e., the in- and out-degree
of the source/destination vertices of an edge. In practice,
we manually set the thresholds according to the FPs triggered
by 25% traffic in the datasets. The results show that the
thresholds can filter out 97.00%∼99.99% FPs so that the
number of FPs can be bounded by 1.3 FPs per minute. Thus,
HyperVision does not suffer from the FP issue even if it
utilizes unsupervised learning.

C. Performance Results
Throughput. We truncate the packets to the first 200 bytes

on the physical testbed and increase the sending rates until
the graph construction module reaches maximum throughput.
Figure 16 shows the throughput of the graph construction
and the detection. Figure 16(a) presents the distribution of
average throughput within a 1.0s time window. We observe
that HyperVision constructs the graph for 28.21 Gb traffic
per second. Figure 16(b) presents the maximum throughput
in each time window with all the backbone traffic datasets

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 01,2024 at 09:18:21 UTC from IEEE Xplore. Restrictions apply.

2984 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 4, AUGUST 2024

Fig. 15. Other six metrics for detection accuracy.

used in the experiments. HyperVision achieves 32.43 ∼
39.71 peak throughput on average. Moreover, we measure the
throughput of the graph learning module, which inspects flow
interactions. According to Figure 16(c), we observe that it
can analyze 121.14 Gb traffic per second on average. Note
that, the detection throughput is 4.2 times higher than the
construction so that the detection can analyze the recorded
traffic iteratively to consider the past interaction information.
We observe that the average throughput exhibits a bimodal
distribution. The peak of low throughput (around 75 Gb/s) is
caused by lacking the information on the graph for analyzing
during cold start stages. Figure 16(d) illustrates the throughput
when the performance of the system is stable. We observe
that it achieves 80.6 ∼ 148.9 Gb/s throughput. Note that, the
throughput on Apr. and Jun. datasets is lower because of their
low traffic volume.

Latency. We measure the latency caused by graph
construction and detection. Figure 17(a) presents the PDF
of the maximum latency for constructing each edge within
a 1.0s window. We observe that HyperVision has 1.09s ∼
1.04s average construction latency with an upper bound of
1.93s. The distribution is a significant bimodal one because
the receive side scaling (RSS) on the Intel NIC is unbalanced
on the threads. The light-load threads have only 0.75s latency.
We analyze the composition of the latency in Figure 17(b)
(where the error bar is 10th and 90th percentile) and find
that the flow classification, short flow analysis, and long
flow analysis share 50.95%, 35.03%, and 14.0% latency,
respectively. We measure the average detection latency.
Figure 17(c) shows that the learning module has a 0.83s
latency on average with a 99th percentile of 4.48s. We also
analyze the latency in each step (see Figure 17(d)). We see
that 75.8% of the latency comes from pre-clustering (i.e.,
0.66s on average). However, the pre-clustering step reduces
the processing overhead of the subsequent processing, i.e.,
selecting critical vertex and clustering, for 5.5×10−3s (0.64%)
and 3.4× 10−3s (0.40%).

Resource Consumption. Figure 18(a) presents the memory
usage of HyperVision. Note that, the DPDK huge pages
require 6GB memory and thus we measure the consumption
when the usage reaches 6GB. We observe that the increasing
rate of memory for maintaining the graph is only 13.1 MB/s.
Finally, HyperVision utilizes 1.78 GB memory to maintain
the flow interaction patterns extracted from 2.82 TB ongoing

traffic. HyperVision incurs low memory consumption because
the feature extraction for long flow and short flow aggregation
make the in-memory graph compact which ensures low-
latency detection and long-term recording. Moreover, the
memory consumption of the learning algorithm is 1.452 ∼
1.619 GB. HyperVision can export the graph to disk for
forensic analysis. Figure 18(b) shows the storage used for
recording the first 45s traffic of the MAWI dataset by different
methods, i.e., HyperVision, event based network monitors
(i.e., Suricata [77] and Zeek [22]), and raw packet headers.
We observe that HyperVision achieves 8.99%, 55.7%, 98.1%
storage reduction over the baselines, respectively. Meanwhile,
our analysis shows that HyperVision retains more traffic
information than the existing tools (see Section VII). Thus,
the graph based analysis is more efficient than existing tools.

Benefits of Dimension Reduction. From Figure 17(d),
we observe that the DBSCAN clustering based graph pre-
processing incurs over 96.8% latency which implies the
clustering is the bottleneck of the whole system. Therefore,
we leverage a dimension reduction method to reduce
the overhead of DBSCAN. In particular, we reduce the
dimension of the graph feature from 12 to 2 by using PCA
before conducting the DBSCAN clustering. By this mean,
we significantly reduce the scale of data and thus improve
the detection efficiency [78].

Figure 19 shows the improvements by the dimension
reduction. Particularly, the dimension reduction method
increases the average throughput by 27.34% (i.e., from
121.4 Gb/s to 154.6 Gb/s) on the Jan. 2020 dataset. Also, from
Figure 19(a), we observe that the average detection latency
is 0.292s when enabling PCA, i.e., the dimension reduction
can reduce 64.39% detection latency. Besides, we validate
that applying dimension reduction incurs negligible accuracy
decrease, which can be bounded by 2.3% F1 decrease.

IX. RELATED WORK

Graph Based Anomaly Detection. Graph based structures
have been used for task-specific traffic detection. These
methods heavily rely on DPI and thus cannot be applied
to detect encrypted traffic [6]. Kwon et al. analyzed the
download relationship graph to identify malware download-
ing [79], which is similar to WebWitness [80]. Eshete et al.
constructed HTTP interaction graphs to detect malware static

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 01,2024 at 09:18:21 UTC from IEEE Xplore. Restrictions apply.

FU et al.: FLOW INTERACTION GRAPH ANALYSIS: UNKNOWN ENCRYPTED MALICIOUS TRAFFIC DETECTION 2985

Fig. 16. Throughput of graph construction and detection.

Fig. 17. Latency of graph construction and detection.

Fig. 18. Hardware resource usages of HyperVision.

Fig. 19. Improved throughput and latency by dimension reduction.

resources [13], and Invernizzi et al. used a graph constructed
from plain-text traffic to identify malware infrastructures [81].
Different from these works, HyperVision constructs the
interaction graph without parsing specific application layer
headers and thus achieves task-agnostic encrypted traffic
detection. Note that, the provenance graph based attack
forensic analysis [45], [46] is orthogonal to our traffic
detection.

ML Based Malicious Traffic Detection. ML based
detection can detect zero-day attacks [82] and achieve higher
accuracy than the traditional signature based methods [42],
[83], [84], [85]. For example, Barradas et al. developed
Flowlens to extract flow distribution features on data-plane and

detect attacks by applying random forest [20]. Stealthwatch
detected attacks by analyzing flow features extracted from
NetFlow [1]. Mirsky et al. developed Kitsune to learn the per-
packet features by adopting auto-encoders [19]. Zhou et al.
installed decision tree models on Intel Tofino programmable
switches, enabling line-rate traffic detection [86]. Siracusano et
al. deployed binary neural networks on SmartNICs, and
thus significantly reduced memory copy overhead [87]. All
these methods cannot effectively detect attacks based on
encrypted traffic. For task-specific methods, Nelms et al. [80],
Invernizzi et al. [81], and Bilge et al. [18] detected traffic in
the different stages of malware campaigns by using statistical
ML. Bartos et al. [88] and Tang et al. [37] detect malformed
HTTP request traffic.

Task-Specific Encrypted Traffic Detection. The existing
encrypted traffic detection relies on domain knowledge for
short-term flow-level features [1], [2], [3]. For example,
Zheng et al. leveraged SDN to achieve crossfire attack
detection [16], and Xing et al. designed the primitives for the
programmable switches to detect link flooding attacks [89].
For encrypted malware traffic, Bilge et al. [18] leveraged the
traffic history to detect C&C server, and Tegeler et al.
developed supervised learning using time-scale flow features
extracted from malware binaries [6]. Anderson et al. studies
the feasibility of detecting malware encrypted communication
via malformed TLS headers [7]. To the best of our knowledge,
our HyperVision is the first system that enables unsupervised
detection for the encrypted traffic with unknown patterns.

Encrypted Traffic Classification. HyperVision aims to
identify the malicious behaviors according to encrypted traffic.
It is different from encrypted traffic classifications that decide
if the traffic is generated by certain applications or users [90],
[91], [92], [93]. For instance, Rimmer et al. leveraged DL
for web fingerprint, which de-anonymizes Tor traffic by
classifying encrypted web traffic [94]. Siby et al. showed
that classifying encrypted DNS traffic can jeopardize the
user privacy [31]. Similarly, Bahramali et al. classified the
encrypted traffic of instant messaging applications [95]. Ede et
al. designed semi-supervised learning for mobile applications
fingerprinting [96]. All these classifications are orthogonal to
HyperVision.

X. CONCLUSION

In this paper, we present HyperVision, an ML based
realtime detection system for encrypted malicious traffic with
unknown patterns. HyperVision utilizes a graph to represent
flow interaction patterns, while not requiring prior knowledge
on the traffic. Specifically, HyperVision uses two different
strategies to represent the interaction patterns generated by
short and long flows and aggregates the information of these
flows. We develop an unsupervised graph learning method to
detect the traffic by utilizing the connectivity, sparsity, and
statistical features in the graph. Moreover, we establish an
information theory based analysis framework to demonstrate
that HyperVision preserves near-optimal information of flows
for effective detection. The experiments with 92 real-world
attack traffic datasets demonstrate that HyperVision achieves
at least 0.86 F1 and 0.92 AUC with 0.29s detection latency.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their insightful comments.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 01,2024 at 09:18:21 UTC from IEEE Xplore. Restrictions apply.

2986 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 4, AUGUST 2024

REFERENCES

[1] Cisco. Cisco Encrypted Traffic Analytics. Accessed: May 2022.
[Online]. Available: https://www.cisco.com/c/en/us/solutionsenterprise-
networks/enterprise-network-security/eta.html

[2] E. Papadogiannaki and S. Ioannidis, “A survey on encrypted network
traffic analysis applications, techniques, and countermeasures,” ACM
Comput. Surv., vol. 54, no. 6, p. 123, Jul. 2021.

[3] B. Anderson and D. McGrew, “Identifying encrypted malware traffic
with contextual flow data,” in Proc. ACM Workshop Artif. Intell. Secur.,
Oct. 2016, pp. 35–46.

[4] G. Pellegrino, M. Johns, S. Koch, M. Backes, and C. Rossow,
“Deemon: Detecting CSRF with dynamic analysis and property graphs,”
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2017,
pp. 1757–1771.

[5] K. Thomas et al., “Data breaches, phishing, or malware: Understanding
the risks of stolen credentials,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., Oct. 2017, pp. 1421–1434.

[6] F. Tegeler, X. Fu, G. Vigna, and C. Kruegel, “BotFinder: Finding bots in
network traffic without deep packet inspection,” in Proc. 8th Int. Conf.
Emerg. Netw. Experiments Technol., Dec. 2012, pp. 349–360.

[7] B. Anderson and D. A. McGrew, “Machine learning for encrypted
malware traffic classification: Accounting for noisy labels and non-
stationarity,” in Proc. SIGKDD. 2017, pp. 1723–1732.

[8] M. Javed and V. Paxson, “Detecting stealthy, distributed SSH brute-
forcing,” in Proc. CCS. 2013, pp. 85–96.

[9] G. Gu, J. Zhang, and W. Lee, “BotSniffer: Detecting botnet command
and control channels in network traffic,” in Proc. NDSS, 2008.

[10] M. S. Kang, S. B. Lee, and V. D. Gligor, “The crossfire attack,” in Proc.
IEEE Symp. Secur. Privacy, May 2013, pp. 127–141.

[11] Z. Durumeric, M. Bailey, and J. A. Halderman, “An internet-wide view
of internet-wide scanning,” in Proc. 23rd USENIX Secur. Symp., 2014,
pp. 65–78.

[12] C. Lever, P. Kotzias, D. Balzarotti, J. Caballero, and M. Antonakakis,
“A lustrum of malware network communication: Evolution and insights,”
in Proc. IEEE Symp. Secur. Privacy (SP), May 2017, pp. 788–804.

[13] B. Eshete and V. N. Venkatakrishnan, “DynaMiner: Leveraging offline
infection analytics for on-the-wire malware detection,” in Proc. 47th
Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw. (DSN), Jun. 2017,
pp. 463–474.

[14] X. Feng, C. Fu, Q. Li, K. Sun, and K. Xu, “Off-path TCP exploits
of the mixed IPID assignment,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., Oct. 2020, pp. 1323–1335.

[15] A. Oest et al., “Sunrise to sunset: Analyzing the end-to-end life cycle
and effectiveness of phishing attacks at scale,” in Proc. 29th USENIX
Security Symp., 2020, pp. 2039–2056.

[16] J. Zheng, Q. Li, G. Gu, J. Cao, D. K. Yau, and J. Wu, “Realtime DDOS
defense using COTS SDN switches via adaptive correlation analysis,”
IEEE Trans. Inf. Forensics Security, vol. 13, pp. 1838–1853, 2018.

[17] M. Du, F. Li, G. Zheng, and V. Srikumar, “DeepLog: Anomaly detection
and diagnosis from system logs through deep learning,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Oct. 2017, pp. 1285–1298.

[18] L. Bilge, D. Balzarotti, W. Robertson, E. Kirda, and C. Kruegel,
“Disclosure: Detecting botnet command and control servers through
large-scale NetFlow analysis,” in Proc. 28th Annu. Comput. Secur. Appl.
Conf., Dec. 2012, pp. 129–138.

[19] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune:
An ensemble of autoencoders for online network intrusion detection,”
in Proc. Netw. Distrib. Syst. Secur. Symp., 2018, pp. 1–15.

[20] D. Barradas, N. Santos, L. Rodrigues, S. Signorello, F. M. V. Ramos,
and A. Madeira, “FlowLens: Enabling efficient flow classification for
ML-based network security applications,” in Proc. Netw. Distrib. Syst.
Secur. Symp., 2021, pp. 1–18.

[21] Cisco. Cisco Systems NetFlow Services Export Version 9, document RFC
3954, May 2022, doi: 10.17487/RFC3954.

[22] Zeek. An Open Source Network Security Monitoring Tool. Accessed
May 2022. [Online]. Available: https://zeek.org/

[23] R. Zamir, “A proof of the Fisher information inequality via a data
processing argument,” IEEE Trans. Inf. Theory, vol. 44, no. 3,
pp. 1246–1250, May 1998.

[24] Intel. Data Plane Development Kit. Accessed: May 2022. [Online].
Available: https://www.dpdk.org/

[25] H. L. J. Bijmans, T. M. Booij, and C. Doerr, “Just the tip of the iceberg:
Internet-scale exploitation of routers for cryptojacking,” in Proc. CCS.
2019, pp. 449–464.

[26] Cisco. Cisco SPAN. Accessed: May 2022. [Online]. Available:
https://www.cisco.com/c/en/us/support/docs/swit-ches/catalyst-6500-
series-switches/10570-41.html

[27] M. Zhang et al., “Poseidon: Mitigating volumetric DDoS attacks
with programmable switches,” in Proc. Netw. Distrib. Syst. Secur.
Symp., 2020, pp. 1–18.

[28] Q. Li et al., “Dynamic network security function enforcement via joint
flow and function scheduling,” IEEE Trans. Inf. Forensics Security,
vol. 17, pp. 486–499, 2022.

[29] Q. Li, Y. Liu, Z. Liu, P. Zhang, and C. Pang, “Efficient forwarding
anomaly detection in software-defined networks,” IEEE Trans. Parallel
Distrib. Syst., vol. 32, no. 11, pp. 2676–2690, Nov. 2021.

[30] D. Rupprecht, K. Kohls, T. Holz, and C. Popper, “Call me maybe:
Eavesdropping encrypted LTE calls with ReVoLTE,” in Proc. 29th
USENIX Secur. Symp., 2020, pp. 73–88.

[31] S. Siby, M. Juarez, C. Diaz, N. Vallina-Rodriguez, and C. Troncoso,
“Encrypted DNS =⇒ privacy? A traffic analysis perspective,” in Proc.
Netw. Distrib. Syst. Secur. Symp., 2020, pp. 1–19.

[32] M. Jonker, A. King, J. Krupp, C. Rossow, A. Sperotto, and A. Dainotti,
“Millions of targets under attack: A macroscopic characterization of the
DoS ecosystem,” in Proc. Internet Meas. Conf., Nov. 2017, pp. 100–113.

[33] R. Xie et al., “Disrupting the SDN control channel via shared links:
Attacks and countermeasures,” IEEE/ACM Trans. Netw., vol. 30, no. 5,
pp. 2158–2172, Oct. 2022.

[34] J. Cao, M. Xu, Q. Li, K. Sun, and Y. Yang, “The LOFT attack:
Overflowing SDN flow tables at a low rate,” IEEE/ACM Trans. Netw.,
vol. 31, no. 3, pp. 1416–1431, Jun. 2023.

[35] X. Feng et al., “PMTUD is not panacea: Revisiting IP fragmentation
attacks against TCP,” in Proc. NDSS, 2022, pp. 24–28.

[36] X. Feng et al., “Off-path network traffic manipulation via revitalized
ICMP redirect attacks,” in Proc. 31st USENIX Secur. Symp., 2022,
pp. 2619–2636.

[37] R. Tang et al., “ZeroWall: Detecting zero-day web attacks through
encoder–decoder recurrent neural networks,” in Proc. IEEE INFOCOM
Conf. Comput. Commun., Jul. 2020, pp. 2479–2488.

[38] C. Fu, Q. Li, M. Shen, and K. Xu, “Realtime robust malicious traffic
detection via frequency domain analysis,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., Nov. 2021, pp. 3431–3446.

[39] IETF. Specification of the IP Flow Information Export (IPFIX) Protocol,
document RFC 7011, Accessed: May 2022. [Online]. Available:
https://www.rfc-editor.org/info/rfc7011

[40] C. Estan and G. Varghese, “New directions in traffic measurement and
accounting: Focusing on the elephants, ignoring the mice,” ACM Trans.
Comput. Syst., vol. 21, no. 3, pp. 270–313, 2003.

[41] WIDE. MAWI Working Group Traffic Archive. Accessed: May 2022.
[Online]. Available: http://mawi.wide.ad.jp/mawi/

[42] Z. Zhao, H. Sadok, N. Atre, J. C. Hoe, V. Sekar, and J. Sherry,
“Achieving 100 Gbps intrusion prevention on a single server,” in Proc.
OSDI, 2020, pp. 1083–1100.

[43] Z. Qian and Z. M. Mao, “Off-path TCP sequence number inference
attack—How firewall middleboxes reduce security,” in Proc. IEEE Symp.
Secur. Privacy, May 2012, pp. 347–361.

[44] Z. Wang et al., “SymTCP: Eluding stateful deep packet inspection with
automated discrepancy discovery,” in Proc. Netw. Distrib. Syst. Secur.
Symp., 2020, pp. 1–17.

[45] J. Zeng, Z. L. Chua, Y. Chen, K. Ji, Z. Liang, and J. Mao, “WATSON:
Abstracting behaviors from audit logs via aggregation of contextual
semantics,” in Proc. NDSS, 2021, pp. 1–18.

[46] R. Yang, S. Ma, H. Xu, X. Zhang, and Y. Chen, “UISCOPE:
Accurate, instrumentation-free, and visible attack investigation for GUI
applications,” in Proc. Netw. Distrib. Syst. Secur. Symp., 2020, pp. 1–18.

[47] Cisco. Network as a Security Sensor Threat Defense With Full NetFlow.
Accessed: May 2022. [Online]. Available: https://www.cisco.com/c/en/
us/solutions/collateral/enterprise-networks/enterprise-network-security/
white-paper-c11-736595.pdf

[48] J. Gan and Y. Tao, “DBSCAN revisited: Mis-claim, un-fixability, and
approximation,” in Proc. SIGMOD. 2015, pp. 519–530.

[49] M. R. Garey, D. S. Johnson, and L. Stockmeyer, “Some simplified
NP-complete problems,” in Proc. 6th Annu. ACM Symp. Theory
Comput., 1974, pp. 47–63.

[50] Microsoft. A Theorem Prover From Microsoft Research. Accessed:
May 2022. [Online]. Available: https://github.com/Z3Prover/z3

[51] Z. Liu et al., “Jaqen: A high-performance switch-native approach for
detecting and mitigating volumetric DDoS attacks with programmable
switches,” in Proc. 30th USENIX Secur. Symp., 2021, pp. 3829–3846.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 01,2024 at 09:18:21 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.17487/RFC3954

FU et al.: FLOW INTERACTION GRAPH ANALYSIS: UNKNOWN ENCRYPTED MALICIOUS TRAFFIC DETECTION 2987

[52] PcapPlusPlus. A C++ Library for Capturing, Parsing and Crafting
of Network Packets. Accessed: May 2022. [Online]. Available:
https://pcapplusplus.github.io/

[53] Mlpack. Mlpack: Open Source Machine Learning Library. Accessed:
May 2022. [Online]. Available: https://www.mlpack.org/

[54] P. Richter and A. Berger, “Scanning the scanners: Sensing the internet
from a massively distributed network telescope,” in Proc. Internet Meas.
Conf., Oct. 2019, pp. 144–157.

[55] D. Kopp, M. Wichtlhuber, I. Poese, J. Santanna, O. Hohlfeld, and
C. Dietzel, “DDoS hide & seek: On the effectiveness of a booter services
takedown,” in Proc. Internet Meas. Conf., Oct. 2019, pp. 65–72.

[56] R. Miao, R. Potharaju, M. Yu, and N. Jain, “The dark menace:
Characterizing network-based attacks in the cloud,” in Proc. Internet
Meas. Conf., Oct. 2015, pp. 169–182.

[57] Kaspersky. Kaspersky Security Bulletin 2020. Statistics. Accessed:
May 2022. [Online]. Available: https://go.kaspersky.com/rs/802-IJN-
240/images/KSB_statistics_2020_en.pdf

[58] A. Kuzmanovic and E. W. Knightly, “Low-rate TCP-targeted denial of
service attacks: The shrew vs. the mice and elephants,” in Proc. Conf.
Appl., Technol., Architectures, Protocols Comput. Commun., Aug. 2003,
pp. 75–86.

[59] Y. Cao, Z. Qian, Z. Wang, T. Dao, S. V. Krishnamurthy, and
L. M. Marvel, “Off-path TCP exploits: Global rate limit considered
dangerous,” in Proc. 25th USENIX Secur. Symp., 2016, pp. 209–225.

[60] Z. Durumeric, E. Wustrow, and J. A. Halderman, “ZMap: Fast internet-
wide scanning and its security applications,” in Proc. USENIX Secur.,
2013, pp. 605–620.

[61] X. Luo and R. K. C. Chang, “On a new class of pulsing denial-of-service
attacks and the defense,” in Proc. NDSS, 2005, pp. 1–19.

[62] X. Feng, Q. Li, K. Sun, C. Fu, and K. Xu, “Off-path TCP hijacking
attacks via the side channel of downgraded IPID,” IEEE/ACM Trans.
Netw., vol. 30, no. 1, pp. 409–422, Feb. 2022.

[63] E. Liu, A. Nakanishi, M. Golla, D. Cash, and B. Ur, “Reasoning
analytically about password-cracking software,” in Proc. IEEE Symp.
Secur. Privacy (SP), May 2019, pp. 380–397.

[64] R. Merget et al., “Scalable scanning and automatic classification of TLS
padding Oracle vulnerabilities,” in Proc. 28th USENIX Secur. Symp.,
2019, pp. 1029–1046.

[65] J. Caballero, C. Grier, C. Kreibich, and V. Paxson, “Measuring pay-
per-install: The commoditization of malware distribution,” in Proc. 20th
USENIX Secur. Symp., 2011, pp. 1–16.

[66] H-Electric. Internet Backbone and Colocation Provider. Accessed:
May 2022. [Online]. Available: http://he.net/

[67] R. NCC. The RIPE NCC is Building the Largest Internet Measurement
Network Ever Made. Accessed: May 2022. [Online]. Available:
https://atlas.ripe.net/

[68] CIC. Canadian Institute for Cybersecurity Datasets. Accessed:
May 2022. [Online]. Available: https://www.unb.ca/cic/datasets/
index.html

[69] Stratosphere. Real Malware Traffic Captures. Accessed: May 2022.
[Online]. Available: https://www.strato-sphereips.org/datasets-overview

[70] A. Nappa, Z. Xu, M. Z. Rafique, J. Caballero, and G. Gu, “CyberProbe:
Towards internet-scale active detection of malicious servers,” in Proc.
Netw. Distrib. Syst. Secur. Symp., 2014.

[71] G. Li et al., “Enabling performant, flexible and cost-efficient DDoS
defense with programmable switches,” IEEE/ACM Trans. Netw., vol. 29,
no. 4, pp. 1509–1526, Aug. 2021.

[72] CIC. DDoS Evaluation Datasets (CIC-DDoS2019). Accessed:
May 2022. [Online]. Available: https://www.unb.ca/cic/datasets/ddos-
2019.html

[73] CIC. Intrusion Detection Evaluation Datasets (CIC-IDS2017).
Accessed: May 2022. [Online]. Available: https://www.unb.
ca/cic/datasets/ids-2017.html

[74] C. Fu, Q. Li, M. Shen, and K. Xu, “Frequency domain feature based
robust malicious traffic detection,” IEEE/ACM Trans. Netw., vol. 31,
no. 1, pp. 452–467, Feb. 2023.

[75] S. Zhu et al., “You do (not) belong here: Detecting DPI evasion
attacks with context learning,” in Proc. 16th Int. Conf. Emerg. Netw.
EXperiments Technol., Nov. 2020, pp. 183–197.

[76] J. Holland, P. Schmitt, N. Feamster, and P. Mittal, “New directions in
automated traffic analysis,” in Proc. CCS. 2021, pp. 3366–3383.

[77] Suricata. An Open Source Threat Detection Engine. Accessed:
May 2022. [Online]. Available: https://suricata-ids.org/

[78] C. Fu, Q. Li, and K. Xu, “Detecting unknown encrypted malicious traffic
in real time via flow interaction graph analysis,” in Proc. Netw. Distrib.
Syst. Secur. Symp., 2023, pp. 1–18.

[79] B. J. Kwon, J. Mondal, J. Jang, L. Bilge, and T. Dumitras, “The dropper
effect: Insights into malware distribution with downloader graph
analytics,” in Proc. CCS. 2015, pp. 1118–1129.

[80] T. Nelms, R. Perdisci, M. Antonakakis, and M. Ahamad, “WebWitness:
Investigating, categorizing, and mitigating malware download paths,” in
Proc. 24th USENIX Secur. Symp., 2015, pp. 1025–1040.

[81] L. Invernizzi et al., “Nazca: Detecting malware distribution in large-scale
networks,” in Proc. Netw. Distrib. Syst. Secur. Symp., 2014, pp. 23–26.

[82] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM Comput. Surv., vol. 41, no. 3, pp. 1–58, Jul. 2009.

[83] C. Fu, Q. Li, K. Xu, and J. Wu, “Point cloud analysis for ML-based
malicious traffic detection: Reducing majorities of false positive alarms,”
in Proc. CCS, 2023, pp. 1005–1019.

[84] Y. Qing et al., “Low-quality training data only? A robust framework for
detecting encrypted malicious network traffic,” in Proc. Netw. Distrib.
Syst. Secur. Symp., 2024, pp. 1–18.

[85] P. Li et al., “Learning from limited heterogeneous training data: Meta-
learning for unsupervised zero-day web attack detection across web
domains,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Nov. 2023, pp. 1020–1034.

[86] G. Zhou, Z. Liu, C. Fu, Q. Li, and K. Xu, “An efficient design of
intelligent network data plane,” in Proc. 32nd USENIX Secur. Symp.,
2023, pp. 1–18.

[87] G. Siracusano et al., “Re-architecting traffic analysis with neural network
interface cards,” in Proc. 19th USENIX Symp. Netw. Syst. Design
Implement. (NSDI), 2022, pp. 513–533.

[88] K. Bartos, M. Sofka, and V. Franc, “Optimized invariant representation
of network traffic for detecting unseen malware variants,” in Proc. 25th
USENIX Secur. Symp., 2016, pp. 807–822.

[89] J. Xing, W. Wu, and A. Chen, “Ripple: A programmable, decentralized
link-flooding defense against adaptive adversaries,” in Proc. 30th
USENIX Secur. Symp., 2021, pp. 3865–3880.

[90] M. Shen, J. Zhang, L. Zhu, K. Xu, and X. Du, “Accurate decentralized
application identification via encrypted traffic analysis using graph
neural networks,” IEEE Trans. Inf. Forensics Security, vol. 16,
pp. 2367–2380, 2021.

[91] M. Shen, J. Zhang, L. Zhu, K. Xu, and X. Du, “Subverting website
fingerprinting defenses with robust traffic representation,” in Proc. 32nd
USENIX Secur. Symp., 2023, pp. 607–624.

[92] Q. Yin et al., “An automated multi-tab website fingerprinting attack,”
IEEE Trans. Dependable Secure Comput., vol. 19, no. 6, pp. 3656–3670,
Nov. 2022.

[93] X. Deng et al., “Robust multi-tab website fingerprinting attacks in the
wild,” in Proc. IEEE Symp. Secur. Privacy, May 2023, pp. 1005–1022.

[94] V. Rimmer, D. Preuveneers, M. Juarez, T. Van Goethem, and W. Joosen,
“Automated website fingerprinting through deep learning,” in Proc.
NDSS, 2018, pp. 1–15.

[95] A. Bahramali, R. Soltani, A. Houmansadr, D. Goeckel, and D. Towsley,
“Practical traffic analysis attacks on secure messaging applications,” in
Proc. NDSS, 2020, pp. 1–18.

[96] T. Van Ede et al., “Flowprint: Semi-supervised mobile-app fingerprinting
on encrypted network traffic,” in Proc. NDSS, 2020, pp. 1–18.

Chuanpu Fu is currently pursuing the Ph.D. degree with Tsinghua University.
His research interests include machine learning for security and network
security.

Qi Li (Senior Member, IEEE) received the Ph.D. degree from Tsinghua
University. He is currently an Associate Professor with the Institute for
Network Sciences and Cyberspace, Tsinghua University. His research interests
include internet and cloud security, mobile security, and big data security. He is
an Editorial Board Member of IEEE TRANSACTIONS ON DEPENDABLE AND
SECURITY COMPUTING.

Ke Xu (Fellow, IEEE) received the Ph.D. degree from the Department of
Computer Science and Technology, Tsinghua University. He is currently a
Full Professor with Tsinghua University. His research interests include next-
generation internet, blockchain systems, the Internet of Things, and network
security. He serves as the Steering Committee Chair for IEEE/ACM IWQoS
and he has guest-edited several special issues for IEEE and Springer journals.
He is a member of ACM.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on September 01,2024 at 09:18:21 UTC from IEEE Xplore. Restrictions apply.

