
Point Cloud Analysis for ML-Based Malicious Traffic Detection:
Reducing Majorities of False Positive Alarms

Chuanpu Fu

Tsinghua University

Beijing, China

Qi Li

Tsinghua University

Beijing, China

Ke Xu

Tsinghua University

Beijing, China

Jianping Wu

Tsinghua University

Beijing, China

ABSTRACT
As an emerging security paradigm, machine learning (ML) based

malicious traffic detection is an essential part of automatic defense

against network attacks. Powered by dedicated traffic features, the

ML based methods can detect various sophisticated attacks, in

particular capturing zero-day attacks, which cannot be achieved

by the traditional non-ML methods. However, false positive alarms

raised by these advanced ML methods become the major obstacle to

real-world deployment. These methods require experts to manually

analyze false positives, which incurs significant labor costs. Thus, it

is vital that we can reduce such false positives without heavyweight

manual investigations.

In this paper, we propose pVoxel, an unsupervised method that

identifies false positives for existing ML based traffic detection sys-

tems without requiring any prior knowledge on the alarms. To

effectively process each alarm, pVoxel treats the traffic feature vec-

tor associated with the alarm as a point in the traffic feature space,

and utilizes point cloud analysis to capture the topological features

among the points for classifying the alarms. In particular, we ag-

gregate the points into voxels, i.e., high-dimensional cubes, which

allows us to develop an unsupervised method to identify the voxels

indicating false positives according to their density features. Our

experiments with 75 real-world datasets demonstrate that pVoxel
can effectively reduce 95.55% false positives for 11 state-of-the-art

traffic detection methods under various settings. Meanwhile, pVoxel
can handle 201.10 thousand alarms per second, which demonstrates

that it can achieve efficient alarm processing.

CCS CONCEPTS
• Security and privacy → Intrusion detection systems.

KEYWORDS
Machine learning; malicious traffic detection; point cloud analysis

ACM Reference Format:
Chuanpu Fu, Qi Li, Ke Xu, and Jianping Wu. 2023. Point Cloud Analysis

for ML-Based Malicious Traffic Detection: Reducing Majorities of False

Positive Alarms . In Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’23), November 26–30, 2023,
Copenhagen, Denmark. ACM, New York, NY, USA, 15 pages. https://doi.org/

10.1145/3576915.3616631

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

CCS ’23, November 26–30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0050-7/23/11.

https://doi.org/10.1145/3576915.3616631

1 INTRODUCTION
Machine learning (ML) basedmalicious traffic detection is an emerg-

ing security paradigm, which identifies attack traffic by learning

the features of traffic [11]. It is essential for detecting various so-

phisticated attacks [7, 31, 38, 76, 81, 98] and compensates for the

unknown attack (i.e., zero-day attacks [30, 58]) detection capabili-

ties of the traditional rule based detection [79, 90, 93, 96].

However, false positive (FP) alarms [1], i.e., the alarms trig-

gered by benign traffic, significantly plague these ML based de-

tection systems. For example, in a network with terabit-scale traf-

fic [30, 31, 98], millions of benign flows may trigger a huge number

of FPs [4]. On the other hand, when cooperating with defense sys-

tems [53, 89, 90, 96] to filter out attack traffic, FPs, as high-cost

errors, incur collateral impacts on benign traffic [4, 77]. Moreover,

existing studies show that FP alarms may reach 99% [1], which has

hindered the real-world deployment of ML based detection [46].

Thus, it is vital for ML based detection systems to effectively handle

such false positives [77].

The existing studies reduce FPs by applying retraining [23, 24]

or whitelists [10, 81]. Table 1 summarizes the drawbacks of these

methods. Overall, these methods require a huge effort from human

experts to identify majorities of FPs. For example, the retraining

methods require manually identifying FPs and including them in

the training set to retrain models [23, 24], while the whitelist meth-

ods craft fixed rules to exclude similar FPs according to manually

identified FPs [81]. However, it is almost impossible to manually

identify the FPs [1, 4, 77] due to the high number of alarms [1, 84].

In addition, these methods merely reduce the FP alarms that are

similar to the manually identified FP alarms but cannot handle

unforeseen FP alarms that cannot be identified by experts.

In this paper, we set out to automatically identify FPs among

the massive alarms without requiring human investigations. We

capture these FPs by identifying the distinct distribution of the

corresponding malicious traffic features in the traffic feature space.

Specifically, benign traffic features associated with FPs are gen-

erated by diverse benign user behaviors, which are sparsely dis-

tributed in the feature space [27]. In contrast, flows generated by

attack tools are similar and have densely distributed traffic features,

which are associated with true positives (TPs) [31]. Thus, we can

utilize the topological features that capture the distinct densities to

differentiate FPs and TPs.

We develop pVoxel, a system that aims to automatically identify

FPs for ML based traffic detection systems. To achieve this, pVoxel
treats the feature vector associated with each alarm as a point

in the traffic feature space. Particularly, it leverages point cloud

analysis [66] to capture the topological features among the points,

and learns the features in an unsupervised manner, which allows

pVoxel to identify FPs without any prior knowledge (e.g., manually

1005

https://orcid.org/0000-0003-4568-6125
https://orcid.org/0000-0001-8776-8730
https://orcid.org/0000-0003-2587-8517
https://orcid.org/0000-0001-6675-4532
https://doi.org/10.1145/3576915.3616631
https://doi.org/10.1145/3576915.3616631
https://doi.org/10.1145/3576915.3616631
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3576915.3616631&domain=pdf&date_stamp=2023-11-21

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Chuanpu Fu, Qi Li, Ke Xu, and Jianping Wu

Table 1: Comparison with existing FP reduction methods.
Properties \ Methods Retraining Whitelist pVoxel

Required

Resources

Human Experts Required Required

Not

Required

Training Datasets Required Not Req.

Testing Datasets Not Req. Required

Benign IP Lists Not Req. Required

ML Models Required Not Req.

Known

Issues

Forgetting [24] With Without

Without

Evasion [68] Without With

Runtime

Performance

Low Labor Costs × × ✓
High Efficiency × × ✓
Low Latency × × ✓

Unforeseen FPs × × ✓

identified FPs [4]). By this way, pVoxel does not interfere with

model training and thus avoids the catastrophic forgetting issue

incurred by retraining [24], i.e., models forget how to detect attacks

after retraining. Moreover, pVoxel does not rely on the testing set

information (e.g., benign IP addresses [81]) that is required by the

traditional whitelist methods, because they reduce FPs according to

IP addresses instead of traffic features. Besides, point cloud analysis

can efficiently extract the topological features [66], which allows

pVoxel to handle a large number of alarms with low latency.

To efficiently perform the point cloud analysis, we extend tradi-

tional voxel analysis in the 3D space [33, 52] and design a three-step

approach that achieves voxel analysis in the high-dimensional traf-

fic feature space. First, we normalize the feature vectors to construct

points and use a voxel to represent the points within a cube in the

high-dimensional feature space. Meanwhile, we identify isolated

points that denote the FPs triggered by infrequent benign traffic

patterns. Notably, a voxel can represent many points and thus sig-

nificantly reduces the processing overhead. Second, we utilize a

community to represent a group of adjacent voxels, which further

reduces the overhead. Third, we extract density features for each

community and utilize unsupervised learning to detect the commu-

nities with significantly high densities that denote TPs triggered

by massive attack flows with similar traffic features. The alarms

denoted by the rest of the communities are labeled as FPs.

Furthermore, we develop a stochastic geometry model [20, 78] to

prove the effectiveness of pVoxel. It models the location of the points

in the traffic feature space and aims to obtain the expected density

of the points represented by a voxel. We theoretically prove that the

features of traffic generated by attack tools exhibit dense distribu-

tions, which will be represented by the voxels with high densities.

We show that the features of the traffic generated by diverse benign

user behaviors illustrate sparse distributions, which are captured by

the voxels denoting FPs with low densities. Therefore, pVoxel can
effectively classify the alarms into TPs and FPs according to the den-

sity features of the voxels. We provide several theoretical bounds on

the density for five typical traffic features [7, 10, 30, 76, 98], which

lay the foundation of efficient FP reduction.

We prototype pVoxel with NVIDIA’s CUDA parallel computing

platform for GPUs [62]. To extensively evaluate the performance

of pVoxel, we prototype 11 state-of-the-art traffic detection sys-

tems including flow based [7, 76], packet based [38, 58], frequency

based [30, 32], and graph based methods [31]. We replay 75 traffic

0 100 200 300 400 500 600 700 800
Time [s]

0.0
1.0
2.0
3.0
4.0
5.0

FP
R

 [%
]

RF (0.52%) SVM (0.19%)

(a) False Positive Rate (FPR).

0 100 200 300 400 500 600 700 800
Time [s]

0
30
60
90

120
150
180

N
um

. F
Ps

 [F
P/

s]

RF (52.57 FP/s) SVM (17.87 FP/s)

(b) Number of FPs.

Figure 1: Benchmark FPR and the number of FPs.

datasets collected from eight different networks on a real-world

testbed [16, 17, 30–32, 58, 98] and obtain real FP alarms. The ex-

periment results illustrate that pVoxel can reduce 95.55% FPs on

average without any prior knowledge. Meanwhile, the side-effect

of TPR decrease is only 2.62%. Moreover, pVoxel is able to increase

14.67% AUC, and significantly improves the performance with re-

gard to seven other widely used accuracy metrics. Our experiments

also demonstrate that pVoxel reduces 5.05 times FPs over the tra-

ditional retraining methods. In particular, pVoxel is robust to vari-

ous ML models with many hyper-parameter settings. Furthermore,

pVoxel achieves over 201.10 thousand alarms per second processing

throughput with an average latency of 0.77s.

In summary, the contributions of our paper are five-fold:

• We propose pVoxel, the first voxel based point cloud analysis
that realizes generic FP reduction for traffic detection.

• We utilize voxels, which are extended from the 3D physical

space, to enable point cloud analysis in the high-dimensional

traffic feature space for efficient FP processing.

• We develop a community based density analysis algorithm

that represents adjacent voxels as communities and identifies

FPs by learning density features.

• We develop a theoretical analysis framework established by

the stochastic geometry to prove the effectiveness of pVoxel.
• Weprototype pVoxelwith CUDA and use the extensive exper-

iments with various real-world FPs to validate its accuracy

and efficiency.

We release the source code of pVoxel [65]. The rest of the paper is
organized as follows: Section 2 presents problem statement and the

threat model. Section 3 presents the motivation and the high-level

design of pVoxel. In section 4, we describe the detailed designs.

In Section 5, we conduct the theoretical analysis. In Section 6, we

experimentally evaluate the performances. Section 7 discusses the

practicality of pVoxel. Section 8 reviews related works. In Section 9,

we conclude this paper.

2 PROBLEM STATEMENT & THREAT MODEL
2.1 Problem Statement
The goal of the paper is to identify FPs without any prior knowledge,

which is different from the existingmethods (i.e., retraining [24] and

whitelists [81]) that use manually identified FPs to reduce similar

foreseeable FPs. In particular, manually identifying even a small

portion of FPs raised by traffic detection systems will consume

huge manual labor due to the large number of FPs. We establish

benchmarks by using Random Forest and SVM to classify the benign

traffic in MAWI backbone network traffic datasets [88] (Jan. 2020)

and NTP amplification attack traffic [26] according to the extracted

CICFlowMeter features [15], which achieve over 99.93% precision

1006

Point Cloud Analysis for ML-Based Malicious Traffic Detection:
Reducing Majorities of False Positive Alarms CCS ’23, November 26–30, 2023, Copenhagen, Denmark

−200 −150 −100 −50 0 50 100 150 200
t-SNE Visualization of Traffic Feature Space

−150

−100

−50

0

50

100

150

200
Isolated Points: 44 FPs

Sparse Cluster: 72 FPs

FP (1,000)
TP (1,000)

(a) SYN Flooding Attack.

−200 −150 −100 −50 0 50 100 150 200
t-SNE Visualization of Traffic Feature Space

−150

−100

−50

0

50

100

150

200

Dense Cluster: 998 TPs

FP (1,000)
TP (1,000)

(b) NTP Amplification Attack.

−100 −50 0 50 100 150 200 250
t-SNE Visualization of Traffic Feature Space

−200

−100

0

100

200

999 TPs

180 FPs

FP (1,000)
TP (1,000)

(c) SQL Injection Attack.

−100 −50 0 50 100 150 200 250
t-SNE Visualization of Traffic Feature Space

−200

−100

0

100

200

999 TPs

63 FPs

FP (1,000)
TP (1,000)

(d) Link Flooding Attack.

Figure 2: Scatter of TPs and FPs from different datasets.

and recall. Figure 1 depicts the number of FPs and FPR. We observe

that due to the large number of flows (806.43M flows per day [88]), a

0.19% negligible FPR that is lower than state-of-the-art methods [7,

30, 58, 98] will result in 1.54 million FPs per day. It is obvious that

a small number of experts cannot cope with such massive FPs.

To achieve practical FP identification for different ML based

detection systems in the real world, we develop pVoxel achieving
the following goals.

(1) Black-Box Detection. pVoxel should not obtain any informa-

tion about ML based traffic detection systems, including ML

algorithms, model parameters, and training sets, which is a real-

istic setting for many commercial closed-source security tools,

e.g., Cisco ETA [18]. Notably, traditional retraining methods

are impractical under this restriction as they add the manually

identified FPs into training sets and retrain theMLmodels based

on original parameters [24].

(2) Unknown Testing Sets. pVoxel should not obtain any prior

knowledge on testing sets, for instance, the benign IP addresses.

Note that, it is infeasible to apply the traditional whitelist meth-

ods under this restriction, which verify if IP addresses that

frequently trigger FPs are held by legitimate users (e.g., employ-

ees of Apple Inc.) [81] or reputable ASes [10], and then apply

IP filtering rules to constrain the FPs. Besides, IP whitelists can

be exploited to launch evasion attacks by IP spoofing [28].

In the nutshell, pVoxel should identify FPs only according to

the feature vectors associated with the detected traffic and be ap-

plicable to various detection methods. Thus, it can identify FPs

raised in testing phases without interference with model training

though it can be integrated into training pipelines of detection

methods. Moreover, pVoxel should realize efficient FP identification

with low latency. These issues cannot be addressed by the existing

methods [10, 23, 24, 81].

2.2 Threat Model
This paper aims to develop an FP identificationmethod forML based

malicious traffic detection (i.e., pVoxel) that can be integrated into

the existing Security Information and Event Management (SIEM)

systems [3], which are widely deployed in Security Operation Cen-

ters (SOCs) to manage and visualize the alarms produced by various

security tools [1] (e.g., host and network based IDSes [23, 30, 58]).

Similar to the threat models in the existing traffic detection

studies [7, 30, 31, 58], we consider that an SOC operates various ML

based malicious traffic detection systems according to the Internet

traffic replicated by different routers via port mirroring (e.g., Cisco

SPAN [19]). Upon receiving the replicated traffic, these systems

extract one traffic feature vector for one flow (e.g., flow completion

time [98]) or for one packet (e.g., packet length [38]), and utilize

ML models to classify whether the feature vectors denote benign

or malicious traffic [10, 38, 98]. Once detection systems classify

feature vectors as malicious ones, they send the feature vectors to

the SIEM to trigger alarms that may be either TPs or FPs [1, 46].

The FP identification method takes a batch of the alarms as input,

for instance, the alarms within 20 seconds, and classifies each alarm

as TP or FP according to the associated feature vectors. Finally,

it assigns high priority to the TPs through the SIEM that allows

SOC operators to instantly respond to attack traffic [84]. Moreover,

similar to the existing studies [12, 28, 31], we consider that attackers

may launch evasion attacks (e.g., IP spoofing [54, 61]).

3 DESIGNS OF PVOXEL
3.1 Key Observations
In Section 2.1, we show that it is infeasible for experts to identify

FPs by analyzing individual alarms. However, it is still possible

to identify the FPs by utilizing the relationship among the alarms.

Specifically, we observe that feature vectors associated with TPs ex-

hibit dense distributions, while the ones associated with FPs exhibit

sparse distributions. Figure 2 shows the scatter plots corresponding

to randomly sampled flow feature vectors associated with equal

amounts of FPs and TPs. We observe that FPs are mainly located in

the low-density regions that contain sparse clusters and isolated

points, since diverse benign user behaviors generate various flows

with different flow features. In contrast, TPs are represented by

dense clusters in the high-density regions because malicious flows

are normally generated by tools [25, 26, 28, 29, 42] that generate

many flows with similar flow features [12, 28]. Thus, we can classify

alarms into FPs and TPs according to the distinct density features

in the traffic feature space.

3.2 Overview of pVoxel
In this paper, we propose pVoxel that identifies FPs by utilizing

the point cloud analysis methods [66] that analyze the topological

features among massive points for various tasks, e.g., 3D object

detection [66], rendering [21], and space segmentation [95]. Specif-

ically, given that the numbers of traffic feature vectors (i.e., points)

are large, we design an efficient voxel based analysis method [52]

that processes the vectors within a high-dimensional cube as a unit

(named voxel) to reduce the processing overhead [33]. We extend

voxels [33, 52, 66] in the 3D space to the high-dimensional traffic

feature space. Thus, we can identify the voxels located in the high-

density regions as TPs and the voxels in the low-density regions

are detected as FPs.

Figure 3 shows the architecture of pVoxel. It consists of three
modules to achieve the point cloud analysis for identifying FPs, i.e.,

1007

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Chuanpu Fu, Qi Li, Ke Xu, and Jianping Wu

Feature Vectors

Malicious Traffic
Detection System

Raised
Alarms

Normalize

False Positives
by Overfitting

Community:
a group of voxels

False Positives
by Underfitting

Feature Vectors

True Positives

Voxel Construction

Isolated Point

Voxel

Community Construction Voxels Denoting
True Positives

pVoxel FP FP TP TPTP

?

Density Analysis

Low
 D

ensity

1 2 3

FP TP

Exclude

FP/TP
Community

Exclude

H
igh D

ensity

Density

…
…

Figure 3: The overview of pVoxel.

voxel construction, community construction, and density analysis.

Note that, pVoxel can be applied to detection systems built upon

different types of features, e.g, flow-level [7, 76] or packets-level [38,

58] features. For simplicity, we describe our design by taking flow-

level traffic features based detection as an example.

Voxel Construction. pVoxel normalizes flow-level feature vectors

associated with alarms and transforms the vectors into the points

in a bounded feature space. It represents the points within a high-

dimensional cube as a voxel. Meanwhile, by excluding the voxels

that represent few points, it identifies isolated points in the low-

density regions, which denote the FPs incurred by overfitting, i.e.,

the decision boundary is too close to certain types of benign traffic

that makes drifted patterns misclassified. Note that, a voxel can

represent many points, which ensures high processing efficiency.

We will detail how pVoxel constructs voxels in Section 4.1.

Community Construction. pVoxel classifies adjacent voxels into
a community to capture the topological features among the voxels.

We define two voxels as adjacent ones according to both Manhattan

distances and the length of the feature vectors (i.e., the dimension of

the feature space) so that pVoxel can be adapted to various methods

using different lengths of traffic features [7, 15, 76, 98]. Note that, we

analyze the communities instead of the individual voxels to further

improve the processing efficiency. We will describe the details of

the community construction in Section 4.2.

Density Analysis. Now we extract four density features for each

community and utilize unsupervised clustering to detect the com-

munities with significantly high densities that mainly denote TPs.

The rest of the communities represent the sparse clusters in the

low-density regions that denote the FPs incurred by underfitting,

i.e., certain types of benign traffic cannot be correctly classified by

MLmodels. Note that, the unsupervised clustering method does not

require any manually identified FPs for training and thus enables

detecting unforeseen FP alarms. We will detail the density analysis

in Section 4.3.

Note that, pVoxel can identify FPs generated by a broad spectrum
of methods using various traffic features. We can process the fea-

tures other than flow-level features so that pVoxel can be adapted

to these methods. The details can be found in Section 4.4.

4 DESIGN DETAILS
In this section, we present the design details of pVoxel. For sim-

plicity, we describe our design where we use flow-level traffic fea-

tures based detection as an instance, which is most commonly

used [7, 8, 76, 89, 97, 98], and then present how pVoxel can be

adapted to methods with other types of traffic features. We will

present a real-world case study in Section 7.3.

4.1 Voxel Construction
pVoxel normalizes flow-level features associated with alarms and

processes the features as points in the traffic feature space, where

points are represented by high-dimensional cubes (i.e., voxels). We

extend Bartos et al. [8] to develop a mathematical representation.

Let 𝑁 denote the number of feature vectors which equals the num-

ber of alarms raised by flow-level feature based methods. We use

®𝑠𝑖 = [s𝑖1, . . . , s𝑖𝑀]T (1 ≤ 𝑖 ≤ 𝑁) and 𝑀 to indicate the feature

vector associated with the 𝑖𝑡ℎ alarm and the length of the feature

vector, respectively. Note that, methods using different numbers of

flow-level features have different values of𝑀 [89, 90, 98]. Let matrix

S denote the flow-level features of all alarms, where s𝑖 𝑗 is defined

as the 𝑖𝑡ℎ alarm’s 𝑗𝑡ℎ flow-level feature, e.g., the flow completion

time (FCT) [15] and the number of packets in a flow [98]:

S = [®𝑠1, . . . , ®𝑠𝑖 , . . . , ®𝑠𝑁] =

s11 · · · s𝑁 1

.

.

.
. . .

.

.

.

s1𝑀 · · · s𝑁𝑀

 . (1)

Tomake the flow-level features to be numerically stable, we perform

a logarithmic transformation to reduce the range of the feature and

prevent arithmetic overflow during the point cloud analysis. We

use Q = log
2
(1 + S) to indicate the result. Then, we transform

each element of Q = [q𝑖 𝑗] (1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑀) to [0, 1]
by performing min-max normalization for each of the𝑀 rows of

matrix Q. Now, we obtain normalized feature vectors which are

represented by 𝑁 points P = [®𝑝1, . . . , ®𝑝𝑁]:
®𝛼 = [𝛼 𝑗], 𝛼 𝑗 = min(q1𝑗 , . . . , q𝑖 𝑗 , . . . , q𝑁 𝑗),
®𝛽 = [𝛽 𝑗], 𝛽 𝑗 = max(q1𝑗 , . . . , q𝑖 𝑗 , . . . , q𝑁 𝑗),
1 ≤ 𝑗 ≤ 𝑀, 1 ≤ 𝑖 ≤ 𝑁,

(2)

®𝑝𝑖 = [p𝑖1, . . . , p𝑖 𝑗 , . . . , p𝑖𝑀]T, p𝑖 𝑗 =
q𝑖 𝑗 − 𝛼 𝑗

𝛽 𝑗 − 𝛼 𝑗
. (3)

We define a voxel V (®𝑎) as an 𝑀-dimensional small cube with

side length 𝜖 in the normalized traffic feature space 𝔉 = [0, 1]𝑀 ,

where ®𝑎 = [a1, . . . , a𝑀]T is the index of the voxel. Thus, the space

covered by the voxel can be represented by the Cartesian product:

V (®𝑎) = [𝜖 (a1 − 1), 𝜖a1] × · · · × [𝜖 (a𝑀 − 1), 𝜖a𝑀], (4)

1008

Point Cloud Analysis for ML-Based Malicious Traffic Detection:
Reducing Majorities of False Positive Alarms CCS ’23, November 26–30, 2023, Copenhagen, Denmark

∀a𝑗 ∈ {1, . . . , ⌈1/𝜖⌉}, (1 ≤ 𝑗 ≤ 𝑀) . (5)

Moreover, it is clear that V (®𝑎) ∈ 𝔉 holds for ∀®𝑎, and the number

of distinct voxels equals 𝐻 = ⌈1/𝜖⌉𝑀 .

We define function 𝜉 (𝑖, ®𝑎;P) that judges if point ®𝑝𝑖 is within the

space covered by a voxel V (®𝑎):

𝜉 (𝑖, ®𝑎;P) =
{{𝑖}, if ∀1 ≤ 𝑗 ≤ 𝑀, p𝑖 𝑗 ∈ [𝜖 (a𝑗 − 1), 𝜖a𝑗),

𝜙, else.

(6)

We aggregate the points P into voxels that are indexed by the

vectors in the universal set of the index vectors A = {®𝑎1, . . . , ®𝑎𝐻 }.
Then, we define function 𝜁 (®𝑎; 𝑃) that outputs the indices of the

points that are within the voxel indexed by ®𝑎:

𝜁 (®𝑎; 𝑃) =
𝑁⋃
𝑖=1

𝜉 (𝑖, ®𝑎;P). (7)

Moreover, we exclude the voxels that represent lower than 𝐸 points

(see Table 7 for all hyper-parameters). We define the indices of

retained voxels as A∗ = [®𝑎∗
1
, . . . , ®𝑎∗

𝑈
], which satisfies ∀®𝑎∗ ∈ A∗

,

|𝜁 (®𝑎∗; 𝑃) | ≥ 𝐸, where 𝑈 is the number of retained voxels.

The reason why we exclude voxels representing few points is

that these points are mainly isolated points which denote drifted

flow patterns (see Figure 5(a)). Such drifted patterns are easily

misclassified as FPs by an overfitted model (see Figure 4). That is,

the decision boundary of such a model is too close to the patterns

that frequently appear in the training set (e.g., mail traffic), and

leads to the misclassification of drifted traffic patterns, for example,

the traffic delivering mail with many huge attachments (see the

upper left corner of Figure 2(a)).

Note that, isolated points associated with FPs are sparsely dis-

tributed, which only have a small number of neighbors (see Fig-

ure 2(a)), so that these isolated points can be excluded by applying

one threshold on the density of points. By excluding isolated points,

we significantly reduce the number of points, which can effectively

reduce 94.89% processing latency of pVoxel.

4.2 Community Construction
We use communities to represent the retained adjacent voxels. First,

we define the function N(®𝑎𝑖 , ®𝑎 𝑗 ;𝐷,𝑀) that judges if two voxels

indexed by ®𝑎𝑖 and ®𝑎 𝑗 are adjacent in the feature space:

N(®𝑎𝑖 , ®𝑎 𝑗 ;𝐷,𝑀) =
{
1, if 𝑑Manhattan (®𝑎𝑖 , ®𝑎 𝑗) ≤ 𝐷𝑀,

0, else,

(8)

where 𝐷 is a predefined hyper-parameter and 𝑑Manhattan calculates

the Manhattan distance between a pair of points. Note that, the

adjacency relationship is defined according to both Manhattan

distances and the dimension of the feature space (𝑀). Since we

aim to adapt pVoxel to various ML based traffic detection systems

that use different numbers of features, e.g., NetBeacon [98] uses 13

features (𝑀 = 13), and N3IC [76] uses 17 features (𝑀 = 21).

We use the Floyd-Warshall algorithm to obtain the reachability

between𝑈×𝑈 pairs of voxels. Andwe use a community to represent

a group of voxels that constitute a strongly connected component,

i.e., each voxel is reachable to any other ones. Specifically, we use

a set C = {®𝑎𝑖 , . . . , ®𝑎 | C | } to indicate a community that contains |C|

voxels and satisfies the following two requirements:

|C| × |C| =
|𝐶 |∑︁
𝑖=1

|𝐶 |∑︁
𝑗=1

N(®𝑎𝑖 , ®𝑎 𝑗 ;𝐷,𝑀), (9)

∀®𝑎𝑖 , ®𝑎 𝑗 ∈ A∗, (1 ≤ 𝑖 ≤ |C|, 1 ≤ 𝑗 ≤ |C|). (10)

According to the definition of the strongly connected component,

∩𝐺
𝑖=1

C𝑖 = 𝜙 and ∪𝐺
𝑖=1

C𝑖 = A∗
hold for 𝐺 identified communities,

which ensures that each voxel is represented by exactly one com-

munity. Note that, pVoxel does not analyze the features of voxels
directly. Instead, it analyzes the features of communities to further

reduce the overhead and ensure efficient FP identification.

4.3 Density Analysis
In this module, we extract features of each constructed communi-

ties for the FP community detection. According to Figure 2, the

communities denoting FPs are located in the regions with sparsely

distributed points. To identify the communities denoting FPs with

the low densities, we extract four point density features, i.e., the

number of points represented by a community, and the average

number of points within the balls centered by the voxels repre-

sented by a community. Formally, we use fD (𝑘) (C𝑖), 𝑘 ∈ {1, 2, 3, 4}
to indicate the extracted features for the 𝑖𝑡ℎ community:

fD
(1) (C𝑖) =

����� C𝑖⋃
®𝑎
𝜁 (®𝑎;P)

����� . (11)

We define function Ω(®𝑎, 𝑟 ; 𝑃) that outputs the points within the ball

centered by voxel V (®𝑎) with radius 𝑟 :

𝜔 (𝑖, ®𝑎, 𝑟 ;P) =
{
{𝑖}, if

®𝑝𝑖 − 𝜖 ®𝑎

2
≤ 𝑟,

𝜙, else.

(12)

Ω(®𝑎, 𝑟 ;P) =
𝑁⋃
𝑖=1

𝜔 (𝑖, ®𝑎, 𝑟 ;P). (13)

fD
(𝑘) (C𝑖) =

1

|C𝑖 |

����� C𝑖⋃
®𝑎
Ω(®𝑎, 𝑟 (𝑘−1) ;P)

����� (𝑘 ∈ {2, 3, 4}) . (14)

We apply K-Means unsupervised clustering to detect the com-

munities with significantly high densities which denote TPs (see

Figure 5(b)); while the rest of the communities are located in the

low-density regions which denote FPs. Given that the number of

communities is already low, we empirically set the K-value for

K-Means to one. Finally, pVoxel outputs the indices of the points
which are represented by the communities with low densities:

RC = {𝑖 | ∥fD (C𝑖) − ®𝑐 ∥
2
≤ 𝑑Center, 1 ≤ 𝑖 ≤ 𝐺}, (15)

R∗ =
RC⋃
𝑖

C𝑖⋃
®𝑎
𝜁 (®𝑎; 𝑃), (16)

where ®𝑐 is the clustering center, RC is the indices of identified

communities denoting FPs, and R∗
is the indices of flow features

associated with identified FPs. Note that, these FPs are mainly

caused by underfitting, which means certain types of benign traffic

cannot be correctly classified. The features of such misclassified

benign traffic are represented by sparse clusters in the low-density

regions, which can be easily captured by our density analysis.

1009

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Chuanpu Fu, Qi Li, Ke Xu, and Jianping Wu

Selected






Flows in a
component





Calculate the
subset of vertices

Cluster the edges
for selected vertices

Degree = 6

Degree = 3

Degree = 5

Identify the edges
denoting attacks

BenignBenign

Malicious





Selected

Selected

Overfitted Model

Sp
ar

se
 C

lu
st

er

Underfitted Model

TP

TN

Is
ol

at
ed

 P
oi

nt FP 











TP 

FP




Isolated Point

Overfitted Model

Sp
ar

se
 C

lu
st

er

Underfitted Model

TP

TN TN

Is
ol

at
ed

 P
oi

nt
s

FP 



 



TP


FP



Idealized
Decision Boundary

Idealized Model

Idealized Decision Boundary

TP

TN



TN

Train
Test



Figure 4: FPs incurred by overfitting and underfitting.

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
Number of Points [log10 Scale]

0.0

0.3

0.6

0.9

1.2

1.5

PD
F

Isolated Points
Massive Points

FP Voxels TP Voxels

(a) Num. Points denoted by voxels.

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
Density of Points [log10 Scale]

0.0

0.3

0.6

0.9

1.2

1.5
PD

F
TP Communities
FP Communities

(b) Points denoted by communities.

Figure 5: Points denoted by voxels and communities.

4.4 Adapting pVoxel to Various Methods
pVoxel can be adapted to detection methods using features other

than flow-level features. We utilize a preprocessing step to process

these features:

Packet-Level Features. The packet based methods extract one

feature vector for one packet [38, 58], instead of one flow. Conse-

quently, they produce more alarms by raising one alarm for each

packet. Therefore, handling the massive per-packet alarms incurs

high performance penalty. To tackle this issue, pVoxel converts
the per-packet alarms to per-flow ones. Specifically, it merges the

alarms triggered by the packets from the same flow into one alarm

which is associated with a flow-level features vector calculated

according to the packet-level features. For example, the flow size

feature [98] can be calculated by accumulating the length of each

packet. In practice, we calculate the flow-level features used by

N3IC [76].

Frequency Domain Features. The methods utilizing the fre-

quency domain feature [30, 32] extract a feature matrix for a flow

instead of a vector. Therefore, we transform each row of the matrix

into a scalar by calculating the average of the row, which equals

the power of the corresponding frequency component [30]. By this

way, we convert the metrics to vectors, and thus pVoxel can handle

the FPs using the same way as flow-level features based detection.

Graph Based Features. The existing methods utilize graphs to

represent the traffic interaction patterns among attackers and vic-

tims [31, 72]. These methods use edges to denote flows and learn

features of edges for attack detection [31, 45]. pVoxel identifies FPs
generated by these methods according to edge feature vectors that

denote flows. Specifically, to construct a feature vector for a flow,

we extract the in- and out-degree for the source and destination of

the corresponding edge associated with the flow. Thereafter, pVoxel
processes the feature vectors using the same way as flow-level

features.

5 THEORETICAL ANALYSIS
In this section, we develop a stochastic geometry model to prove that
pVoxel can efficiently identify FPs by detecting the voxels located

in the low-density regions, which represent isolated points and

sparse clusters. Meanwhile, pVoxel ensures that TPs are accurately

retained by detecting voxels located in the high-density regions.

The proofs can be found in the extended version of this paper [65].

5.1 Density Modeling for Traffic Feature Space
First, we establish the density model of the traffic feature space, a
theoretical analysis framework that aims to analyze the density of

traffic feature vectors represented by a voxel, from the perspective

of stochastic geometric [20, 78]. In general, our theoretical analysis

is based on the following key idea: (i) we model packet sequences

(i.e., benign and malicious flows) as random variable sequences;

(ii) we model flow feature extraction methods as the functions of

the random variables, and obtain the geometric distribution of the

points which denote the extracted features; (iii) we calculate the

expected density of the points represented by one voxel to prove

the effectiveness of pVoxel.
In the framework, we consider 𝑁 flows that are represented by

𝑁 sequences of observable packet-level features (e.g., packet length

and arrival interval). Specifically, we use a random variable vector

®𝑠𝑖 = [𝑠𝑖1, . . . , 𝑠𝑖𝐿]T (1 ≤ 𝑖 ≤ 𝑁) to indicate a sequence, where 𝐿

is a random variable denoting the length of the sequence which

equals to the number of packets in a flow. According to existing

studies [30, 31], each element in ®𝑠𝑖 obeys normal distribution, i.e,

𝑠𝑖 𝑗 ∼ N(𝜇, 𝜎2) holds for ∀ 1 ≤ 𝑖 ≤ 𝑁 and ∀ 1 ≤ 𝑗 ≤ 𝐿. Without

loss of generality, we assume that the packet-level features are

normalized before extracting the flow-level features, i.e., 𝜇 = 0.

We denote a flow-level feature extraction method as a vector-

valued function fE that transforms a random variable vector ®𝑠𝑖
into a single random variable 𝑣𝑖 , for example, fE can accumulate

the length of each packet to derive the size of a flow [98]. In this

paper, we consider five typical feature extraction methods that are

widely used [7, 10, 30, 81, 90, 97], including: (i) Sum(·): accumulative

features; (ii) Avg(·): average based feature; (iii)Min(·): minimum

value based feature; (iv) Range(·): range based feature; (v) Var(·):
variance based feature. For simplicity of notation, we analyze one

of these flow features each time, which is one dimension of the

entire traffic space. Thus, the 𝑁 flow features ®𝑣 = [𝑣1, . . . , 𝑣𝑁] are
denoted by the points randomly distributed on an infinite line.

Here, we define the following two geometric features of the

points (see Figure 6) which will show the effectiveness of pVoxel:

Definition 5.1. (Range of traffic features.) Let 𝑅 indicate the dis-

tance between the points representing the maximum and minimum

of the flow features, which means 𝑅 = max(®𝑣) −min(®𝑣).

Definition 5.2. (Density of traffic features.) Let 𝐷 indicate the

density of the points within the range (𝑅 > 0), i.e., 𝐷 = 𝑁
𝑅
.

Given that we analyze a single dimension of the entire traffic feature

space, voxels are denoted by the intervals of length 𝜖 on the infinite

line with random positions. It implies that the expected density of

all the non-empty intervals is equal to the expected density of the

whole range 𝑅. Therefore, we can use E[𝐷] to indicate the expected
density of the voxels.

5.2 Stochastic Geometry Analysis
In this section, we analyze the expected densities for𝑁 benign flows

(FPs) and𝑁 malicious flows (TPs) which are indicated by E[𝐷B] and
E[𝐷M], respectively. Note that, the variance parameter of benign

1010

Point Cloud Analysis for ML-Based Malicious Traffic Detection:
Reducing Majorities of False Positive Alarms CCS ’23, November 26–30, 2023, Copenhagen, Denmark

flows is significantly larger than that of malicious flows, i.e., 𝜎B >

𝜎M, since benign flows are triggered by diverse user behaviors with

many complex patterns. Similarly, 𝐿B is larger than 𝐿M according to

the observation that many malicious flows are short flows [27, 31,

47]. Our empirical studies using the same configuration as Figure 2

show that 𝜎B/𝜎M ≈ 30.21 and 𝐿B/𝐿M ≈ 160.03. Eventually, we

derive the following theorems from the analysis:

Theorem 5.3. (Ratio of densities for accumulative features.) When
fE (·) = Sum(·), the ratio of the expected point densities associated
with the voxels denoting FPs and TPs is:

E[𝐷B]
E[𝐷M] =

(
𝜎B

𝜎M

)−1 (√
𝐿B√
𝐿M

)−1
. (17)

Theorem 5.4. (Ratio of densities for average based features.) When
fE (·) = Avg(·) and 𝐿B/𝐿M is a constant, the ratio of the expected point
densities associated with the voxels denoting FPs and TPs is inversely
proportional to 𝜎B/𝜎M.

According to the above theorems and the inequalities of 𝜎 and 𝐿,

we conclude that FPs triggered by benign flows are represented

by the voxels with low density features. Thus, pVoxel can effec-

tively exclude FPs by identifying the voxels representing either

isolated points (Section 4.1) or sparse clusters (Section 4.3) in the

low-density regions. In contrast, TPs triggered by malicious flows

will be retained by pVoxel according to the voxels denoting high-
density clusters. In the same way, we can draw similar conclusions

for the other traffic features.

Theorem 5.5. (Upper bound of the expected density for range
based features.) When fE (·) = Range(·), an upper bound of the ex-
pected point density of the voxels is:

E[𝐷] ≤ 𝑁𝐿 − 1

2𝜎𝐿

√︄
𝑊0

(
𝑁 2𝐿2 − 1

2𝜋

)−1
, (18)

where 𝑊0 (·) is the first Lambert 𝑊 function (i.e., 𝑦 = 𝑊0 (𝑥) iff.
𝑥 > − 1

𝑒 and 𝑦𝑒𝑦 = 𝑥).

Moreover, we prove that the bound is inversely proportional to 𝜎

and the upper bound is monotonically decreasing over the range

𝐿 ≥ 1. Thus, the higher variance 𝜎B and the larger length 𝐿B lead

to lower bounded densities for the voxels denoting FPs. In addition,

the conclusion holds for minimum value based features:

Theorem 5.6. (Upper bound of the expected density for minimum
value based features.) When fE (·) = Min(·), a lower bound of the
expected range of the features is:

E[𝑅] ≥ 2𝜎𝑁𝐿

𝑁𝐿 − 1

√︄
𝑊0

(
𝑁 2𝐿2 − 1

2𝜋

)
− 2𝜎𝐿

𝐿 − 1

√︄
𝑊0

(
𝐿2 − 1

2𝜋

)
−𝑜 (0.12𝜎),

(19)

and an upper bound of the point density can be derived according to
Definition 5.2, i.e., E[𝐷] = 𝑁 /E[𝑅].

We can prove a similar theorem for the maximum based features

by utilizing the symmetry of the range. Due to the page limits, we

omit the proof. Finally, we analyze the density for variance based

features under the condition that 𝐿 is large and small, separately.

Selected





Flows in a
component


Calculate the

subset of vertices
Cluster the edges

for selected vertices

Degree = 6

Degree = 3

Degree = 5

Identify the edges
denoting attacks

BenignBenign

Malicious





Selected

Selected

M
al

ic
io

us

Fl
ow

s (
TP

s)

One Dimension of
Traffic Feature Space

R

High-Density Region

Be
ni

gn

Fl
ow

s (
FP

s)

R

Low-Density
Region

Voxels

Figure 6: Defined range and density geometric features.

Theorem 5.7. (Lower bound of the expected density for variance
based features when flow length is above 50.) When fE (·) = Var(·)
and 𝐿 > 50, an upper bound of the expected range of the features is:

E[𝑅] ≤ 𝑁𝜎2

𝑒
√
𝜋𝐿

+ 𝜎2

2

(1 − erf (1)), (20)

where erf (·) is the error function: erf (𝑧) = 2√
𝜋

∫ 𝑧

0
𝑒−𝑡

2

d𝑡 . Now, we
can obtain a lower bound of the density according to Definition 5.2.

Theorem 5.8. (The expected density for variance based features
when the flow length equals two.) When fE (·) = Var(·) and 𝐿 = 2,
the expected range of the flow features is:

E[𝑅] = 𝑁𝜎2

𝑁 + 1

𝑁+1∑︁
𝑖=1

1

𝑖
− 𝜎2

𝑁
. (21)

Similarly, the expected density can be calculated by E[𝐷] = 𝑁 /E[𝑅].

Note that, E[𝐷] is inversely proportional to 𝜎2. It means that TPs

triggered by malicious flow with the lower variance 𝜎M are denoted

by the voxels with significantly high densities, which can be easily

retained by pVoxel.
In summary, for all the types of traffic features, we prove that the

points denoting TPs exhibit dense distribution (i.e., higher E[𝐷]),
since the attack traffic that triggers the TPs is generated by attack

tools [12, 28] which construct many similar short flows (i.e., lower 𝐿

and𝜎) [43, 47, 69]. Thus, pVoxel can easily detect the points denoting
TPs in the high-density regions (see Section 4.3). Meanwhile, we

also prove that the points denoting FPs exhibit sparse distribution

(i.e., lower E[𝐷]), since diverse benign user behaviors generate

many long flows with various flow features (i.e., higher 𝐿 and

𝜎) [27, 31]. Therefore, pVoxel captures such traffic features in the

low-density regions by detecting isolated points and communities

with low density features. These theoretical analysis conclusions

are consistent with our real-world empirical studies (see Section 3.1)

which lay the foundations of our effective FP identification.

6 EXPERIMENTAL EVALUATION
In this section, we prototype pVoxel and evaluate its performance

by identifying FPs raised by 11 state-of-the-art methods under 75

real-world attacks. In particular, the experiments will show that

pVoxel is able to:
(1) effectively identify FPs raised by various methods on different

datasets while improving many accuracy metrics (Section 6.2).

(2) be robust to various ML models with different hyper-parameter

settings (Section 6.3).

(3) outperform traditional retraining based methods which require

manually identified FPs (Section 6.4).

(4) achieve high processing throughput with low latency (Sec-

tion 6.5).

(5) achieve high robustness under evasion attacks (Section 6.6).

1011

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Chuanpu Fu, Qi Li, Ke Xu, and Jianping Wu

Table 2: Basic properties of detection methods and statistics of datasets.

Methods

Traffic

Feature

ML Model

(Unsupervised)

Number of Raised FPs on Different Datasets (Num. FPs/s)

Accuracy Metrics
1

HyperVision Datasets CIC Datasets

Kitsune Whisper NetBea. All

Brute LowRate Advanced IDS2017 DoS2019 AUC ACC. FPR

CICFlowMeter* Flow-level Random Forest 242.65 827.68 227.78 148.92 168.16 63.42 228.99 225.46 266.63 0.9809 0.9844 0.0378
FlowLens Flow-level Decision Tree 416.77 887.56 222.68 179.50 403.13 436.43 412.56 216.81 396.93 0.9840 0.9886 0.0304

Jaqen* Flow-level Random Forest 400.11 545.89 75.28 8.69 877.24 43.29 83.62 280.82 289.37 0.9856 0.9822 0.0270

N3IC Flow-level Binary Neural Net. 239.74 724.22 21.30 30.21 19.51 38.77 34.92 126.79 154.43 0.9610 0.9714 0.0173

NetBeacon Flow-level Decision Tree 335.13 855.20 25.27 171.49 0.24 29.17 54.36 186.50 207.17 0.9938 0.9936 0.0113

nPrintML Packet-level AutoML 52.40 124.60 0.77 4.83 1.51 3.52 25.55 57.99 33.90 0.9958 0.9990 0.0005

HyperVision Graph K-Means/DBSCAN 41.36 5.12 4.39 2.00 4.00 106.04 94.67 0.59 32.27 0.9999 0.9969 0.0002

FAE Frequency Autoencoder 30.43 12.34 18.91 26.46 33.18 10.29 29.17 25.36 23.26 0.9113 0.9919 0.0072

FSC Flow-level K-Means 821.59 1504.19 315.19 555.88 605.69 203.96 467.96 429.15 612.95 0.9151 0.9293 0.0798

Kitsune Packet-level Autoencoder 2294.18 2204.17 N/A
2

1024.04 1223.91 1142.14 1092.22 1785.05 1537.96 0.8127 0.8981 0.1417

Whisper Frequency K-Means 12.06 9.17 76.76 12.66 11.82 7.40 26.56 17.40 21.73 0.9135 0.9939 0.0057

Average / / 444.22 700.01 98.83 196.79 304.40 189.49 231.87 304.72 325.15 0.9503 0.9754 0.0326

1
The highest accuracy is calculated by using per-flow labels as ground truth. We highlight best • and worst • cases for unsupervised and supervised methods.

2
Kitsune is not designed to detect the attacks constructed with various encrypted traffic.

6.1 Experiment Setup
Implementation.We prototype pVoxelwith more than 5,700 Lines

of Code (LOC), which is compiled by GCC 9.4.0, NVIDIA CUDA

11.4.48 compiler (nvcc) through ninja 1.10.0 and cmake 3.16.3. Specif-

ically, we use CUDA C++ API [62] to implement the voxel construc-

tion module and the Floyd-Warshall algorithm for the community

construction module. Moreover, we use mlpack [59] (version 3.4.2)

to implement the K-Means for the density analysis module.

Testbed.We deploy pVoxel on a testbed built upon a DELL Pow-

erEdge server with an Intel Xeon E2699 v4 CPU, 4 Tesla V100 GPUs

(one is used, driver version 470.103.01), 512GBDDR4memory (32GB

is used), Intel I350 NIC (1Gb/s), and Ubuntu 18.04.6 (Linux 4.15.0)

with Docker 20.10.13. Moreover, we connect the server to another

similar machine that replays traffic datasets to trigger alarms.

Datasets. In the experiments, we collect alarms raised by 11 state-

of-the-art methods under 75 real-world attacks in 8 different net-

works. We summarize the statistics of the datasets in Table 2. Specif-

ically, these methods extract flow features [7, 15, 30, 53, 76, 98],

packet features [38, 58], the frequency domain features [30, 32],

and graph features [31, 45] and utilize various ML algorithms with

different settings. We deploy the open-source methods [30, 31, 58]

without any modification and retrain their ML models. Meanwhile,

we implement closed-source methods [32, 53] and the methods rely-

ing on specific hardware [76, 98]. Note that, to achieve end-to-end

detection, we implement ten ML models to learn CICFlowMeter

flow features [15] which is merely a feature set without a specific

ML model [15]. We use CICFlowMeter* to denote random forest

(RF) model based detection that achieves the highest accuracy. And

the rest nine models are used as benchmarks for robustness analysis

in Section 6.3. Besides, we use RFs to learn the traffic features ex-

tracted by Jaqen [53] which is originally a fixed rule based method

to show that it is potentially feasible for pVoxel to identify FPs

raised by traditional rule based detection.

To generate alarms, we deploy these methods to detect attacks

in various real-world datasets that cover 75 typical attacks, includ-

ing: (i) CIC-IDS2017 [17] and CIC-DDoS2019 [17] datasets which

collect attack traffic from physical network testbeds; (ii) Kitsune

datasets [58], with real-world attacks targeting IoT devices [35];

(iii) NetBeacon datasets [98], which are collected in a private cloud;

(iv) Whisper datasets [30], with both volumetric and stealthy at-

tacks [25, 43, 48]; (v) HyperVision datasets [31], which contain both

traditional flooding attacks [26, 34, 47, 69] and various advanced at-

tacks [28, 55, 56, 63]. Note that, we do not use the malware and web

attack traffic because most of the methods do not consider detecting

such advanced attacks. We replay these datasets according to their

original packet rates. In addition, we replay the datasets [16, 17, 58]

along with MAWI backbone network datasets [88] as the back-

ground traffic. Table 2 shows that the number of FPs triggered by

the attack traffic is ranging between 21.73 ∼ 1537.96 FPs per second.

Notably, unsupervised methods raise more FPs than supervised

ones [4, 77], while the frequency and graph based methods raise

fewer FPs, since they raise one alarm for the flows with same IP

addresses [31, 32].

Hyper-Parameter Selection. We conduct four-fold cross valida-

tion for pVoxel to prevent hyper-parameter bias [4]. In specific, the

alarms are equally partitioned into four subsets. Each of the sub-

sets is used once as a validation set to tune the hyper-parameters

according to empirical studies. And the remaining three subsets are

testing sets. Finally, four groups of results are averaged to produce

the final results. Table 7 shows all the hyper-parameters.

Metrics. We mainly use reduced false positive rates (R.FPR) and

numbers of reduced false positives (R.FPN) to evaluate the effec-

tiveness of pVoxel. Meanwhile, we use reduced true positive rates

(R.TPR) to show the collateral damages on TPs which should be

low. Additionally, we measure the increase of various accuracy

metrics that are widely used to evaluate ML based traffic detection

systems [10, 23, 30, 38, 58, 80, 100], including the area under the

precision-recall curve (AUPRC) and the receiver operating charac-

teristic curve (AUROC), F1, accuracy (Acc.), precision (Pre.), equal

error rate (EER), and Matthews correlation coefficient (MCC).

6.2 Accuracy Evaluation
Table 3 summarizes the accuracy of reducing FPs. In general, pVoxel
can reduce 95.55% FPR (306.28 FPs/s) for the 11 state-of-the-art

1012

Point Cloud Analysis for ML-Based Malicious Traffic Detection:
Reducing Majorities of False Positive Alarms CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Table 3: Number and ratio of reduced FPs by pVoxel.

Methods

HyperVision Datasets (46)
1

CIC Datasets (2) Kitsune

(5)

Whisper

(14)

NetBeacon

(8)

Overall

(75)Brute LowRate Advanced IDS2017 DoS2019

R.FPR R.FPN R.FPR R.FPN R.FPR R.FPN R.FPR R.FPN R.FPR R.FPN R.FPR R.FPN R.FPR R.FPN R.FPR R.FPN R.FPR R.FPN

CICFlowMeter* 0.9786 237.97 0.9053 718.72 0.9473 214.54 0.9832 147.59 0.9261 155.73 0.9582 58.95 0.9601 215.29 0.9679 218.43 0.9533 245.90

FlowLens 0.9786 408.92 0.9999 887.56 0.9116 211.96 0.9909 179.19 0.9999 403.13 0.9999 436.43 0.9266 241.91 0.8876 172.48 0.9619 367.70
Jaqen* 0.9429 367.53 0.9999 545.89 0.8966 60.40 0.9999 8.69 0.9999 877.24 0.9990 43.19 0.9520 78.34 0.9621 263.42 0.9691 280.59

N3IC 0.9755 234.77 0.9999 724.22 0.9065 14.46 0.9999 30.21 0.9999 19.51 0.9987 38.69 0.9093 34.63 0.9653 119.76 0.9694 152.03

NetBeacon 0.9265 301.51 0.9999 855.20 0.8990 20.95 0.9948 171.33 0.9999 0.24 0.9999 29.17 0.9496 37.20 0.9735 178.58 0.9679 199.27

nPrintML 0.9251 38.84 0.9701 119.16 0.9333 0.53 0.9988 4.82 0.9999 1.51 0.9890 3.46 0.9469 16.98 0.8988 30.09 0.9578 26.92

Hypervision 0.9999 41.36 0.9999 5.12 0.9999 4.39 0.9999 2.00 0.9999 4.00 0.9999 106.04 0.9999 94.67 0.9999 0.59 0.9999 32.27

FAE 0.9221 28.28 0.9032 11.70 0.9071 17.67 0.9382 24.87 0.9605 31.87 0.9298 9.52 0.9147 26.95 0.9237 23.60 0.9249 21.81

FSC 0.8900 758.51 0.9480 1423.81 0.9146 286.68 0.9999 555.88 0.9999 605.69 0.8895 158.85 0.9069 399.62 0.9454 399.94 0.9368 573.62

Kitsune 0.9413 2163.95 0.8957 1928.37 N/A N/A 0.9949 1019.53 0.9941 1216.69 0.9203 1063.84 0.8927 965.19 0.9999 1785.05 0.9484 1448.95

Whisper 0.9341 11.37 0.9243 8.48 0.9236 70.43 0.9295 11.77 0.9342 11.04 0.9025 6.68 0.9196 24.60 0.9023 15.80 0.9213 20.02

Average 0.9468 417.54 0.9588 657.11 0.9240 90.20 0.9846 195.99 0.9832 302.42 0.9625 177.71 0.9344 194.13 0.9479 291.61 0.9555 306.28

1
The total number of separate datasets with different attacks.

methods under the 75 attacks. By reducing FPs, pVoxel significantly
improves detection accuracy of various methods.

First, we measure the performance of pVoxel by using R.FPR

to show that pVoxel can effectively reduce FPs raised by various

methods. From Table 3, we can see that pVoxel reduces 95.33% ∼
96.94% FPR and 92.13% ∼ 99.99% FPR for supervised and unsuper-

vised methods, respectively. Also, pVoxel can effectively reduce

FPs raised by the methods using different traffic features. Specif-

ically, pVoxel reduces 96.19%, 95.78%, 92.49%, and 99.99% FPs for

FlowLens, nPrintML, FAE, and HyperVision which analyze flow,

packet, frequency, and graph features, respectively. In addition, we

also apply pVoxel to reduce FPs raised by EULER [45], i.e., a graph

convolutional network based method that detects lateral move-

ment behaviors of APTs [57]. As EULER is originally designed for

log based detection, we adapt it into network traffic based detec-

tion [13]. We collect triggered FPs on six lateral movement traffic

datasets [31]. pVoxel achieves similar performance of FP reduction.

It reduces 94.45% ∼ 97.72% FPs.

Note that, we can draw similar conclusions by measuring the

number of reduced FPs (R.FPN). Before applying pVoxel to reduce

FPs, the 11 methods raise 325.15 FPs/s on average. The massive FPs

are almost impossible for human experts to analyze. However, our

experiments show that pVoxel can reduce 306.28 FPs/s on average.

For instance, pVoxel can reduce 20.02 FPs/s for Whisper which

raises 21.73 FPs/s and thus allow human experts to focus on true

alarms (TPs). By this way, pVoxel significantly reduces labor costs

for deploying ML based detection in real-world environments.

Second, we show that pVoxel can accurately identify FPs among

the alarms triggered by the traffic from different datasets. In specific,

pVoxel can reduces 94.79% ∼ 98.46% FPs on Kitsune datasets [58],

NetBeacon datasets [98], and CIC datasets [16, 17] which mainly

contain traditional attacks (e.g., amplification attacks [34] and net-

work scanning [25]). Moreover, pVoxel can reduce 92.40% ∼ 95.88%

FPs on HyperVision datasets [31] and Whisper datasets [30] that

contain various advanced attacks (e.g., side-channel attacks [12, 28],

link flooding attacks [44, 55], and password cracking attacks [9, 42]).

Therefore, pVoxel achieves generic FPs identification for different

datasets with various attacks.

0.0 0.2 0.4 0.6 0.8 1.0
Precision

0.0
0.2
0.4
0.6
0.8
1.0

R
ec

al
l

Bett
er

UDP DDoS

Imp. 0.9999
AUPRC 0.8570

(a) CICFlowMeter*.

0.0 0.2 0.4 0.6 0.8 1.0
Precision

0.0
0.2
0.4
0.6
0.8
1.0

R
ec

al
l

TLS Probing

Bett
er

Imp. 0.9927
AUPRC 0.9146

(b) FlowLens.

0.0 0.2 0.4 0.6 0.8 1.0
Precision

0.0
0.2
0.4
0.6
0.8
1.0

R
ec

al
l

SYN Flooding

Bett
er

Imp. 0.9927
AUPRC 0.9661

(c) NetBeacon.

Figure 7: Examples of improved PRC by pVoxel.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0
0.2
0.4
0.6
0.8
1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Chargen
 Amp. DDoSBetter

Imp. 0.9823
AUROC 0.9146

(a) FSC.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0
0.2
0.4
0.6
0.8
1.0

Tr
ue

 P
os

iti
ve

 R
at

e
OS Fingerprint

Better

Imp. 0.9982
AUROC 0.8728

(b) Kitsune.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0
0.2
0.4
0.6
0.8
1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Link Flooding
Better

Imp. 0.9971
AUROC 0.9586

(c) Whisper.

Figure 8: Examples of improved ROC by pVoxel.

Third, we measure the reduced TPR to show that pVoxel rarely
misclassifies TPs as FPs. We present R.TPR which equals decreased

recall in the last column of Table 4. We can see that reduced TPR is

ranging between 1.58% ∼ 5.11% with an average of 2.62%, which

can be bounded by 0.50% on 65% datasets. For instance, pVoxel mis-

classifies only 41, 72, 6, and 2 true positive alarms, which are raised

by CICFlowMeter* when detecting HTTP probing [69], TLS vulner-

ability detection [56], host fingerprinting [26], and SQL injection

attacks [28], respectively. Notably, the numbers of misclassified

TPs are low, since the ratio of attack traffic that triggers TPs is

significantly lower than the ratio of benign traffic, e.g., the ratio

of malicious traffic is only 2.80% [31]. Besides, for the methods

that frequently raise TPs, pVoxel still rarely misclassifies TPs. For

example, pVoxel only misclassifies 44 TPs among the entire 107,162

TPs raised by FlowLens on CIC-DDoS2019 datasets.

Finally, pVoxel can significantly improve various accuracy met-

rics by reducing FPs. We present the PRC and ROC in Figure 7 and

Figure 8, where the area of the shadow equals increased AUPRC and

AUROC. In particular, the improvements of AUPRC and AUROC

over the original detection methods are ranging between 1.27% ∼
33.66% and 0.43% ∼ 40.45%, respectively. Table 4 illustrates that

1013

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Chuanpu Fu, Qi Li, Ke Xu, and Jianping Wu

Table 4: Effects on various detection accuracy metrics.

Methods

Increased Accuracy Metrics Decreased.

PRC▲ ROC▲ Acc.▲ Per.▲ F1▲ MCC▲ EER▲ TPR▼

CICFlowMeter* 0.0545 0.0638 0.0344 0.1963 0.0867 0.3805 0.8381 0.0275

FlowLens 0.1031 0.1066 0.0831 0.3055 0.1327 0.2872 0.7901 0.0263

Jaqen* 0.0935 0.0560 0.0422 0.3738 0.1704 2.5270 0.7832 0.0296

N3IC 0.0290 0.0372 0.0123 0.1120 0.0372 0.3346 0.9810 0.0278

NetBeacon 0.0478 0.0393 0.0163 0.4800 0.2974 0.2630 0.7486 0.0281

nPrintML -0.0022 0.0043 -0.0027 0.0253 -0.0001 0.0002 0.9577 0.0253

Hypervision 0.0127 0.0034 0.0064 0.0971 0.0417 0.0336 0.5468 0.0158

FAE 0.3103 0.0110 0.0132 1.1539 0.7522 2.5234 0.2443 0.0201

FSC 0.3366 0.4045 0.1320 0.8474 0.3428 1.4277 0.7103 0.0178

Kitsune 0.3202 0.3720 0.2805 0.8810 0.3262 0.7243 0.6330 0.0511

Whisper 0.3078 0.0100 0.0126 0.4550 0.3273 2.1576 0.1805 0.0190

Overall 0.1467 0.1007 0.0573 0.4472 0.2285 0.9690 0.6740 0.0262

1 ▲ indicates higher is better and ▼ indicates lower is better.

2
PRC and ROC are short for AUPRC and AUROC.

Naive

Bayes Linear

Classif
ier SVM

Logistic

Classif
ier KNN

Decisio
n

Tree Random

Forest Auto

Encoder
K-Means

DBSCAN
0.0
0.2
0.4
0.6
0.8
1.0

R
at

io

U
ns

up
er

vi
se

dSupervised

Avg. Reduced FPR Avg. Reduced TPR R.FPR R.TPR

(a) Reduced FPR with bounded TPR decrease.

Naive

Bayes Linear

Classif
ier SVM

Logistic

Classif
ier KNN

Decisio
n

Tree Random

Forest Auto

Encoder
K-Means

DBSCAN
0.0
0.2
0.4
0.6
0.8

R
at

io

Avg. Inc. AUROC Avg. Inc. AUPRC Inc.AUROC Inc.AUPRC

(b) Improvements of AUROC and AUPRC.

Naive

Bayes Linear

Classif
ier SVM

Logistic

Classif
ier KNN

Decisio
n

Tree Random

Forest Auto

Encoder
K-Means

DBSCAN
0.0
0.2
0.4
0.6
0.8

R
at

io

Avg. Inc. Acc. Avg. Inc. Pre. Inc.Accuracy Inc.Precision

(c) Improvements of accuracy and precision.

Figure 9: Accuracy improvements for various ML models.

pVoxel can improve five other accuracy metrics for various detec-

tion methods. By reducing FPR (see Table 3), pVoxel improves pre-

cision, accuracy, F1, and MCC by 44.72%, 5.73%, 22.85%, and 96.90%,

respectively. Moreover, it can reduce 67.40% EER on average.

The reason why pVoxel can accurately identify FPs and signif-

icantly improve the performance of various detection systems is

that it analyzes the relationship between alarms (i.e., both FPs and

FPs) which is represented by the topological features of points

in the traffic feature space. Particularly, pVoxel utilizes voxels to
represent massive points and analyzes density features to identify

points in the high-density regions which denote FPs triggered by

malicious flows. Meanwhile, it identifies FPs in the low-density

regions that are triggered by diverse user behaviors. In addition,

our FP identification method is unsupervised which allows pVoxel
to reduce unforeseen FPs without requiring any prior knowledge,

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Ratio of Improved Metrics

0.0

20.0

40.0

60.0

80.0

100.0

PD
F

AUPRC
AUROC
Accuracy

(a) Num. of Trees (10-100).

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Ratio of Improved Metrics

0.0

20.0

40.0

60.0

80.0

100.0

PD
F

AUPRC
AUROC
Accuracy

(b) Depth of Trees (10-100).

Figure 10: Accuracy improvements under various settings.

10 20 30 40 50 60 70 80 90100
Num. of Trees

0.70

0.75

0.80

0.85

0.90

0.95

1.00
R.FPR

0.00

0.05

0.10

0.15

0.20

0.25

0.30
R.TPR

(a) CICFlowMeter*(Num.).

10 20 30 40 50 60 70 80 90100
Depth of Trees

0.70

0.75

0.80

0.85

0.90

0.95

1.00
R.FPR

0.00

0.05

0.10

0.15

0.20

0.25

0.30
R.TPR

(b) CICFlowMeter*(Depth).

10 20 30 40 50 60 70 80 90100
Value of K

0.70

0.75

0.80

0.85

0.90

0.95

1.00
R.FPR

0.00

0.05

0.10

0.15

0.20

0.25

0.30
R.TPR

(c) Whisper (K).

Figure 11: Reduced FPR and TPR under various settings.

25% 50% 75% pVoxel
Retraining w/ Identified FPs

0.0

0.2

0.4

0.6

0.8

1.0

R
ed

uc
ed

 M
et

ric
s

R.FPR R.TPR

(a) Naive Bayes.

25% 50% 75% pVoxel
Retraining w/ Identified FPs

0.0

0.2

0.4

0.6

0.8

1.0

R
ed

uc
ed

 M
et

ric
s

R.FPR R.TPR

(b) K-Means.

25% 50% 75% pVoxel
Retraining w/ Identified FPs

0.0

0.2

0.4

0.6

0.8

1.0

R
ed

uc
ed

 M
et

ric
s

R.FPR R.TPR

(c) SVM.

25% 50% 75% pVoxel
Retraining w/ Identified FPs

0.0

0.2

0.4

0.6

0.8

1.0

R
ed

uc
ed

 M
et

ric
s

R.FPR R.TPR

(d) Linear Classifier.

25% 50% 75% pVoxel
Retraining w/ Identified FPs

0.0

0.2

0.4

0.6

0.8

1.0

R
ed

uc
ed

 M
et

ric
s

R.FPR R.TPR

(e) Decision Tree.

25% 50% 75% pVoxel
Retraining w/ Identified FPs

0.0

0.2

0.4

0.6

0.8

1.0

R
ed

uc
ed

 M
et

ric
s

R.FPR R.TPR

(f) Logistic Classifier.

25% 50% 75% pVoxel
Retraining w/ Identified FPs

0.0

0.2

0.4

0.6

0.8

1.0

R
ed

uc
ed

 M
et

ric
s

R.FPR R.TPR

(g) KNN.

25% 50% 75% pVoxel
Retraining w/ Identified FPs

0.0

0.2

0.4

0.6

0.8

1.0

R
ed

uc
ed

 M
et

ric
s

R.FPR R.TPR

(h) DBSCAN.

25% 50% 75% pVoxel
Retraining w/ Identified FPs

0.0

0.2

0.4

0.6

0.8

1.0

R
ed

uc
ed

 M
et

ric
s

R.FPR R.TPR

(i) Autoencoder.

Figure 12: Comparing reduced FPR/TPR with retraining.

e.g., manually labeled FPs [10], original model parameters [24], and

benign IP lists [81]. These goals cannot be achieved by existing

methods [10, 23, 81].

6.3 Robustness Evaluation
To evaluate the robustness of pVoxel, we establish benchmark detec-

tion methods by using nine ML models to classify the traffic in Hy-

perVision datasets according to CICFlowMeter features [15]. These

models cover a broad spectrum of existing models [30, 31, 58, 98],

including both supervised and unsupervised models. The results

show that pVoxel achieves robust FP reduction by identifying FPs

raised by various ML models under different settings.

First, we validate that pVoxel is robust to various ML models.

From Figure 9(a), the FPR reduced by pVoxel is ranging between

87.20% ∼ 99.05%. Meanwhile, the average TPR reduced by pVoxel is

1014

Point Cloud Analysis for ML-Based Malicious Traffic Detection:
Reducing Majorities of False Positive Alarms CCS ’23, November 26–30, 2023, Copenhagen, Denmark

3.0 3.5 4.0 4.5 5.0 5.5 6.0
Throughput [Alarms/s in Log10 Scale]

0.0

1.0

2.0

3.0

4.0

PD
F

Flow Avg: 153.92k
Packet Avg: 164.28k
Graph Avg: 80.95k
Freq. Avg: 414.74k

(a) Throughput for different methods.

3.0 3.5 4.0 4.5 5.0 5.5
Throughput [Alarms/s in Log10 Scale]

0.0

0.5

1.0

1.5

PD
F

Avg: 201.10 k
Overall

(b) Overall throughput.

Figure 13: Distribution of processing throughput.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Latency [s]

0.0
0.1
0.2
0.3
0.4
0.5
0.6

PD
F

Flow
Packet
Overall

(a) Flow and packet based methods.

0.0 0.3 0.6 0.9 1.2
Latency [s]

0.0

1.0

2.0

3.0

4.0

5.0
PD

F
Graph

0.0 1.0 2.0 3.0
Latency [×10−2 s]

0.0
0.5
1.0
1.5
2.0
2.5
3.0

PD
F

[×
 1

00
.0

] Freq.

(b) Graph and frequency methods.

Figure 14: Distribution of latency for various methods.

HyperV. CIC Kitsune NetB. Whisper
0.0

1.0

2.0

3.0

4.0

5.0

6.0

La
te

nc
y

[s
]

Latency

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Th
ro

ug
hp

ut
 [1

0x A
la

rm
s/

s]Throughput

(a) Latency and throughput.

0.0 0.2 0.4 0.6 0.8
Latency [s]

Hy
pe

rV
isi

on

CI
C

Da
tas

ets

Ne
tB

ea
co

n
W

hi
sp

er
Ki

tsu
ne

76.3%

49.7%

42.0%

62.9%

66.7%

38.9%

30.7%

15.6%

17.3%

16.9%

27.3%

21.5%

16.0%

Module1 Module2 Module3

(b) Composition of Latency.

Figure 15: Performance of pVoxel on various datasets.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Latency [s]

0.0

1.0

2.0

3.0

PD
F

Module1 Avg: 0.66s
Module2 Avg: 0.20s
Module3 Avg: 0.17s

(a) Distribution of latency by modules.

Total Voxel
Construct

Community
Construct

Density
Analysis

−2.5
−2.0
−1.5
−1.0
−0.5

0.0
0.5
1.0

Lt
en

cy
 [1

0x s
]

(b) Box plot of latency.

Figure 16: Latency incurred by different modules of pVoxel.

0.0 5.0 10.0 15.0 20.0
Latency [s]

0.0

0.2

0.4

0.6

PD
F

Lower is Better

GPU Avg: 1.03s
CPU Avg: 2.39s

(a) Comparison of latency.

2.0 3.0 4.0 5.0 6.0
Throughput [Alarms/s in Log10 Scale]

0.0

0.5

1.0

1.5

PD
F

Higher is Better

GPU Avg: 156.38k
CPU Avg: 102.53k

(b) Comparison of throughput.

Figure 17: Comparison of performance on CPU and GPU.

only 3.14%. In addition, Figure 9(b) and Figure 9(c) show that, by

reducing FPR without significant TPR decrease, pVoxel improves

AUPRC by 8.6%, AUROC by 30.86%, accuracy by 24.58%, and preci-

sion by 52.68%. Moreover, we observe that the accuracy improve-

ments for unsupervised methods are higher, e.g., the AUROC im-

provement for the DBSCAN model is 64.37%. Since the FPR of unsu-

pervised methods is normally higher than that of supervised ones,

for instance, the FPR of the K-Means model is 3.33 times higher than

SVM, and thus reducing such high FPR will significantly improve

the performance of detection.

Second, we validate that pVoxel is robust to various settings. For

this purpose, we adjust the hyper-parameters of the RF model and

the K-Means model, given that these models are widely used [7,

10, 81, 98]. More precisely, we adjust the number of trees and the

depth of trees for the RF model from 10 to 100 with a step length

of 10. Figure 11(a) and Figure 11(b) illustrate that pVoxel reduces
92.64% ∼ 97.99% FPR for different numbers of trees and 93.2% ∼
98.28% FPR for different depths of trees with 0.24% and 0.33% TPR

decrease, respectively. Similarly, from Figure 11(c), we find that

pVoxel reduces 92.13% ∼ 96.19% FPR for different K-values of the

K-Means model. Moreover, Figure 10 depicts the distributions of

accuracy improvements when adjusting the hyper-parameters of

the RF model. We can see that pVoxel improves AUPRC by 8.59%,

AUROC by 6.71%, and accuracy by 5.94%, for different numbers

of trees. Meanwhile, it improves AUPRC by 8.75%, AUROC by

6.72%, and accuracy by 5.96%, for different depths of trees. Thus,

we conclude that pVoxel has high robustness when identifying FPs

for various ML models with different settings.

The reason why pVoxel achieves robust FP identification is that

pVoxel views different detection systems as black boxes (see Sec-

tion 2.1 for details). Thus, it does not rely on any prior knowledge

on ML models and their hyper-parameter settings. Instead, pVoxel
identifies FPs according to the topological characteristics of the

traffic feature space which is independent of specific ML models.

Therefore, pVoxel is robust to various models with different settings.

6.4 Comparative Experiments
In this section, we compare pVoxelwith traditional retraining meth-

ods when a portion of FPs are manually identified and included

in training set to retrain models. First, we show that pVoxel out-
performs retraining methods by large margins. Specifically, we

randomly select 25%, 50%, and 75% FPs along with the equal ra-

tios of TPs to retrain ML models and repeat the traffic detection

using the original testing sets (samples used for retraining are ex-

cluded). Figure 12 compares the reduced FPR and TPR. Overall,

pVoxel reduces 2.51 times higher FPR with 4.33 times lower TPR

decrease than retraining methods. For the linear classifier (see Fig-

ure 12(d)), pVoxel reduces 93.19% FPR which is 1.85 times higher

than the best performance of retraining. From Figure 12(e) and

Figure 12(f), we can see that the retraining methods suffer from

the catastrophic forgetting issue [24]. Particularly, the decision tree

and the logistic classifier are unable to detect attack traffic after

retraining and incur 28.24 and 15.45 times higher TPR decreases

than pVoxel, respectively.
We compare pVoxel with the catastrophic forgetting mitigation

method [24] that uses a regularization term to penalize a model

if it cannot classify patterns due to large deviation of parameters.

We use three 𝜆 values [24] as the weights of the term, and retrain

the three state-of-the-art DNN based detection (see Table 5). Note

that, the method [24] modifies DNN training algorithms and can

only be applied to DNN based methods, while pVoxel can be ap-

plied to both DNN and non-DNN methods. We observe that pVoxel
outperforms the methods and reduces 79.36% ∼ 84.64% higher FPR,

which achieves similar TPR. Notably, when the weight is large

(e.g., 𝜆 = 5 × 10
4
), the model will not update anymore so that re-

training cannot reduce more FPs even if TPR does not significantly

decrease. Besides, pVoxel achieves 38.98% ∼ 62.93% improvements

over the mitigation method, when processing the FPs raised by the

autoencoder based method (see Section 6.3).

1015

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Chuanpu Fu, Qi Li, Ke Xu, and Jianping Wu

Table 5: Comparison against the forgetting mitigation.

Methods

Regularization Term [24]

pVoxel
𝜆 = 5 × 10

2 𝜆 = 5 × 10
3 𝜆 = 5 × 10

4

Metrics R.TPR R.FPR R.TPR R.FPR R.TPR R.FPR R.TPR R.FPR

Kitsune 0.0428 0.3837 0.0419 0.2862 0.0004 0.2805 0.0342 0.9413

FAE 0.1129 0.1559 0.0337 0.1555 0.0245 0.1518 0.0526 0.9221

EULER 0.0000 0.0416 0.0000 0.0417 0.0000 0.0000 0.0475 0.9526

Average 0.0519 0.1937 0.0252 0.1611 0.0083 0.1441 0.0447 0.9386

The reason why pVoxel outperforms retraining methods is that

pVoxel does not interfere with model training. By this way, it avoids

the catastrophic forgetting issue [24] caused by model retraining.

pVoxel views ML based detection methods as black-box systems and

identifies FPs according to the topological relationship in the traffic

feature space. Thus, it does not rely on any prior knowledge which

is indispensable for model retraining, i.e., manually identified FPs,

training datasets, and original parameters of ML models.

In addition, we observe that the traditional whitelist methods [10,

46] can only reduce few FPs. The reason is that, according to the ex-

isting study [81], most FPs are not triggered by the traffic generated

from addresses owned by reputable organizations, which means

that whitelists cannot effectively reduce FPs. Our empirical study

also shows that lower than 0.1% FPs are triggered by the traffic of

reputable ASes that own Alexa top 100 websites [5]. Besides, pVoxel
does not require constructing whitelists, which further prevents

exploiting whitelists, e.g., by IP spoofing [28, 54].

6.5 Throughput and Latency Evaluation
In this section, we show that pVoxel achieves high processing

throughput with low latency when identifying FPs raised by var-

ious methods on different datasets. First, we validate that pVoxel
achieves high processing throughput. Specifically, we measure the

number of alarms processed by pVoxel within one second and plot

the results in Figure 13(a). We observe that pVoxel achieves 153.92k,
164.28k, 80.95k and 414.74k alarms per second throughput for the

methods that utilize flow-level, packet-level, graph-based, and the

frequency features, respectively. The reason why pVoxel achieves
higher throughput for the frequency feature based method is that

pVoxel compresses the features to reduce the overhead. Figure 13(b)

shows the distribution of throughput. pVoxel achieves over 201.10k
alarms per second throughput.

Second, we show that pVoxel achieves high throughput with

low latency. Figure 14(a) depicts the distribution of latency which

illustrates that the average latency of pVoxel is 0.779s. Specifically,
when identifying FPs raised by the methods using flow and packet

based features, the average latency is only 0.946s and 1.310s, re-

spectively. For graph and the frequency feature based methods (see

Figure 14(b)), the average processing latency is significantly lower,

i.e., 0.116s and 0.002s, because these methods raise fewer alarms.

Moreover, from Figure 15(a), we observe that pVoxel has 0.986s
bounded latency on different datasets, while achieving 144.40k ∼
185.68k alarms per second high processing throughput.

Third, we examine the composition of the latency. We measure

the latency incurred by the three modules of pVoxel individually
and present the results in Figure 16. We can see that the three mod-

ules (i.e., voxel construction, community construction, and density

analysis) incur 0.66s, 0.20s, and 0.17s latency, respectively. Similarly,

Figure 15(b) shows the proportion of the latency incurred by the

modules. From Figure 16(b), we find that the first module consumes

most time (64.07%) but it reduces the overhead of the other two

modules, i.e., community construction (19.41%) and density analysis

(16.50%), by aggregating massive points into voxels.

Finally, we compare the GPU implementation with multi-core

CPU paralleled C++ implementation when analyzing the alarms

raised by the seven flow feature based methods. Figure 17(a) com-

pares the latency of the two implementations, where the GPU

implementation reduces 56.90% latency of the CPU implementation.

Also, from Figure 17(b), we observe that the throughput of the GPU

implementation is 1.52 times higher than the CPU implementa-

tion. Because we offload the computation-intensive operations to

GPU, i.e., voxel construction and the Floyd-Warshall algorithm for

community construction.

The reason why pVoxel achieves high throughput and low la-

tency is that the point cloud analysis leveraged by pVoxel is nat-
urally able to analyze the topological features of massive points.

In particular, pVoxel aggregates the massive points denoting many

alarms into voxels, which significantly reduces the overhead. More-

over, pVoxel uses communities to represent adjacent voxels which

further reduces the overhead. Eventually, the communities repre-

senting massive alarms allow pVoxel to perform the density analysis

with low latency. Therefore, even if the traffic detection systems

raise massive FPs, pVoxel can still classify each alarm as either TPs

or FPs accurately and efficiently.

6.6 Evasion Attacks
Now we conduct experiments to show that attackers cannot easily

exploit pVoxel to evade detection by simply mimicking benign users.

Specifically, we validate the robustness against three evasion tech-

niques according to recent studies [30, 32]: (i) Traffic obfuscation:

injecting benign traffic into malicious flows; (ii) Adaptive traffic

rates: attackers adjust packet rates to mimic benign flows; (iii) Ma-

nipulating flow features: attackers manipulate packet lengths to

generate benign traffic patterns. Note that, these adaptive attacks

can evade many existing methods [7, 58, 76, 98] that do not raise

alarms under the evasions. Thereby, we collect raised alarms by

three existing methods and apply pVoxel to analyze these alarms.

Table 6: Ratio of reduced TPs and FPs under evasion attacks.

Evasions Obfuscation Adaptive Rates Faked Lengths Overall

Metrics R.FPR R.TPR R.FPR R.TPR R.FPR R.TPR R.FPR R.TPR

FAE 0.9613 0.0000 0.9275 0.0000 0.9623 0.0000 0.9503 0.0000

Whisper 0.9333 0.0052 0.9519 0.0057 0.9690 0.0156 0.9514 0.0088

HyperVision 0.9376 0.0073 0.9999 0.0033 0.9633 0.0059 0.9669 0.0055

Average 0.9440 0.0041 0.9597 0.0030 0.9648 0.0071 0.9561 0.0047

Table 6 shows that pVoxel reduces 94.40% ∼ 96.48% FPs under the

evasion attacks. Meanwhile, the incurred TPR decrease is bounded

by 1.56%. By reducing the majority of FPs without significant TPR

decrease, pVoxel improves 15.65% ∼ 23.93% precision over the ex-

isting methods. Therefore, attackers cannot evade detection when

pVoxel is applied. The reason is that features of the manipulated

1016

Point Cloud Analysis for ML-Based Malicious Traffic Detection:
Reducing Majorities of False Positive Alarms CCS ’23, November 26–30, 2023, Copenhagen, Denmark

traffic generated by the evasion attacks are still in high-density re-

gions. As a result, these high-density regions can still be effectively

captured by pVoxel.

7 DISCUSSION
In this section, we discuss the practicality of pVoxel and its limita-

tions.

7.1 Traffic Detection by Density Based Analysis
pVoxel utilizes density based analysis, which enables accurate and

efficient FP detection. However, density based analysis cannot be

directly applied to detect malicious traffic because it is difficult to

analyze the complex distribution of all flow samples due to the high

speed of traffic (e.g., 33.60M flows/h [88]). Our experiment results

show that directly applying the analysis will incur low detection

accuracy (i.e., AUC ≤ 0.75) and high latency (i.e., over 30 minutes).

pVoxel well addresses these issues by only analyzing the distribution

of positive samples (i.e., 0.10% ∼ 5.37% flows).

7.2 Integrating pVoxel into Training Pipelines
pVoxel can be integrated into training pipelines to facilitate model

retraining. Specifically, it can feed FPs identified in testing phases

into retraining processes, which can effectively correct misclassified

traffic patterns. Thus, we can retrain the SVM, KNN, K-Means,

DBSCAN, and the Bayes model (see Section 6.3). We observe that

the decreased FPRs of the models range between 19.37% ∼ 51.37%.

Thus, integrating pVoxel into training pipelines can effectively boost
model performance.

Note that, the threat model in Section 2.2 considers detecting

FPs under a realistic setting, i.e., pVoxel identifies FPs raised in

testing phases without interfering with training pipelines. Since

many commercial traffic detection systems are closed-source (e.g.,

Cisco ETA [18]), i.e., their training datasets and ML models are

not publicly available, and thus FP reduction methods cannot be

integrated into their training pipelines. pVoxel addresses this is-

sue by reducing FPs at testing phases without requiring any prior

knowledge in training phases, which achieves the effectiveness of

FP reduction in practice.

7.3 Real-World Case Study
We randomly select 1,000 TPs and 1,000 FPs raised by CICFlowMe-

ter* on the TLS vulnerability exploiting dataset [31]. CICFlowMeter*

extracts 84 flow features [15] (e.g., the number of packets/bytes, the

duration of a flow), and generates alarms when the feature vectors

are classified as attack traffic. pVoxel classifies the alarms into TPs

and FPs. We use t-SNE to map the high-dimensional features to 2D

for visualization and then plot the points and the voxels denoting

the alarms in Figure 18 and Figure 19, respectively.

The first module of pVoxel constructs 196 voxels to represent

the 2,000 points denoting the alarms. To exclude isolated points, it

identifies 38 voxels that represent sparsely distributed points, e.g., a

voxel includes less than eight points. Finally, 1,809 retained points

are represented by 158 voxels (see Figure 18(b) and Figure 19(a)).

Meanwhile, the 191 isolated points are excluded, which consist of

3 TPs and 187 FPs. Note that, the 3 TPs are misclassified because

the associated flow duration features are obviously higher. The

-25 -20 -15 -10 -5 0 5 10 15 20 25
t-SNE Visualization of the Space

-25
-20
-15
-10

-5
0
5

10
15
20
25

FP
TP

(a) Positive samples.

-25 -20 -15 -10 -5 0 5 10 15 20 25
t-SNE Visualization of the Space

-25
-20
-15
-10

-5
0
5

10
15
20
25

FP
TP

(b) Isolated points removal.

-25 -20 -15 -10 -5 0 5 10 15 20 25
t-SNE Visualization of the Space

-25
-20
-15
-10

-5
0
5

10
15
20
25

74 FPs

997 TPs

FP
TP

(c) Retained dense clusters.

Figure 18: Point distribution analyzed by each module.

-25 -20 -15 -10 -5 0 5 10 15 20 25
t-SNE Visualization of the Space

-25
-20
-15
-10

-5
0
5

10
15
20
25

FP Voxel
TP Voxel

(a) Voxel construction.

-25 -20 -15 -10 -5 0 5 10 15 20 25
t-SNE Visualization of the Space

-25
-20
-15
-10

-5
0
5

10
15
20
25

(b) Communities.

-25 -20 -15 -10 -5 0 5 10 15 20 25
t-SNE Visualization of the Space

-25
-20
-15
-10

-5
0
5

10
15
20
25

FP Communities

TP Communities

(c) Retained Communities.

Figure 19: Voxel distribution analyzed by each module.

three points drift from the points denoting other attack flows and

thus are labeled as isolated points of FPs. We speculate that these

flows are constructed to check the reachability of victim websites,

thereby differing from the actual vulnerability exploiting flows.

The second module merges the voxels into 19 communities that

are depicted in Figure 19(b), and the last module identifies 16 com-

munities denoting sparse clusters of FPs with low densities, i.e., 22

∼ 57 points per community. pVoxel labels the other three commu-

nities as TPs that are associated with significantly higher densities,

e.g., 908 points per community (see Figure 19(c)). Note that, a small

number of FPs are not removed. These FPs are triggered by repet-

itive DNS queries from a user, which deviate from normal user

behaviors (see Figure 18(c)). Finally, pVoxel reduces 92.60% FPR

with 0.30% negligible TPR decrease.

8 RELATEDWORK
ML Based Malicious Traffic Detection. ML based detection

achieves higher accuracy than traditional signature based detec-

tion [11]. In particular, they can detect unknown attacks [30, 58].

For generic detection, Fu et al. leveraged the frequency domain fea-

tures to achieve accurate detection [30]. Barradas et al. developed
FlowLens to extract distribution features and detected attacks by

using Random Forest [7]. Similarly, Zhou et al. [98] developed Net-

Beacon to install ML models on programmable switches. Panda et
al. [64] built flow based detection upon SmartNICs. Mirsky et al.
developed Kitsune to learn per-packet features by using autoen-

coders [58]. Moreover, HyperVision utilized graphs to detect en-

crypted malicious traffic [31]. For task specific detection, Nelms et
al. [60], Invernizzi et al. [39], and Bilge et al. [10] detected different

behaviors of malware campaigns. Bartos et al. [8], Tang et al. [80],
and Dodia et al. [22] detectedmalformedWeb traffic.Wichtlhuber et
al. [87] and Wagner et al. [85] throttled DDoS traffic at IXP. Do-

dia et al. [82] and Sharma et al. [71] captured attack traffic targeting

IoT devices. Note that, malicious traffic detection is different from

traffic classification which classifies whether traffic is generated by

a certain application [6, 70, 73, 75, 83, 92].

1017

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Chuanpu Fu, Qi Li, Ke Xu, and Jianping Wu

Reducing FPs for ML Based Malicious Traffic Detection.Most

existing studies do not perform FP reduction [7, 31, 38, 98] even if

the FPR is unacceptable [4, 77]. In general, existing studies mitigated

the high FPR issue by using whitelists and model retraining. For

whitelist based methods, Tegeler et al. [81] reduced FPR of malware

traffic detection by excluding FPs triggered by IP addresses held by

trusted organizations. Similarly, Bilge et al. [10] reduced the issue by
constructing IP whitelists according to manually identified FPs and

the reputation of ASes. Note that, attackers can utilize IP whitelists

to evade detection via IP spoofing [54]. For retraining based meth-

ods, Du et al. [23] incrementally retrained the DNN models for

traffic log based detection using FPs reported by user feedback and

mitigated the catastrophic forgetting issues [24]. These methods

merely reduce FPs according to manually identified FPs, which are

different from our automatic FPs identification. Similarly, other

ML based security applications also suffer from high FPRs. They

also utilized model retraining [14, 37, 49, 51, 91, 94] or prior knowl-

edge [2, 41, 50, 67, 74, 99] to reduce FPs.

Analyzing ML Based Security Applications. Arp et al. [4] stud-
ied the practical issues of ML based systems for security, showing

the high FPR issues of these systems [23, 58]. Recently, Alahmadi et
al. [1] showed that deploying ML based systems in SOCs is hin-

dered by the high FPR issue. Moreover, Sommer et al. [77] analyzed
the reason why ML based anomaly detection suffers from low us-

ability. Moreover, Han et al. [36], Jacobs et al. [40], and Wei et
al. [86] addressed the explainability issue of traffic detection, which

is orthogonal to pVoxel.

9 CONCLUSION
In this paper, we propose pVoxel, which identifies FPs for ML based

traffic detection systems. Specifically, pVoxel treats the traffic fea-

ture vector associated with each alarm as a point in the traffic

feature space. It utilizes point cloud analysis to capture the topo-

logical features among the points and classifies the alarms into TPs

and FPs. In particular, we aggregate the points into voxels, i.e, cubes

in the high-dimensional traffic feature space, and develop an unsu-

pervised method to identify the voxels denoting FPs according to

their density features. Our experiments with 75 real-world attacks

demonstrate that pVoxel outperforms retraining based methods by

reducing 95.52% FPs for 11 state-of-the-art traffic detection methods

under various settings. Meanwhile, pVoxel achieves efficient alarm

processing and can process 201.10 thousand alarms per second.

ACKNOWLEDGMENTS
This work was in part supported by National Key Research and

Development Program of China under No.2022YFB3102301, Beijing

Outstanding Young Scientist Program under No.BJJWZYJH0120191

0003011, China National Funds for Distinguished Young Scientists

under No.61825204, NSFC under No.61932016 and No.62132011. Ke

Xu is the corresponding author of this paper.

REFERENCES
[1] Bushra A. Alahmadi et al. 2022. 99% False Positives: A Qualitative Study of SOC

Analysts’ Perspectives on Security Alarms. In Security. USENIX, 2783–2800.
[2] Abdulellah Alsaheel et al. 2021. ATLAS: A Sequence-based Learning Approach

for Attack Investigation. In Security. USENIX, 3005–3022.
[3] ArcSight. Accessed Sep. 2023. Enterprise Security Manager. https://www.

microfocus.com/en-us/cyberres/secops/arcsight-esm.

[4] Daniel Arp et al. 2022. Dos and Don’ts of Machine Learning in Computer

Security. In Security. USENIX.
[5] AWS. accessed Sep. 2023. Alexa Top Websites. https://www.expireddomains.

net/alexa-top-websites/.

[6] Alireza Bahramali et al. 2020. Practical Traffic Analysis Attacks on Secure

Messaging Applications. In NDSS. ISOC.
[7] Diogo Barradas et al. 2021. FlowLens: Enabling Efficient Flow Classification for

ML-based Network Security Applications. In NDSS. ISOC.
[8] Karel Bartos et al. 2016. Optimized Invariant Representation of Network Traffic

for Detecting Unseen Malware Variants. In Security. USENIX, 807–822.
[9] Hugo L. J. Bijmans et al. 2019. Just the Tip of the Iceberg: Internet-Scale

Exploitation of Routers for Cryptojacking. In CCS. ACM, 449–464.

[10] Leyla Bilge et al. 2012. Disclosure: detecting botnet command and control

servers through large-scale NetFlow analysis. In ACSAC. ACM, 129–138.

[11] Anna L. Buczak and Erhan Guven. 2016. A Survey of Data Mining and Machine

Learning Methods for Cyber Security Intrusion Detection. IEEE Commun. Surv.
Tutorials 18, 2 (2016), 1153–1176.

[12] Yue Cao et al. 2016. Off-Path TCP Exploits: Global Rate Limit Considered

Dangerous. In Security. USENIX, 209–225.
[13] Evan Caville et al. 2022. Anomal-E: A self-supervised network intrusion de-

tection system based on graph neural networks. Knowl. Based Syst. 258 (2022),
110030.

[14] Yizheng Chen et al. 2020. On Training Robust PDF Malware Classifiers. In

Security. USENIX, 2343–2360.
[15] CIC. Accessed Sep. 2023. CICFlowMeter: a network traffic flow generator and

analyser. https://www.unb.ca/cic/research/applications.html.

[16] CIC. Accessed Sep. 2023. DDoS Evaluation Datasets (CIC-DDoS2019). https:

//www.unb.ca/cic/datasets/ddos-2019.html.

[17] CIC. Accessed Sep. 2023. Intrusion Detection Evaluation Datasets (CIC-IDS2017).

https://www.unb.ca/cic/datasets/ids-2017.html.

[18] Cisco. Accessed Sep. 2023. Cisco Encrypted Traffic Analytics.

https://www.cisco.com/c/en/us/solutionsenterprise-networks/enterprise-

network-security/eta.html.

[19] Cisco. Accessed Sep. 2023. Cisco SPAN. https://www.cisco.com/c/en/us/support/

docs/swit-ches/catalyst-6500-series-switches/10570-41.html.

[20] David Coupier. 2019. Stochastic Geometry Modern Research Frontiers. Vol. 1.
Springer.

[21] Peng Dai et al. 2020. Neural Point Cloud Rendering via Multi-Plane Projection.

In CVPR. CVF/IEEE, 7827–7836.
[22] Priyanka Dodia et al. 2022. Exposing the Rat in the Tunnel: Using Traffic

Analysis for Tor-based Malware Detection. In CCS. ACM, 875–889.

[23] Min Du et al. 2017. DeepLog: Anomaly Detection and Diagnosis from System

Logs through Deep Learning. In CCS. ACM, 1285–1298.

[24] Min Du et al. 2019. Lifelong Anomaly Detection Through Unlearning. In CCS.
ACM, 1283–1297.

[25] Zakir Durumeric et al. 2013. ZMap: Fast Internet-wide Scanning and Its Security

Applications. In Security. USENIX, 605–620.
[26] Zakir Durumeric et al. 2014. An Internet-Wide View of Internet-Wide Scanning.

In Security. USENIX, 65–78.
[27] Cristian Estan and George Varghese. 2003. New directions in traffic measure-

ment and accounting: Focusing on the elephants, ignoring the mice. ACM Trans.
Comput. Syst. 21, 3 (2003), 270–313.

[28] Xuewei Feng et al. 2020. Off-Path TCP Exploits of the Mixed IPID Assignment.

In CCS. ACM, 1323–1335.

[29] Xuewei Feng et al. 2022. Off-Path Network Traffic Manipulation via Revitalized

ICMP Redirect Attacks. In Security. USENIX, 2619–2636.
[30] Chuanpu Fu et al. 2021. Realtime Robust Malicious Traffic Detection via Fre-

quency Domain Analysis. In CCS. ACM, 3431–3446.

[31] Chuanpu Fu et al. 2023. Detecting Unknown Encrypted Malicious Traffic in

Real Time via Flow Interaction Graph Analysis. In NDSS. ISOC.
[32] Chuanpu Fu et al. 2023. Frequency Domain Feature Based Robust Malicious

Traffic Detection. IEEE/ACM Trans. Netw. 31, 1 (2023), 452–467.
[33] Enrico Gobbetti and FabioMarton. 2005. Far voxels: a multiresolution framework

for interactive rendering of huge complex 3D models on commodity graphics

platforms. ACM Trans. Graph. 24, 3 (2005), 878–885.
[34] Harm Griffioen et al. 2021. Scan, Test, Execute: Adversarial Tactics in Amplifi-

cation DDoS Attacks. In CCS. ACM, 940–954.

[35] Harm Griffioen and Christian Doerr. 2020. Examining Mirai’s Battle over the

Internet of Things. In CCS. ACM, 743–756.

[36] Dongqi Han et al. 2021. DeepAID: Interpreting and Improving Deep Learning-

based Anomaly Detection in Security Applications. In CCS. ACM, 3197–3217.

[37] Xueyuan Han et al. 2020. Unicorn: Runtime Provenance-Based Detector for

Advanced Persistent Threats. In NDSS. ISOC.
[38] Jordan Holland et al. 2021. New Directions in Automated Traffic Analysis. In

CCS. ACM, 3366–3383.

[39] Luca Invernizzi et al. 2014. Nazca: DetectingMalware Distribution in Large-Scale

Networks. In NDSS. ISOC.

1018

https://www.microfocus.com/en-us/cyberres/secops/arcsight-esm
https://www.microfocus.com/en-us/cyberres/secops/arcsight-esm
https://www.expireddomains.net/alexa-top-websites/
https://www.expireddomains.net/alexa-top-websites/
https://www.unb.ca/cic/research/applications.html
https:// www.unb.ca/cic/datasets/ddos-2019.html
https:// www.unb.ca/cic/datasets/ddos-2019.html
https://www.unb.ca/ cic/datasets/ids-2017.html
https://www.cisco.com /c/en/us/solutionsenterprise-networks/enterprise-network-security/eta. html
https://www.cisco.com /c/en/us/solutionsenterprise-networks/enterprise-network-security/eta. html
https://www.cisco.com/c/en/us/support/docs/swit-ches/catalyst-6500-series-switches/10570-41.html
https://www.cisco.com/c/en/us/support/docs/swit-ches/catalyst-6500-series-switches/10570-41.html

Point Cloud Analysis for ML-Based Malicious Traffic Detection:
Reducing Majorities of False Positive Alarms CCS ’23, November 26–30, 2023, Copenhagen, Denmark

[40] Arthur Selle Jacobs et al. 2022. AI/ML for Network Security: The Emperor has

no Clothes. In CCS. ACM, 1537–1551.

[41] Steve T. K. Jan et al. 2020. Throwing Darts in the Dark? Detecting Bots with

Limited Data using Neural Data Augmentation. In SP. IEEE, 1190–1206.
[42] Mobin Javed and Vern Paxson. 2013. Detecting stealthy, distributed SSH brute-

forcing. In CCS. ACM, 85–96.

[43] Mattijs Jonker et al. 2017. Millions of targets under attack: a macroscopic

characterization of the DoS ecosystem. In IMC. ACM, 100–113.

[44] Min Suk Kang et al. 2013. The Crossfire Attack. In SP. IEEE, 127–141.
[45] Isaiah J. King and H. Howie Huang. 2022. Euler: Detecting Network Lateral

Movement via Scalable Temporal Graph Link Prediction. In NDSS. ISOC.
[46] Faris Bugra Kokulu et al. 2019. Matched and Mismatched SOCs: A Qualitative

Study on Security Operations Center Issues. In CCS. ACM, 1955–1970.

[47] Daniel Kopp et al. 2019. DDoS Hide & Seek: On the Effectiveness of a Booter

Services Takedown. In IMC. ACM, 65–72.

[48] Aleksandar Kuzmanovic and Edward W. Knightly. 2003. Low-rate TCP-targeted

denial of service attacks: the shrew vs. the mice and elephants. In SIGCOMM.

ACM, 75–86.

[49] Qi Li et al. 2022. Dynamic Network Security Function Enforcement via Joint Flow

and Function Scheduling. IEEE Trans. Inf. Forensics Secur. 17 (2022), 486–499.
[50] Zhou Li et al. 2013. Finding the Linchpins of the Dark Web: a Study on Topolog-

ically Dedicated Hosts on Malicious Web Infrastructures. In SP. IEEE, 112–126.
[51] Fucheng Liu et al. 2019. Log2vec: A Heterogeneous Graph Embedding Based

Approach for Detecting Cyber Threats within Enterprise. In CCS. ACM, 1777–

1794.

[52] Lingjie Liu et al. 2020. Neural Sparse Voxel Fields. In NIPS. Curran.
[53] Zaoxing Liu et al. 2021. Jaqen: A High-Performance Switch-Native Approach

for Detecting and Mitigating Volumetric DDoS Attacks with Programmable

Switches. In Security. USENIX, 3829–3846.
[54] Matthew J. Luckie et al. 2019. Network Hygiene, Incentives, and Regulation:

Deployment of Source Address Validation in the Internet. In CCS. ACM, 465–

480.

[55] Xiapu Luo and Rocky K. C. Chang. 2005. On a New Class of Pulsing Denial-of-

Service Attacks and the Defense. In NDSS. ISOC.
[56] Robert Merget et al. 2019. Scalable Scanning and Automatic Classification of

TLS Padding Oracle Vulnerabilities. In Security. USENIX, 1029–1046.
[57] Sadegh Momeni Milajerdi et al. 2019. HOLMES: Real-Time APT Detection

through Correlation of Suspicious Information Flows. In SP. IEEE, 1137–1152.
[58] Yisroel Mirsky et al. 2018. Kitsune: An Ensemble of Autoencoders for Online

Network Intrusion Detection. In NDSS. ISOC.
[59] mlpack. accessed Sep. 2023. An open Source Machine Learning Library. https:

//www.mlpack.org/.

[60] Terry Nelms et al. 2015. WebWitness: Investigating, Categorizing, andMitigating

Malware Download Paths. In Security. USENIX, 1025–1040.
[61] Arman Noroozian et al. 2019. Platforms in Everything: Analyzing Ground-

Truth Data on the Anatomy and Economics of Bullet-Proof Hosting. In Security.
USENIX, 1341–1356.

[62] NVIDIA. Accessed Sep. 2023. CUDA: a parallel computing platform on GPU.

https://developer.nvidia.com/cuda-toolkit.

[63] Adam Oest et al. 2020. Sunrise to Sunset: Analyzing the End-to-end Life Cycle

and Effectiveness of Phishing Attacks at Scale. In Security. USENIX, 2039–2056.
[64] Sourav Panda et al. 2021. SmartWatch: accurate traffic analysis and flow-state

tracking for intrusion prevention using SmartNICs. In CoNEXT. ACM, 60–75.

[65] pVoxel. Accessed Sep. 2023. Code realse and extended version. https://github.

com/fuchuanpu/pVoxel.

[66] Charles Ruizhongtai Qi et al. 2017. PointNet++: Deep Hierarchical Feature

Learning on Point Sets in a Metric Space. In NIPS. Curran Associates, 5099–

5108.

[67] Yuqi Qing et al. 2024. Low-Quality Training Data Only? A Robust Framework

for Detecting Encrypted Malicious Network Traffic. In NDSS. ISOC.
[68] Sivaramakrishnan Ramanathan et al. 2020. BLAG: Improving the Accuracy of

Blacklists. In NDSS. ISOC.
[69] Philipp Richter and Arthur W. Berger. 2019. Scanning the Scanners: Sensing

the Internet from a Massively Distributed Network Telescope. In IMC. ACM,

144–157.

[70] Vera Rimmer et al. 2018. Automated Website Fingerprinting through Deep

Learning. In NDSS. ISOC.
[71] Rahul Anand Sharma et al. 2022. Lumen: a framework for developing and

evaluating ML-based IoT network anomaly detection. In CoNEXT. ACM, 59–71.

[72] Meng Shen et al. 2021. Accurate Decentralized Application Identification via

Encrypted Traffic Analysis Using Graph Neural Networks. IEEE Trans. Inf.
Forensics Secur. 16 (2021), 2367–2380.

[73] Meng Shen et al. 2023. Subverting Website Fingerprinting Defenses with Robust

Traffic Representation. In Security. USENIX.
[74] Yun Shen et al. 2022. A Large-scale Temporal Measurement of AndroidMalicious

Apps: Persistence, Migration, and Lessons Learned. In Security. USENIX, 1167–
1184.

[75] Sandra Siby et al. 2020. Encrypted DNS -> Privacy? A Traffic Analysis Perspec-

tive. In NDSS. ISOC.
[76] Giuseppe Siracusano et al. 2022. Re-architecting Traffic Analysis with Neural

Network Interface Cards. In NSDI. USENIX, 513–533.
[77] Robin Sommer and Vern Paxson. 2010. Outside the Closed World: On Using

Machine Learning for Network Intrusion Detection. In SP. IEEE, 305–316.
[78] Dietrich Stoyan et al. 2013. Stochastic Geometry and Its Applications. Vol. 1.

WILEY.

[79] Suricata. Accessed Sep. 2023. An Open Source Threat Detection Engine. https:

//suricata-ids.org/.

[80] Ruming Tang et al. 2020. ZeroWall: Detecting Zero-Day Web Attacks through

Encoder-Decoder Recurrent Neural Networks. In INFOCOM. IEEE, 2479–2488.

[81] Florian Tegeler et al. 2012. BotFinder: finding bots in network traffic without

deep packet inspection. In CoNEXT. ACM, 349–360.

[82] Ege Tekiner et al. 2022. A Lightweight IoT Cryptojacking Detection Mechanism

in Heterogeneous Smart Home Networks. In NDSS. ISOC.
[83] Thijs van Ede et al. 2020. FlowPrint: Semi-SupervisedMobile-App Fingerprinting

on Encrypted Network Traffic. In NDSS. ISOC.
[84] Thijs van Ede et al. 2022. DEEPCASE: Semi-Supervised Contextual Analysis of

Security Events. In SP. IEEE, 522–539.
[85] Daniel Wagner et al. 2021. United We Stand: Collaborative Detection and

Mitigation of Amplification DDoS Attacks at Scale. In CCS. ACM, 970–987.

[86] FengWei et al. 2023. XNIDS: ExplainingDeep Learning-based Network Intrusion

Detection Systems for Active Intrusion Responses. In Security. USENIX, to
appear.

[87] MatthiasWichtlhuber et al. 2022. IXP scrubber: learning from blackholing traffic

for ML-driven DDoS detection at scale. In SIGCOMM. ACM, 707–722.

[88] WIDE. Accessed Sep. 2023. MAWI Working Group Traffic Archive. http://mawi.

wide.ad.jp/mawi/.

[89] Jiarong Xing et al. 2020. NetWarden: Mitigating Network Covert Channels

while Preserving Performance. In Security. USENIX, 2039–2056.
[90] Jiarong Xing et al. 2021. Ripple: A Programmable, Decentralized Link-Flooding

Defense Against Adaptive Adversaries. In Security. USENIX, 3865–3880.
[91] Limin Yang et al. 2021. CADE: Detecting and Explaining Concept Drift Samples

for Security Applications. In Security. USENIX, 2327–2344.
[92] Qilei Yin et al. 2022. An Automated Multi-Tab Website Fingerprinting Attack.

IEEE Trans. Dependable Secur. Comput. 19, 6 (2022), 3656–3670.
[93] Zeek. Accessed Sep. 2023. An Open Source Network Security Monitoring Tool.

https://zeek.org/.

[94] Jun Zeng et al. 2021. WATSON: Abstracting Behaviors from Audit Logs via

Aggregation of Contextual Semantics. In NDSS. ISOC.
[95] Dimitris Zermas et al. 2017. Fast segmentation of 3D point clouds: A paradigm

on LiDAR data for autonomous vehicle applications. In ICRA. IEEE, 5067–5073.
[96] Menghao Zhang et al. 2020. Poseidon: Mitigating Volumetric DDoS Attacks

with Programmable Switches. In NDSS. ISOC.
[97] Jing Zheng et al. 2018. Realtime DDoS Defense Using COTS SDN Switches

via Adaptive Correlation Analysis. IEEE Trans. Inf. Forensics Secur. 13, 7 (2018),
1838–1853.

[98] Guangmeng Zhou et al. 2023. NetBeacon: An Efficient Design of Intelligent

Network Data Plane. In Security. USENIX, to appear.

[99] Shuofei Zhu et al. 2020. Measuring and Modeling the Label Dynamics of Online

Anti-Malware Engines. In Security. USENIX, 2361–2378.
[100] Shitong Zhu et al. 2020. You do (not) belong here: detecting DPI evasion attacks

with context learning. In CoNEXT. ACM, 183–197.

A SUMMARY OF HYPER-PARAMETERS
We summarize the hyper-parameters of pVoxel in Table 7. Note

that, we validate different settings by conducting cross validation

to eliminate the impact of hyper-parameter bias [4].

Table 7: Hyper-parameter configuration of pVoxel.

Group Hyper-Parameter Description

Voxel

Construction

𝜖 Edge length of the voxel.

𝐸 Minimum number of points.

Community 𝐷 Definition of neighborhood.

Density Analysis

𝑟 Radius of the balls.

𝑑Center Threshold for clustering.

1019

https://www. mlpack.org/
https://www. mlpack.org/
https://developer.nvidia.com/cuda-toolkit
https://github.com/fuchuanpu/pVoxel
https://github.com/fuchuanpu/pVoxel
https://suricata-ids.org/
https://suricata-ids.org/
http://mawi.wide. ad.jp/mawi/
http://mawi.wide. ad.jp/mawi/
https://zeek.org/

	Abstract
	1 Introduction
	2 Problem Statement & Threat Model
	2.1 Problem Statement
	2.2 Threat Model

	3 Designs of pVoxel
	3.1 Key Observations
	3.2 Overview of pVoxel

	4 Design Details
	4.1 Voxel Construction
	4.2 Community Construction
	4.3 Density Analysis
	4.4 Adapting pVoxel to Various Methods

	5 Theoretical Analysis
	5.1 Density Modeling for Traffic Feature Space
	5.2 Stochastic Geometry Analysis

	6 Experimental Evaluation
	6.1 Experiment Setup
	6.2 Accuracy Evaluation
	6.3 Robustness Evaluation
	6.4 Comparative Experiments
	6.5 Throughput and Latency Evaluation
	6.6 Evasion Attacks

	7 Discussion
	7.1 Traffic Detection by Density Based Analysis
	7.2 Integrating pVoxel into Training Pipelines
	7.3 Real-World Case Study

	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Summary of Hyper-Parameters

