
Realtime Robust Malicious Traffic Detection
via Frequency Domain Analysis
Chuanpu Fu1, Qi Li2,3, Meng Shen4, and Ke Xu1,3,5

1Department of Computer Science and Technology, Tsinghua University, Beijing, China
2Institute for Network Sciences and Cyberspace, Tsinghua University, Beijing, China

3Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
4School of Cyberspace Science and Technology, Beijing Institute of Technology, Beijing, China

5Peng Cheng Laboratory, China
{fcp20@mails., qli01@, xuke@}tsinghua.edu.cn, shenmeng@bit.edu.cn

ABSTRACT
Machine learning (ML) basedmalicious traffic detection is an emerg-
ing security paradigm, particularly for zero-day attack detection,
which is complementary to existing rule based detection. However,
the existing ML based detection achieves low detection accuracy
and low throughput incurred by inefficient traffic features extrac-
tion. Thus, they cannot detect attacks in realtime, especially in
high throughput networks. Particularly, these detection systems
similar to the existing rule based detection can be easily evaded
by sophisticated attacks. To this end, we propose Whisper, a re-
altime ML based malicious traffic detection system that achieves
both high accuracy and high throughput by utilizing frequency
domain features. It utilizes sequential information represented by
the frequency domain features to achieve bounded information
loss, which ensures high detection accuracy, and meanwhile con-
strains the scale of features to achieve high detection throughput.
In particular, attackers cannot easily interfere with the frequency
domain features and thusWhisper is robust against various evasion
attacks. Our experiments with 42 types of attacks demonstrate that,
compared with the state-of-the-art systems,Whisper can accurately
detect various sophisticated and stealthy attacks, achieving at most
18.36% improvement of AUC, while achieving two orders of magni-
tude throughput. Even under various evasion attacks,Whisper is
still able to maintain around 90% detection accuracy.

CCS CONCEPTS
• Security and privacy → Intrusion detection systems.

KEYWORDS
Machine learning; malicious traffic detection; frequency domain

ACM Reference Format:
Chuanpu Fu, Qi Li, Meng Shen, and Ke Xu. 2021. Realtime Robust Malicious
Traffic Detection via Frequency Domain Analysis. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security (CCS

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00
https://doi.org/10.1145/3460120.3484585

’21), November 15–19, 2021, Virtual Event, Republic of Korea. ACM, New York,
NY, USA, 16 pages. https://doi.org/10.1145/3460120.3484585

1 INTRODUCTION
Traditional malicious traffic detection identifies malicious traffic by
analyzing the features of traffic according to preconfigured rules,
which aims to protect legitimate Internet users from network at-
tacks [29, 47]. However, the rule-base detection is unable to detect
zero-day attacks [8, 12, 22, 65] though it can achieve high detection
accuracy and detection throughput in high bandwidth networks,
e.g., in Internet backbone networks.

As a promising security paradigm, machine learning based mali-
cious traffic detection has been developed, particularly as a com-
plement of the traditional fixed rule based methods (i.e., signature
based NIDS) [6, 29, 35, 47]. Table 1 summarizes and compares rule
based and typical machine learning based detection methods. Com-
pared with rule based methods, machine learning based methods
can effectively identify zero-day malicious traffic [12, 22]. Unfortu-
nately, due to the processing overhead of machine learning algo-
rithms, existing detection methods achieve low detection through-
put and are unable to process high-rate traffic. As a result, most
of these methods can only be deployed offline [2, 4, 5, 15, 28, 49]
so that they cannot realize realtime detection, particularly in high
performance networks (e.g., in 10 Gigabit networks) [42, 77, 78].

Meanwhile, attackers can easily interfere with and evade these
methods by injecting noises, e.g., packets generated by benign ap-
plications, into attack traffic. Packet-level detection [42, 53, 68]
that analyzes per-packet feature sequences is unable to achieve
robust detection. Actually, even in the absence of the evasion at-
tacks, the packet-level detection is unable to detect sophisticated
zero-day attacks. Traditional flow-level methods [4, 28, 49, 77] de-
tecting attacks by analyzing flow-level statistics incur significant
detection latency. Moreover, evasion attacks can easily bypass the
traditional flow-level detection that uses coarse-grained flow-level
statistics [14, 63]. Thus, realtime robust machine learning based
detection that is ready for real deployment is still missing.

In this paper, we developWhisper that aims to realize realtime
robust malicious traffic detection by utilizing machine learning al-
gorithms. Whisper effectively extracts and analyzes the sequential
information of network traffic by frequency domain analysis [51],
which extracts traffic features with low information loss. Especially,
the frequency domain features of traffic can efficiently represent
various packet ordering patterns of traffic with low feature redun-
dancy. Frequency domain feature analysis with low information

Session 12C: Traffic Analysis and Side Channels CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3431

https://doi.org/10.1145/3460120.3484585
https://doi.org/10.1145/3460120.3484585

Table 1: Comparing the Existing Malicious Traffic Detection Methods

Category of
Detection Systems

Feature Extraction Methods
Zero-Day
Detection

High
Accuracy

Robust
Detection

Realtime
Detection

High
Throughput

Task
Agnostic

Rule based Preconfigured fix rules [6, 29, 35] × ✓ × ✓ ✓ ×

ML based

Packet-level
Packet header fields [53] ✓ ✓ × ✓ × ✓

Context statistics [42] ✓ ✓ × ✓ × ✓

Payload statistics [68] ✓ ✓ × × × ✓

Flow-level
Flow-level statistics [5, 37, 77] ✓ × × × ✓ ×

Application usage statistics [4, 28, 49] ✓ ✓ ×1 × × ×

Frequency domain features, Whisper ✓ ✓ ✓ ✓ ✓ ✓

1 Bartos et al. [4] only considered evasion strategies for malicious Web traffic.

loss enables accurate and robust detection, while low feature redun-
dancy ensures high throughput traffic detection. In particular, since
the frequency domain features represent fine-grained sequential
information of the packet sequences, which are not disturbed by
the injected noise packets,Whisper can achieve robust detection.
However, it is non-trivial to extract and analyze the frequency do-
main features from traffic because of the large-scale, complicated,
and dynamic patterns of traffic [14, 63].

To effectively perform frequency domain traffic feature analysis,
we develop a three-step frequency domain feature extraction. First,
we encode per-packet feature sequences as vectors, which reduces
the data scale and the overhead of subsequent processing. Sec-
ond, we segment the encoded vectors and perform Discrete Fourier
Transformation (DFT) [51] on each frame, which aims to extract
the sequential information of traffic. It allows statistical machine
learning algorithms to easily learn the patterns. Third, we perform
logarithmic transformation on the modulus of the frequency do-
main representation produced by DFT, which prevents float point
overflows incurred by the numerical instability issue [23] during
the training of machine learning.

Furthermore, we propose an automatic parameter selection mod-
ule to select the encoding vector for efficient packet feature encod-
ing. To achieve this, we formulate the per-packet feature encoding
as a constrained optimization problem to minimize mutual interfer-
ence of the per-packet features during frequency domain feature
analysis. We transform the original problem into an equivalent
SMT problem and solve the problem by an SMT solver. It ensures
the detection accuracy by choosing vectors, while effectively re-
ducing manual efforts of selecting encoding vectors. We utilize
statistical machine learning to cluster the patterns according to the
frequency domain features. Due to the rich feature presentation
and lightweight machine learning,Whisper finally realizes realtime
detection of malicious traffic in high throughput networks.

We theoretically prove thatWhisper is more efficient than packet-
level and traditional flow-level detection methods. We conduct a
theoretical analysis to prove that the frequency domain features
ensure bounded information loss, which lays the foundation for
robust detection of Whisper. We develop a traffic feature differential
entropy model, a theoretical framework to measure information loss
of feature extraction from traffic. First, we prove the information
loss in processing packet sequences in the existing flow-level meth-
ods, which further demonstrates that it cannot accurately extract

features. Second, we prove that Whisper maintains the informa-
tion loss in the flow-level methods and validate that the frequency
domain features are more efficient. Third, we prove thatWhisper
effectively reduces feature redundancy by the decrease in the data
scale of features.

We prototype Whisper with Intel’s Data Plane Development Kit
(DPDK) [26]. To extensively evaluate the performance of the Whis-
per prototype, we replay 42 malicious traffic datasets with the high
throughput backbone network traffic. Besides the typical attacks,
we collect and replay 36 new malicious traffic datasets including:
(i) more stealthy attacks, e.g., low-rate TCP DoS attacks [25, 31, 33]
and stealthy network scanning [38]; (ii) complicated multi-stage
attacks, e.g., TCP side-channel attacks [10, 11, 17] and TLS padding
oracle attacks [67]; (iii) evasion attacks, i.e., attackers inject dif-
ferent types of noise packets (i.e., packets generated by various
benign applications) in attack traffic to evade detection. According
to our experimental results, we validate that Whisper can detect
the different types of attacks with AUC ranging between 0.891 and
0.999 while achieving 1,310,000 PPS, i.e., two orders of magnitude
throughput more than the state-of-the-art methods. Particularly,
Whisper can detect various evasion attacks with 35% improvement
of AUC over the state-of-the-art methods. Furthermore,Whisper
achieves realtime detection with bounded 0.06 second detection
latency in high throughput networks.

In summary, the contributions of our paper are five-fold:
• We present Whisper, a novel malicious traffic detection sys-
tem by utilizing frequency domain analysis, which is the
first system built upon machine learning achieving realtime
and robust detection in high throughput networks.

• We perform frequency domain feature analysis to extract the
sequential information of traffic, which lays the foundation
for the detection accuracy, robustness, and high throughput
of Whisper.

• We develop automatic encoding vector selection forWhis-
per to reduce manual efforts for parameter selection, which
ensures the detection accuracy while avoiding manual pa-
rameter setting.

• We develop a theoretical analysis framework to prove the
properties of Whisper.

• We prototype Whisper with Intel DPDK and use the ex-
periments with different types of replayed attack traffic to
validate the performance of Whisper.

Session 12C: Traffic Analysis and Side Channels CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3432

Frequency Domain Feature Extraction Module Statistical
Clustering Module

1 3

Encoding
Vector

Automatic Parameter
Selection Module

High Speed Packet
Parser Module

2

Training Only
Detection

Packets

… …

Per-packet
Feature Sequences

A. Packet Feature
Encoding

…

B. Fourier Trans.
on Frames

Reducing
Feature Complexity

Reducing the Scale
of Features

C. Log. Trans.
on Modulus

L

Addressing
Numeric Instability

⊗ =
Normal

Abnormal

Clustering the
Frequency Domain

Features

Frequency
Domain
Features

Figure 1: High-level design of Whisper.

The rest of the paper is organized as follows: Section 2 introduces
the threat model and the design goals of Whisper. Section 3 presents
the high-level design of Whisper. In Section 4, we present the design
details of Whisper. In Section 5, we conduct a theoretical analysis. In
Section 6, we experimentally evaluate the performances of Whisper.
Section 7 reviews related works and Section 8 concludes this paper.

2 THREAT MODEL AND DESIGN GOALS
2.1 Threat Model
We aim to develop a malicious traffic detection system as a plug-in
module of middlebox. The middlebox forwards the replicated traffic
to the detection system through port mirroring, which is similar to
Cisco SPAN [13]. Thus, the detection system does not interfere with
benign traffic forwarding. We assume that the detection system
does not have any prior knowledge on threats, which means that it
should be able to deal with zero-day attacks [12, 42, 65]. Note that,
we do not consider defenses against the attacks detected byWhisper
and can deploy existing malicious traffic defenses [70, 71, 74] to
throttle the detected traffic.

The developed detection system should be able to determine
whether traffic passing through the middlebox is benign or mali-
cious by monitoring ongoing traffic. We emphasize that the mali-
cious traffic detection is fully different from traffic classification [48,
58, 61, 66] that aims to classify whether traffic is generated by a
certain network application or a certain user. We do not consider
detecting passive attacks that do not cause obvious traffic variance,
e.g., eavesdropping attacks and intercept attacks [45, 46].

2.2 Design Goals
In this paper, we aim to develop a realtime robust malicious traf-
fic detection system, which achieves high detection accuracy and
task-agnostic detection. Particularly, the system should achieve the
following two goals, which are not well addressed in the literature.
Robust Accurate Detection. The system should be able to detect
various zero-day attacks. Especially, it can capture different evasion
attacks, which try to evade detection by deliberately injecting noise
packets, i.e., using various packets generated by benign applications,
into the attack traffic.
RealtimeDetectionwithHighThroughput.The system should
be able to be deployed in high throughput networks, e.g., a 10
Gigabit Ethernet, while incurring low detection latency.

3 OVERVIEW OF WHISPER
In this section, we present our malicious traffic detection system,
Whisper. Whisper achieves high performance detection by encod-
ing per-packet feature sequences as vectors to reduce the overhead
of subsequent feature processing. Meanwhile, it extracts the sequen-
tial information of traffic via frequency domain to ensure detection
accuracy. In particular, since the frequency domain features repre-
sent fine-grained sequential information of the packet sequences,
which are not disturbed by the injected noise packets,Whisper can
achieve robust detection. Figure 1 shows the overview of Whisper.
High Speed Packet Parser Module. High speed packet parser
module extracts per-packet features, e.g., the packet length and
arriving time interval, at high speed to ensure the processing effi-
ciency in both training and detection phases. This module provides
the per-packet feature sequences to the feature extraction module
for extracting the frequency domain features and the automatic
parameter selection module for determining the encoding vector.
Note that, this module dose not extract specific application related
features and thus Whisper achieves task agnostic detection.
Frequency Features ExtractionModule. In both training and de-
tection phases, this module extracts the frequency domain features
from the per-packet feature sequences. This module periodically
polls the required information from the high speed packet parser
module with a fixed time interval. After acquiring the extracted
per-packet features, it encodes the per-packet feature sequences
as vectors and extracts the sequential information via frequency
domain. These features with low redundancy are provided for the
statistical clustering module. However, it is difficult to extract the
frequency domain features of traffic in high throughput networks in
realtime because of the various complicated, irregular, and dynamic
flow patterns [14, 63]. We cannot apply deep learning models, e.g.,
recurrent neural networks, to extract features due to their long
processing latency though they can extract more richer features for
detection. We will present the details of this module in Section 4.1.
Automatic Parameter Selection Module. This module calcu-
lates the encoding vector for the feature extraction module. We
decide the encoding vector by solving a constrained optimization
problem that reduces themutual interference of different per-packet
features. In the training phase, this module acquires the per-packet
feature sequences and solves an equivalent Satisfiability Modulo
Theories (SMT) problem to approximate the optimal solution of
the original problem. By enabling automatic parameter selection,

Session 12C: Traffic Analysis and Side Channels CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3433

we significantly reduce the manual efforts for parameter selection.
Therefore, we can fix and accurately set the encoding vector in
the detection phase. We will describe the details of the module in
Section 4.2.
Statistical Clustering Module. In this module, we utilize a light-
weight statistical clustering algorithm to learn the patterns of the
frequency domain features from the feature extraction module. In
the training phase, this module calculates the clustering centers of
the frequency domain features of benign traffic and the averaged
training loss. In the detection phase, this module calculates the dis-
tances between the frequency domain features and the clustering
centers. Whisper detects traffic as malicious if the distances are
significantly larger than the training loss. We will elaborate on the
statistical clustering based detection in Section 4.3.

4 DESIGN DETAILS
In this section, we present the design details of Whisper, i.e., the
design of three main modules in Whisper.

4.1 Frequency Feature Extraction Module
In this module, we extract the frequency domain features from high
speed traffic. We acquire the per-packet features of 𝑁 packets from
the same flow by polling the high speed packet parser module. We
use the mathematical representation similar to Bartos et al. [4] to
denote the features. We use 𝑠 (𝑖) and𝑀 to indicate the 𝑖𝑡ℎ per-packet
feature and the number of per-packet features, respectively. Matrix
S denotes the per-packet features of all packets, where s𝑖𝑘 is defined
as 𝑖𝑡ℎ packet’s 𝑘𝑡ℎ property:

S = [𝑠 (1) , . . . , 𝑠 (𝑖) , . . . , 𝑠 (𝑀)] =

𝑠11 · · · 𝑠1𝑀
.
.
.

. . .
.
.
.

𝑠𝑁 1 · · · 𝑠𝑁𝑀

 . (1)

Packet Feature Encoding. We perform a linear transformation
𝑤 on S to encode the features of a packet to a real number 𝑣𝑖 . 𝑣
denotes the vector representation of traffic:

𝑣 = S𝑤 = [𝑣1, . . . , 𝑣𝑖 , . . . , 𝑣𝑁]T, 𝑣𝑖 =

𝑀∑
𝑘=1

𝑠𝑖𝑘𝑤𝑘 . (2)

The feature encoding reduces the scale of features, which signifi-
cantly reduces the processing overhead of Whisper. In Section 4.2,
we will describe how Whisper automatically selects parameters for
the encoding vector𝑤 .
Vector Framing. Now we segment the vector representation with
the step length of𝑊seg. The goal of segmentation is to reduce the
complexity of the frequency domain features by constraining the
long-term dependence between packets. If the frames are exces-
sively long, the frequency domain features will become too complex
to learn in the statistical learning module. 𝑁𝑓 denotes the number
of the frames. We obtain the following equations:

𝑓𝑖 = 𝑣 [[(𝑖 − 1) ×𝑊seg : 𝑖 ×𝑊seg]] (1 ≤ 𝑖 ≤ 𝑁𝑓), (3)

𝑁𝑓 =

⌊
𝑁

𝑊seg

⌋
. (4)

Discrete Fourier Transformation. In the next step, we perform
the Discrete Fourier Transformation (DFT) on each frame 𝑓𝑖 to
extract the sequential information via frequency domain and reduce
the information loss incurred by the flow-level methods. We can
acquire the frequency features of each frame as follows:1

𝐹𝑖 = F (𝑓𝑖) (1 ≤ 𝑖 ≤ 𝑁𝑓), (5)

𝐹𝑖𝑘 =

𝑊seg∑
𝑛=1

𝑓𝑖𝑛𝑒
−𝑗 2𝜋 (𝑛−1) (𝑘−1)

𝑊seg (1 ≤ 𝑘 ≤𝑊seg), (6)

where 𝐹𝑖𝑘 is a frequency component of 𝑖𝑡ℎ frame with the frequency
of 2𝜋 (𝑘 − 1)/𝑊seg. Note that, all frequency features output by DFT
are vectors with complex numbers, which cannot be used directly
as the input for machine learning algorithms.
Calculating theModulus of Complex Numbers.We transform
the complex numbers to real numbers by calculating the modu-
lus for the frequency domain representation. For simplicity, we
transform 𝐹𝑖𝑘 to a coordinate plane representation:

𝐹𝑖𝑘 = 𝑎𝑖𝑘 + 𝑗𝑏𝑖𝑘 , (7)
𝑎𝑖𝑘 =

𝑊seg∑
𝑛=1

𝑓𝑖𝑛 cos 2𝜋 (𝑛−1) (𝑘−1)
𝑊seg

𝑏𝑖𝑘 =

𝑊seg∑
𝑛=1

−𝑓𝑖𝑛 sin 2𝜋 (𝑛−1) (𝑘−1)
𝑊seg

.

(8)

We calculate the modulus for 𝐹𝑖𝑘 as 𝑝𝑖𝑘 in (9). For the 𝑖𝑡ℎ frame,
we select the first half of the modulus as vector 𝑃𝑖 . Because the
transformation results of DFT are conjugate, the first half and the
second half are symmetrical. Thus, we can obtain:

𝑝𝑖𝑘 = 𝑎2
𝑖𝑘

+ 𝑏2
𝑖𝑘

(1 ≤ 𝑘 ≤𝑊seg), (9)

𝑃𝑖 = [𝑝𝑖1, . . . , 𝑝𝑖𝐾𝑓
]T (𝐾𝑓 =

⌊
𝑊seg
2

⌋
+ 1), (10)

𝐹𝑖𝑘 = 𝐹 ∗
𝑖 (𝑊seg−𝑘) ⇒ 𝑝𝑖𝑘 = 𝑝𝑖 (𝑊seg−𝑘) . (11)

Logarithmic Transformation. To make the frequency domain
features to be numerically stable [23] and prevent float point over-
flow during the machine learning model training, we perform a
logarithmic transformation on 𝑃𝑖 , and use constant 𝐶 to adjust the
range of the frequency domain features:

𝑅𝑖 =
ln(𝑃𝑖 + 1)

𝐶
(1 ≤ 𝑖 ≤ 𝑁𝑓), (12)

R𝐾𝑓 ×𝑁𝑓
= [𝑅1, . . . , 𝑅𝑖 , . . . , 𝑅𝑁𝑓

] . (13)
As the output of the features extraction module, the 𝑖𝑡ℎ column
component of R is the frequency domain features of the 𝑖𝑡ℎ frame.
Matrix R is the input for the statistical clustering module.

Take an example, we collect three types of benign traffic (90%)
mixedwith themalicious traffic (10%) inWide Area Network (WAN).
We select 1500 continuous packets (𝑁 = 1500) from each type of
traffic and extract three per-packet features (𝑀 = 3) including the
packet length, the protocol type, and the arriving time interval.
We fix the framing length 𝑊seg = 30. Therefore, 𝑁𝑓 = 50 and
𝐾𝑓 = 16. Then we perform a min-max normalization operation on
the frequency domain features R and map the results to the RGB
space. We visualize the frequency domain features that are similar
to the Spectrogram in speech recognition [1]. As shown in Figure 2,
1 𝑗 denotes an imaginary number.

Session 12C: Traffic Analysis and Side Channels CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3434

0 10 20 30 40 50
0

5

10

15

Side-channel Attack Benign Encrypted Traffic

(a) Benign TLS traffic and side-channel attack traffic
0 10 20 30 40 50

0

5

10

15

SSL DoS Attack Benign Video Traffic

(b) Benign UDP traffic and SSL DoS traffic
0 10 20 30 40 50

0

5

10

15

Low-rate DoS Attack Benign Outbound NAT Traffic

(c) Outbound NAT traffic and LowRate TCP DoS traffic

Figure 2:Wemap the frequency domain features, which are extracted from the trafficwith three types of typical attacks, to the
RGB space, and observe that a small number of malicious packets incur significant changes in the frequency domain features.

we observe that the area associated with the frequency domain
features of the malicious traffic is significantly lighter than that of
the benign traffic.

4.2 Automatic Parameters Selection Module
Now we determine the encoding vector𝑤 for the feature extraction
module that uses 𝑤 to encode the per-packet feature sequences
and acquires the vector representation of the traffic. In general, we
formulate the encoding vector selection problem as a constrained
optimization problem, and transform the original problem into an
equivalent SMT problem. We approximate the optimal solution of
the original problem through solving the SMT problem.

We assume that we can find a set of continuous functions to
describe the changes of each kind of the per-packet feature 𝑠 (𝑖) .
Thus, we consider all obtained per-packet features are the samples
of the continuous functions, which are denoted asℎ𝑖 (𝑡) (1 ≤ 𝑖 ≤ 𝑀).
We need to find a vector 𝑤 to amplify and superpose all these
functions. Our key optimization objective is to minimize mutual
interference and bound the overall range when superposing the
functions. We can first bound the range of encoding vector𝑤 and
the range of the superposition function in the following:

𝑊𝑚𝑖𝑛 ≤ 𝑤𝑖 ≤𝑊𝑚𝑎𝑥 (1 ≤ 𝑖 ≤ 𝑀), (14)
𝑀∑
𝑖=1

𝑤𝑖ℎ𝑖 (𝑡) ≤ 𝐵, (15)

where𝑊𝑚𝑖𝑛 ,𝑊𝑚𝑎𝑥 , 𝐵 are constants. We constrain the order pre-
serving properties of the functions to ensure that different types
of per-packet features do not interfere with each other when the
feature extraction module performs packet encoding:

𝑤𝑖ℎ𝑖 (𝑡) ≤ 𝑤𝑖+1ℎ𝑖+1 (𝑡) (1 ≤ 𝑖 ≤ 𝑀 − 1) . (16)
Second, we optimize𝑤 to maximize the distances between the

functions so that we can minimize the mutual interference of the
per-packet features and bound the ranges of all the functions. There-
fore, under the constrains of (14) (15) (16), we obtain the optimiza-
tion object:

�̂� = argmax
∫ +∞

0
𝑤𝑀ℎ𝑀 (𝑡) −𝑤1ℎ1 (𝑡)d𝑡 −

𝑀−1∑
𝑖=2

∫ +∞

0
|2𝑤𝑖ℎ𝑖 (𝑡) −𝑤𝑖+1ℎ𝑖+1 (𝑡) −𝑤𝑖−1ℎ𝑖−1 (𝑡) |d𝑡 . (17)

In practice, we cannot determine the convexity of the optimiza-
tion object because the closed-form representations of ℎ𝑖 (𝑡) are
not available. Thus, we reform the origin constrained optimization
problem to a Satisfiability Modulo Theories (SMT) problem (19)
with optimization object (18) to approximate the optimal solution

of (17). For the 𝑖𝑡ℎ per-packet feature, we perform a min-max nor-
malization on 𝑠𝑖 and use 𝑛𝑖 to indicate the normalized vector. We
list constrains (19). And we obtain the satisfied (SAT) solutions of
the SMT problem and maximize the following objective:

𝑤 = argmax
𝑁∑
𝑘=1

𝑤𝑀𝑛𝑀𝑘 −𝑤1𝑛1𝑘 −

𝑀−1∑
𝑖=2

2𝑤𝑖𝑛𝑖𝑘 −𝑤𝑖−1𝑛 (𝑖−1)𝑘 −𝑤𝑖+1𝑛 (𝑖+1)𝑘 , (18)

subjects to:

𝑤𝑖 ∈ [𝑊𝑚𝑖𝑛,𝑊𝑚𝑎𝑥]
𝑀∑
𝑖=1

𝑤𝑖𝑛𝑖𝑘 ≤ 𝐵

𝑤𝑖𝑛𝑖𝑘 ≤ 𝑤𝑖+1𝑛 (𝑖+1)𝑘
2𝑤𝑖𝑛𝑖𝑘 ≤ 𝑤𝑖−1𝑛 (𝑖−1)𝑘 +𝑤𝑖+1𝑛 (𝑖+1)𝑘 .

(19)

Note that, we reform the absolute value operation in the opti-
mization object (17) into constrains (19) because most SMT solvers
do not support absolute value operations.

4.3 Statistical Clustering Module
Now we utilize the statistical clustering algorithm to learn the pat-
terns of the frequency domain features obtained from the feature
extraction module with the selected parameters. We train the statis-
tical clustering algorithm with only benign traffic. In the training
phase, this module calculates the clustering centers of the frequency
domain features and the averaged training loss. In order to improve
the robustness of Whisper and reduce false positive caused by the
extreme values, we segment the frequency domain feature matrix
R with a sampling window of length𝑊𝑤𝑖𝑛 . We use 𝑁𝑡 to denote
the number of samples and 𝑙 to denote the start points. We average
the sampling window on the dimension of the feature sequence
and use 𝑟𝑖 to indicate the input of the clustering algorithm. We can
obtain:

𝑙 = 𝑖𝑊𝑤𝑖𝑛 (0 ≤ 𝑖 < 𝑁𝑡), 𝑁𝑡 =

⌊
𝑁𝑓

𝑊𝑤𝑖𝑛

⌋
, (20)

𝑟𝑖 = mean(R[[𝑙 : 𝑙 +𝑊𝑤𝑖𝑛]]). (21)

We perform the statistical clustering algorithm and acquire all
clustering centers to represent the benign traffic patterns. We use
𝐶𝑘 to denote the 𝐾𝐶 clustering centers, where (1 ≤ 𝑘 ≤ 𝐾𝐶), and
then calculate the averaged training loss. For each 𝑟𝑖 , we find the
closest clustering center as 𝐶𝑖 and we take averaged L2-norm as

Session 12C: Traffic Analysis and Side Channels CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3435

the training loss:

𝐶𝑖 = argmin
𝐶𝑘

∥𝐶𝑘 − 𝑟𝑖 ∥2 (1 ≤ 𝑖 ≤ 𝑁𝑡), (22)

train_loss = 1
𝑁𝑡

𝑁𝑡∑
𝑖=1

𝑟𝑖 −𝐶𝑖2 . (23)

In the detection phase, this module calculates the distances be-
tween the frequency domain features of traffic and the clustering
centers. For each given frequency domain feature, we sample 𝑁𝑡
segments on R with length𝑊𝑤𝑖𝑛 , which is the same as the training
phase. We can find the closest clustering center 𝐶𝑖 as an estimate
of 𝑟𝑖 . We calculate the L2-norm as the estimation error:

loss𝑖 = min(∥𝑟𝑖 −𝐶𝑘 ∥2) (1 ≤ 𝑘 ≤ 𝐾𝐶). (24)

If the estimation error loss𝑖 ≥ (𝜙 × train_loss), we can conclude
that the statistical clustering algorithm cannot understand the fre-
quency domain features of the traffic, which means the traffic is
malicious.

5 THEORETICAL ANALYSIS
In this section, we conduct a theoretical analysis to prove thatWhis-
per achieves lower information loss in feature extraction than the
packet-level and the traditional flow-level methods, which ensures
thatWhisper extracts traffic features accurately. Due to the page
limitations, all proofs can be found in Appendix A - D. Moreover,
we analyze the scale of the frequency domain features and the
algorithmic complexity of Whisper.

5.1 Information Loss in Whisper
Traffic Feature Differential Entropy Model. First, we develop
the traffic feature differential entropy model, a theoretical analysis
framework that evaluates the efficiency of traffic features by ana-
lyzing the information loss incurred by feature extractions from an
information theory perspective [39]. The framework aims to (i)
model an observable packet-level feature as a stochastic process
and observed features extracted from ongoing packets as the state
random variables of the process; (ii) model feature extraction meth-
ods as algebraic transformations of the state random variables; (iii)
evaluate the efficiency of the features by measuring the information
loss during the transformations.

We model a particular type of packet-level feature (e.g., the
packet length, and the time interval) as a discrete time stochastic
process S, which is used to model traffic feature extraction by
different detection methods. We use a random variable vector ®𝑠 =
[𝑠1, 𝑠2, . . . , 𝑠𝑁] to denote a packet-level feature sequence extracted
from 𝑁 continuous packets, i.e., 𝑁 random variables from S. f
indicates a feature extraction function that transforms the original
features ®𝑠 for the input of machine learning algorithms. According
to Table 1, in the packet-level methods, f outputs the per-packet
features sequence ®𝑠 directly. In the traditional flow-level methods,
f calculates a statistic of ®𝑠 . InWhisper, f calculates the frequency
domain features of ®𝑠 . We assume that S is a discrete time Gaussian
process, i.e., S ∼ GP(𝑢 (𝑖), Σ(𝑖, 𝑗)). For simplicity, we mark Σ(𝑖, 𝑖)
as 𝜎 (𝑖). We assume S is an independent process and then we can
obtain the covariance function of S, i.e., 𝜅 (𝑥𝑖 , 𝑥 𝑗) = 𝜎 (𝑖)𝛿 (𝑖, 𝑗). 𝑝𝑖
denotes the probability density function of 𝑠𝑖 . We use differential

entropy [39] to measure the information in the features using the
unit of nat:

H(𝑠𝑖) = −
∫ +∞

−∞
𝑝𝑖 (𝑠) ln 𝑝𝑖 (𝑠)d𝑠 = ln𝐾𝜎 (𝑖), (25)

where 𝐾 =
√
2𝜋𝑒 . We assume that the variance of each 𝑠𝑖 is large

enough to ensure the significant change because a kind of stable
packet-level feature is meaningless to be extracted and analyzed.
Thus, we establish non-negative differential entropy assumption,
i.e., 𝜎 (𝑖) ≥ 𝐾−1 to ensure H(𝑠𝑖) ≥ 0.
Analysis of Traditional Flow-levelDetectionMethods.Wean-
alyze the information loss in the feature extraction of the traditional
flow-level methods. We consider three types of widely used statisti-
cal features in the traditional flow-level methods [5, 24, 37, 43, 77]:
(i) min-max features, the feature extraction function f outputs the
maximum or minimum value of ®𝑠 to extract flow-level features of
traffic and produces the output for machine learning algorithms. (ii)
average features, f calculates the average number of ®𝑠 to obtain the
flow-level features. (iii) variance features, f calculates the variance
of ®𝑠 for machine learning algorithms. We analyze the information
loss when performing the statistical feature extraction function f.
Based on the probability distribution of the state random variables
and Equation (25), we obtain the information loss of flow-level
statistical features in the traditional flow-level detection over the
packet-level detection and have the following properties of the
features above.

Theorem 1. (The Lower Bound for Expected Information Loss of
the Min-Max Features). For the min-max statistical features, the
lower bound of expected information loss is:

E[ΔHflow−minmax] ≥ (𝑁 − 1) ln𝐾E[𝜎] . (26)

Theorem 2. (The Lower Bound for Expected Information Loss
of the Average Features). The lower bound for the expectation of
information loss in the average features is:

E[ΔHflow−avg] ≥ ln
√
𝑁𝐾𝑁−1E[𝜎]𝑁−1 . (27)

We can obtain that the equality of Theorem 1 and Theorem 2
holds iff the stochastic process S is strictly stationary.

Theorem 3. (The Lower Bound and Upper Bound for the Infor-
mation Loss of the Average Features). For the average features, the
upper and lower bounds of the information loss in the metric of
differential entropy is:

ln𝑁 ≤ ΔHflow−avg ≤ ln
√
𝑁𝐾𝑁−1𝑄 (𝜎)𝑁−1, (28)

where 𝑄 (𝜎) is the square mean of the variances of the per-packet
features sequence ®𝑠 .

Theorem 4. (The Information Loss of the Variance Features).
When the Gaussian process S is strictly stationary with zero mean,
i.e., 𝑢 (𝑖) = 0 and 𝜎 (𝑖) = 𝜎 , for the variance features, an estimate of
the information loss is:

ΔHflow−var = 𝑁 ln𝐾𝜎 − ln
√
4𝜋𝑁 3

𝜎2
. (29)

According to the theorems above, we can conclude that the
information loss in the traditional flow-level detection methods
increases approximately linearly with the length of per-packet
feature sequences. Thus, comparing with the packet-level methods,
the traditional flow-level methods cannot effectively extract the

Session 12C: Traffic Analysis and Side Channels CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3436

features of traffic. Although the traditional flow-level methods can
adopt multiple statistical features [4, 76], the number of packets in
the feature extraction (𝑁) is significantly larger than the number
of features. In Section 6.3, we will use experiments to show that
the traditional flow-level methods achieve low detection accuracy.
Analysis of Whisper. Different from the traditional flow-level
methods, Whisper encodes per-packet features as vectors and per-
forms DFT on the vectors to extract the frequency domain features
of the traffic. We prove the low information loss property of Whis-
per by comparing with the packet-level methods (see Theorem 5)
and the traditional flow-level methods (see Theorem 6) by leverag-
ing the bounds of the information loss in Theorem 1 - 4.

Theorem 5. (An Estimation of the Information Loss ofWhisper
over the Packet-level Methods). When the Gaussian process S is
strictly stationary with zero mean, i.e., 𝑢 (𝑖) = 0 and 𝜎 (𝑖) = 𝜎 , we
can acquire an estimate of the information loss inWhisper when
ignoring the logarithmic transformation using:

ΔHWhisper = 𝑁 ln 𝜎

𝑤2
𝑖

√
𝜋

2𝑒 − 𝑁 ln𝑁, (30)

where𝑤𝑖 is the 𝑖𝑡ℎ element of the encoding vector𝑤 .
Theorem 6. (An Estimation of the Information Loss Reduction of

Whisper over the Traditional Flow-level Methods). With the same
assumption in Theorem 5, compared with the traditional flow-level
methods that extract the average features, Whisper reduces the
information loss with an estimation:

ΔHWhisper−avg = ΔHflow−avg − ΔHWhisper (31)

= 𝑁 ln 2𝑒𝑤2
𝑖 𝑁 + ln

√
𝑁

𝐾𝜎
. (32)

Similarly,Whisper reduces the information loss in the flow-level
methods that use min-max features and variance features. We
present the estimations of reduced information loss in the met-
ric of differential entropy as follows:

ΔHWhisper−minmax = 𝑁 ln 2𝑒𝑤2
𝑖 𝑁 − ln𝐾𝜎, (33)

ΔHWhisper−var = 𝑁 ln 2𝑒𝑤2
𝑖 𝑁 − ln

√
4𝜋𝑁 3

𝜎2
. (34)

According to Theorem 5, by using the packet-level methods as a
benchmark, we conclude that Whisper almost has no information
loss when the number of packets involved in feature extraction is
large. Thus, the feature efficiency of Whisper is not worse than
the packet-level methods. Moreover, the packet-level methods have
a large feature scale that results in high overhead for machine
learning (proof in Section 5.2).

Based on Theorem 6, we conclude that the reduction of the in-
formation loss in the traditional flow-level methods increases more
than linearly. Thus, by reducing the information loss in the tradi-
tional flow-level methods, Whisper can extract features from ongo-
ing traffic more effectively than the traditional flow-level methods.
In Section 6.3, we will measure the detection accuracy improvement
of Whisper by using experiments.

5.2 Analysis of Scalability and Overhead
Feature Scale Reduction of Whisper. Original per-packet fea-
tures are compressed in Whisper.Whisper reduces the input data

Table 2: Complexity of the Feature Extraction Module

Steps Time Complexity Space Complexity

Packet Encoding 𝑂 (𝑀𝑁) 𝑂 (𝑀𝑁)
Vector Framing 𝑂 (1) 𝑂 (1)

DFT Transformation 𝑂 (𝑁 log𝑊seg) 𝑂 (𝑊seg)
Calculating Modulus 𝑂 (𝑁 /2) 𝑂 (𝑁)
Log Transformation 𝑂 (𝑁 /2) 𝑂 (1)

Total 𝑂 (𝑀𝑁 + 𝑁 log𝑊seg) 𝑂 (𝑀𝑁 +𝑊seg)

scale and the processing overhead in machine learning algorithms.
The compressed frequency domain features allow us to apply the
machine learning algorithm in high throughput networks in prac-
tice. Compared with the packet-level methods,Whisper achieves
high compression ratio 𝐶𝑟 with a theoretical lower bound:

𝐶𝑟 =
size(R)
size(S) =

𝐾𝑓 𝑁𝑓

𝑀𝑁
≥

(𝑁
𝑊seg

) (𝑊seg
2 + 1)

𝑀𝑁
≥ 1

2𝑀 . (35)

By reducing the feature scale, Whisper significantly reduces the
processing overhead in the packet-level methods and achieves high
throughput. In Section 6.5, we will show the experimental results
of Whisper to validate the analysis results.
Overhead of Feature Extraction inWhisper.Whisper incurs a
low computational overhead of extracting the frequency domain fea-
tures from traffic. Particularly,Whisper does not have an operation
with high time or space complexity that is higher than quadratic
terms. The time complexity and space complexity of Whisper are
shown in Table 2.

According to Table 2, the computational complexity of Whisper
is proportional to the number of packets 𝑁 . Most of the consump-
tion is incurred by matrix multiplications in the packet encoding.
Compared with the encoding, performing DFT on frames has rela-
tively less computation overhead and consumes less memory space
because of the high speed DFT operation, i.e., Fast Fourier Trans-
formation (FFT). In Section 6.5, we will validate the complexity of
Whisper by using the experimental results.

6 EXPERIMENTAL EVALUATION
In this section, we prototypeWhisper and evaluate its performance
by using 42 real-world attacks. In particular, the experiments will
answer the three questions:

(1) If Whisper achieves higher detection accuracy than the state-
of-the-art method? (Section 6.3)

(2) If Whisper is robust to detect attacks even if an attackers try
to evade the detection of Whisper by leveraging the benign
traffic? (Section 6.4)

(3) If Whisper achieves high detection throughput and low de-
tection latency? (Section 6.5)

6.1 Implementation
We prototypeWhisper using C/C++ (GCC version 5.4.0) and Python
(version 3.8.0) with more than 3,500 lines of code (LOC). The source
code of Whisper can be found in [21].
High Speed Packet ParserModule.We leverage Intel Data Plane
Development Kit (DPDK) version 18.11.10 LTS [26] to implement

Session 12C: Traffic Analysis and Side Channels CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3437

Table 3: Recommended Hyper-parameter Configurations

Hyper-Parameters Description Value

𝑊seg Framing length 50
𝑊𝑤𝑖𝑛 Sampling window length 100
𝐶 Adjusting frequency domain features 10
𝐾𝐶 Number of clustering centers 10

[𝑊𝑚𝑖𝑛,𝑊𝑚𝑎𝑥] Range of the encoding vector [10, 103]
𝐵 Upper bound of the encoded features 105

the data plane functions and ensure high performance packet pars-
ing in high throughput networks. We bind the threads of Whisper
on physical cores using DPDK APIs to reduce the cost of context
switching in CPUs. As discussed in Section 4.1, we parse the three
per-packet features, i.e., lengths, timestamps, and protocol types.
Frequency Domain Feature Extraction Module. We leverage
PyTorch [52] (version 1.6.0) to implement matrix transforms (e.g.,
encoding and Discrete Fourier Transformation) of origin per-packet
features and auto-encoders in baseline methods.
Statistical Clustering Module.We leverage K-Means as the clus-
tering algorithmwith themlpack implementation (version 3.4.0) [44]
to cluster the frequency domain features.
Automatic Parameter Selection.We use Z3 SMT solver (version
4.5.1) [40] to solve the SMT problem in Section 4.2, i.e., determining
the encoding vector in Whisper.

Moreover, we implement a traffic generating tool using Intel
DPDK to replay malicious traffic and benign traffic simultaneously.
The hyper-parameters used in Whisper are shown in Table 3.

6.2 Experiment Setup
Baselines. To measure the improvements achieved by Whisper,
we establish three baselines:

• Packet-level Detection.We use the state-of-the-art machine
learning based detection method, Kitsune [42]. It extracts
per-packet features via flow state variables and feeds the
features to auto-encoders. We use the open source Kitsune
implementation [41] and run the system with the same hard-
ware as Whisper.

• Flow-level Statistics Clustering (FSC). As far as we know,
there is no flow-level malicious traffic detection method that
achieves task agnostic detection. Thus, we establish 17 flow-
level statistics according to the existing studies [4, 5, 30, 37,
43, 77] including the maximum, minimum, variance, mean,
range of the per-packet features in Whisper, flow durations,
and flow byte counts. We perform a normalization for the
flow-level statistics. For a fair comparison, we use the same
clustering algorithm to Whisper.

• Flow-level Frequency Domain Features with Auto-Encoder
(FAE). We use the same frequency domain features as Whis-
per and an auto-encoder model with 128 hidden states and
Sigmoid activation function, which is similar to the auto-
encoder model used in Kitsune. For the training of the auto-
encoder, we use the Adam optimizer and set the batch size
as 128, the training epoch as 200, the learning rate as 0.01.

Testbed.We conduct theWhisper, FSC, and FAE experiments on a
testbed built on a DELL server with two Intel Xeon E5645 CPUs (2

× 12 cores), Ubuntu 16.04 (Linux 4.15.0 LTS), 24GB memory, one
Intel 10 Gbps NIC with two ports that supports DPDK, and Intel
850nm SFP+ laser ports for optical fiber connections. We configure
8GB huge page memory for DPDK (4GB/NUMA Node). We bind 8
physical cores for 8 NIC RX queues to extract per-packet features
and the other 8 cores forWhisper analysis threads, which extract
the frequency domain features of traffic and perform statistical
clustering. In summary, we use 17 of 24 cores to enableWhisper.
Note that, since Kitsune cannot handle high-rate traffic, we evaluate
it with offline experiments on the same testbed.

We deploy DPDK traffic generators on the other two servers
with similar configurations. The reason why we use two traffic gen-
erators is that the throughput of Whisper exceeds the physical limit
of 10 Gbps NIC, i.e., 13.22 Gbps. We connect two flow generators
with optical fibers to generate high speed traffic.
Datasets. The datasets used in our experiments are shown in Ta-
ble 4. We use three recent datasets from the WIDE MAWI Gigabit
backbone network [69]. In the training phase, we use 20% benign
traffic to train the machine learning algorithms. We use the first
20% packets in MAWI 2020.06.10 dataset to calculate the encoding
vector via solving the SMT problem (see Section 4.2). Meanwhile,
we replay four groups of malicious traffic combined with the benign
traffic on the testbed:

• Traditional DoS and Scanning Attacks.We select five active at-
tacks from the Kitsune 2 [42] and a UDP DoS attack trace [7]
to measure the accuracy of detecting high-rate malicious
flow. To further evaluate Whisper, we collect new malicious
traffic datasets on WAN including Multi-Stage TCP Attacks,
Stealthy TCP Attacks, and Evasion Attacks.

• Multi-Stage TCP Attacks. TCP side-channel attacks exploit
the protocol implementations and hijack TCP connections
by generating forged probing packets. Normally, TCP side-
channel attacks have several stages, e.g., active connection
finding, sequence number guessing, and acknowledgement
number guessing.We implement two recent TCP side-channel
attacks [10, 17], which have different numbers of attack
stages. Moreover, we collect another multi-stage attack, i.e.,
TLS padding oracle attack [67].

• Stealthy TCP Attacks. The low-rate TCP DoS attacks gen-
erate low-rate burst traffic to trick TCP congestion control
algorithms and slow down their sending rates [25, 32, 33].
Low-rate TCP DoS attacks are more stealthy than flooding
based DoS attacks. We construct the low-rate TCP DoS at-
tacks with different sending rates. Moreover, we replay other
low-rate attacks, e.g., stealthy vulnerabilities scanning [38].

• Evasion Attacks. We use evasion attack datasets to evalu-
ate the robustness of Whisper. Attackers can inject noise
packets (i.e., benign packets of network applications) into
malicious traffic to evade detection [19]. For example, an
attacker can generate benign TLS traffic so that the attacker
sends malicious SSL renegotiation messages and the benign
TLS packets simultaneously. Basing on the typical attacks
above, we adjust the ratio of malicious packets and benign
packets, i.e., the ratio of 1:1, 1:2, 1:4, and 1:8, and the types

2We exclude passive attack datasets without malicious flow but only victim flow. Note
that, in our threat model we do not consider attacks without malicious packets.

Session 12C: Traffic Analysis and Side Channels CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3438

Table 4: Attack Dataset Configurations

Group Label Attack Description
Benign
Traffic1

Benign
Flow Rate

Malicious
Flow Rate

Ratio of
Malicious2

Traditional
Attacks

SYN DoS TCP SYN flooding Deny-of-Service attack. 2020.6.10 5.276 Gbps 23.04 Mbps 0.0858
Fuzz Scan Scanning for vulnerabilities in protocols. 2020.6.10 5.276 Gbps 27.92 Mbps 0.0089
OS Scan Scanning for active hosts with vulnerable operating systems. 2019.1.2 4.827 Gbps 0.960 Mbps 0.0045
SSL DoS SSL renegotiation messages flooding Deny-of-Service attack. 2020.1.1 7.666 Gbps 21.60 Mbps 0.0128
SSDP DoS SSDP flooding Deny-of-Service attack. 2020.1.1 7.666 Gbps 27.20 Mbps 0.0321
UDP DoS High-rate UDP traffic blocks bottleneck links. 2019.1.2 4.827 Gbps 2.422 Gbps 0.4712

Multi-stage
TCP Attacks

IPID SC Side-channel attack via IPID assignments, disclosed in 2020 [17]. 2020.6.10 5.276 Gbps 0.138 Mbps 0.0007
ACK SC ACK rate limit side-channel attack, disclosed in 2016 [10]. 2019.1.2 4.827 Gbps 1.728 Mbps 0.0091

TLS Oracle TLS padding oracle attack [67]. 2020.1.1 7.666 Gbps 1.626 Mbps 0.0031

Stealthy
TCP Attacks

LRDoS 0.2 UDP burst triggers TCP retransmissions (burst interval 0.2s). 2019.1.2 4.827 Gbps 0.115 Gbps 0.0228
LRDoS 0.5 UDP burst triggers TCP retransmissions (burst interval 0.5s). 2019.1.2 4.827 Gbps 0.046 Gbps 0.0112
LRDoS 1.0 UDP burst triggers TCP retransmissions (burst interval 1.0s). 2019.1.2 4.827 Gbps 0.023 Gbps 0.0055
IPID Scan Prerequisite scanning of the IPID side-channel attack [17]. 2020.6.10 5.276 Gbps 0.214 Mbps 0.0010
TLS Scan TLS vulnerabilities scanning [38]. 2020.6.10 5.276 Gbps 0.046 Gbps 0.0071

1 The Benign Traffic column shows the identifier (date) of WIDE MAWI traffic datasets [69].
2 The Ratio of Malicious column shows the packet number ratio of benign and malicious traffic.

of benign traffic to generate 28 datasets. For comparison, we
replay the evasion attack datasets with the same background
traffic in Table 4.

Metrics. We use the following metrics to evaluate the detection
accuracy: (i) true-positive rates (TPR), (ii) false-positive rates (FPR),
(iii) the area under ROC curve (AUC), (vi) equal error rates (EER).
Moreover, we measure the throughput and processing latency to
demonstrate that Whisper achieves realtime detection.

6.3 Detection Accuracy
In this experiment, we evaluate the detection accuracy of different
systems by measuring TPR, FPR, AUC, and EER. Table 5 illustrates
the results. We find thatWhisper can detect all 14 attacks with AUC
ranging between 0.932 and 0.999 and EER within 0.201. Figure 3
shows the scatter plots of clustering results. For simplicity, we select
two datasets with 2,000 benign and 2,000 malicious frequency do-
main features and choose two dimensions of the frequency domain
features randomly. We observe that the malicious traffic has fre-
quency domain features far from the clustering centers. We present
the ROC curves of two datasets in Figure 4. We find that, by lever-
aging the frequency domain features, detectors can detect low-rate
malicious traffic in high throughput networks, e.g., Whisper and
FAE detect 138 Kbps IPID side-channel malicious traffic with 0.932
and 0.973 AUC under the 5.276 Gbps backbone network traffic,
respectively. The increment of burst intervals in low-rate TCP DoS
attacks causes 9.0%, 7.0%, 0.10%, and 0.06% AUC decrease for Kit-
sune, FSC, FAE, andWhisper, respectively. Thus, compared with
the packet-level and the traditional flow-level detection, burst in-
tervals in the low-rate TCP DoS attacks have a negligible effect on
the detection accuracy of Whisper and FAE. However, FAE cannot
effectively detect some sophisticated attacks, e.g., the ACK throt-
tling side-channel attack and the TLS padding oracle attack, and
only achieves only 39.09% AUC of Whisper. Note that, Whisper
accurately identifies 2.4 Gbps high-rate malicious flows among 4.8
Gbps traffic online.

Kitsune cannot effectively detect the side-channel attacks be-
cause it is unable to maintain enough states for the traffic. We find

that Kitsune’s offline processing speeds in the datasets are less than
4000 packets per second (PPS), and the expected time to complete
the detection is more than 2 hours. The side-channel attacks trick
Kitsune to maintain massive flow states by sending a larger number
of probing packets. Different from using flow states to preserve
the flow context information in Kitsune, Whisper preserves the
flow-level context information via the frequency domain analysis,
which ensures the ability to detect such attacks.

We observe that, with the same ML algorithm, i.e., auto-encoder,
the frequency domain features achieve higher accuracy (at most
15.72% AUC improvements and 95.79% EER improvements) than the
state-of-the-art packet-level features and can detect more stealthy
attacks. Under the five types of stealthy TCP attacks, Kitsune
achieves 0.837 - 0.920 AUC and cannot detect the low-rate scanning
of the side-channel attack. Moreover, compared with FSC, Whis-
per achieves at most 65.26% AUC improvements and 98.80% EER
improvements. Thus, we can conclude that the frequency domain
features allowWhisper to achieve higher detection accuracy and
outperform the packet-level methods and the traditional flow-level
methods.

Moreover, we study the impact of the automatic parameter selec-
tion on the detection accuracy. We manually set encoding vectors
to compare the results with automatically selected parameters. We
use six attacks as validation sets for the manually selected encoding
vector, and use 13 attacks to test the generalization of the manually
selected parameters. Figure 5 shows the detection accuracy in terms
of parameter settings. We observe that the automatic parameter
selection module achieves 9.99% AUC improvements and 99.55%
EER improvements compared with manual parameter selection.

6.4 Robustness of Detection
In order to validate the robustness of Whisper, we assume that at-
tackers know the existence of malicious traffic detection. Attackers
can construct evasion attacks, i.e., injecting various benign traffic,
to evade the detection. In the experiments, for simplicity, we as-
sume that attackers inject benign TLS traffic and UDP video traffic

Session 12C: Traffic Analysis and Side Channels CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3439

Table 5: Detection Accuracy of Whisper and Baselines on 14 Attacks

Methods Kitsune FSC FAE Whisper

Metrics TPR FPR AUC EER TPR FPR AUC EER TPR FPR AUC EER TPR FPR AUC EER

SYN DoS 0.9801 0.0910 0.9562 0.0919 0.9999 0.0396 0.9603 0.0396 0.9813 0.0033 0.9840 0.0186 0.9924 0.0329 0.9870 0.0512
Fuzz Scan 0.9982 0.0015 0.9978 0.0336 0.0000 0.4007 0.6028 0.3964 0.0000 0.4111 0.6134 0.3954 0.9999 0.0046 0.9962 0.0047
OS Scan 0.9997 0.0786 0.9615 0.0800 0.0000 0.1114 0.8885 0.1114 0.9999 0.0069 0.9907 0.0075 0.9999 0.0106 0.9951 0.0111
SSL DoS 0.9417 0.0035 0.9781 0.0574 0.9992 0.0519 0.9732 0.0519 0.0000 0.1271 0.8774 0.1271 0.9699 0.0796 0.9391 0.0798
SSDP DoS 0.9901 0.0132 0.9955 0.0168 0.9999 0.0014 0.9986 0.0014 0.0003 0.1233 0.8770 0.1233 0.9969 0.0117 0.9902 0.0172
UDP DoS 0.4485 0.1811 0.8993 0.1433 0.9999 0.0173 0.9826 0.0173 0.9999 0.0068 0.9942 0.0071 0.9999 0.0083 0.9922 0.0093

IPID SC / / / / 0.0000 0.2716 0.7702 0.2716 0.8913 0.1001 0.9739 0.1001 0.6900 0.2324 0.9322 0.2014
ACK SC / / / / 0.0000 0.3090 0.6909 0.3090 - - - - 0.9999 0.0001 0.9999 0.0001

TLS Oracle 0.9973 0.0335 0.9722 0.0392 - - - - - - - - 0.9999 0.0121 0.9885 0.0124

LRDoS 0.2 0.6397 0.1270 0.9202 0.1239 0.9999 0.0254 0.9740 0.0254 0.9999 0.0254 0.9925 0.0088 0.9999 0.0109 0.9915 0.0123
LRDoS 0.5 0.0208 0.1882 0.8480 0.1835 0.9999 0.0551 0.9448 0.0551 0.9999 0.0078 0.9925 0.0081 0.9999 0.0101 0.9916 0.0114
LRDoS 1.0 0.0015 0.1774 0.8373 0.1758 0.9999 0.0940 0.9059 0.0940 0.9999 0.0074 0.9935 0.0074 0.9999 0.0115 0.9910 0.0122
IPID Scan - - - - 0.9999 0.0801 0.9255 0.0801 0.9999 0.0155 0.9934 0.0179 0.7964 0.1601 0.9579 0.1259
TLS Scan - - - - - - - - 0.0000 0.4014 0.6033 0.3973 0.9999 0.0091 0.9905 0.0095
1 We highlight the best in • and the worst in • and we mark - when AUC < 0.5 (meaningless, no better than random guess).
2 We mark / when Kitsune cannot finish the detection in 2 hours due to a large number of maintained flow state variables (process speed < 4 × 103 PPS).

0 10 20 30 40
0

10

20

30
Normal

Abnormal

Centers

(a) SSL DoS
10 15 20 25 30 35

10

20

30
Normal

Abnormal

Centers

(b) TLS Padding Oracle

Figure 3: Frequency domain features clustering results of
Whisper.

0.0 0.1 0.2 0.3 0.4 0.5
False Positive Rate

0.5

0.6

0.7

0.8

0.9

1.0

T
ru

e
P

os
it

iv
e

R
at

e

FSC

FAE

Whisper

Kitsune

(a) SYN Flooding DoS (23.04 Mbps)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

R
at

e

FSC

FAE

Whisper

(b) IPID Side-Channel (0.138 Mbps)

Figure 4: ROC of high-rate attack: SYN DoS and low-rate at-
tack: IPID side-channel attack.

into the malicious traffic and disguise it as benign traffic for eva-
sion. The reason why we use TLS and UDP video traffic is that
it contributes to a high proportion of the benign traffic datasets,
i.e., around 35% and 13%, respectively. Injecting the traffic can sig-
nificantly interfere with traditional detection (see Figure 6). We
select and replay 7 malicious traffic patterns and mix them into
different ratio of benign traffic, i.e., the ratio of malicious traffic to
the benign traffic ranging between 1:1 and 1:8. We do not inject the
benign traffic with more ratio because the effectiveness of attacks
is already low at the ratio of 1:8. We average the detection results
with different ratio. Figure 6 shows the averaged detection accuracy
on different attacks. The detailed detection accuracy results can be
found in Appendix E (see Figure 9). We observe that the evasion
attacks with high benign traffic mix ratio are prone to evade the
detection. According to figure 6, we conclude that attackers cannot

evade Whisper by injecting benign traffic into the malicious traffic.
However, the attackers evade other detection systems.

For instance,Whisper has at most 10.46% AUC decrease and 1.87
times EER increase under the evasion attacks. However, Kitsune
has at most 35.4% AUC decrease and 7.98 times EER increase. Simi-
larly, attackers can effectively evade the detection of the traditional
flow-level detection system, especially injecting more benign traffic
with higher ratio. The evasion attacks, e.g, evasion OS scan and
evasion TLS vulnerabilities scan, lead to at most 11.59 times EER
increase under the flow-level methods (AUC ≤ 0.5). Thus, we can
conclude that the existing flow-level and packet-level detection
systems are not robust to the evasion attacks. Whisper has sta-
ble detection accuracy at different ratio, e.g., the averaged AUC
decrease is bounded by 3.0%, which is robust for evasion attacks.
Moreover, We use other evading strategies to validate the robust-
ness of Whisper (see Appendix E), e.g., injecting benign DNS, ICMP
traffic and manipulating packet size and rate.

In summary, Whisper can achieve robust detection because the
used frequency domain features represent robust fine-grained se-
quential information of traffic. Malicious traffic disguised as benign
traffic do not incur significant changes in the flow-level statistics.
Thus, the features of the malicious traffic in the flow-level methods
are the same to the benign flows. As a result, due to the invariant
features, packet-level and traditional flow-level detection is unable
to capture such attacks. For example, the packet-level methods (e.g.,
Kitsune) use the statistics as the context information. However, the
sequential information of the malicious traffic extracted byWhisper
are significantly different from the benign traffic. Thus, to our best
knowledge, Whisper is the first machine learning based method
that achieves robust detection under evasion attacks.

6.5 Detection Latency and Throughput
Detection Latency. To measure the latency, we replay the back-
bone network traffic datasets with different traffic rates (see Ta-
ble 4). For simplicity, we use the low-rate TCP DoS attack with
a 0.5s burst interval as a typical attack and measure the overall

Session 12C: Traffic Analysis and Side Channels CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3440

SY
N

D
oS

Fu
zz

Sc
an

O
S

Sc
an

SS
L

D
oS

SS
D

P
D

oS
U

D
P

D
oS

IP
ID

SC
T

LS
O

ra
cl

e
LR

D
oS

0.
2

LR
D

oS
0.

5
LR

D
oS

1.
0

T
LS

Sc
an

IP
ID

Sc
an

A
C

K
SC

E
.S

SL
1:

1
E

.F
uz

z
1:

1
E

.IP
ID

1:
1

E
.IP

ID
1:

2
E

.IP
ID

1:
4

0.80

0.85

0.90

0.95

1.00

1.05

A
U

C

Manual Parameters Validation Parameter Generalization Test

Manually Selected Parameters Automatically Selected Parameters

(a) AUC comparison (higher is better)

SY
N

D
oS

Fu
zz

Sc
an

O
S

Sc
an

SS
L

D
oS

SS
D

P
D

oS
U

D
P

D
oS

IP
ID

SC
T

LS
O

ra
cl

e
LR

D
oS

0.
2

LR
D

oS
0.

5
LR

D
oS

1.
0

T
LS

Sc
an

IP
ID

Sc
an

A
C

K
SC

E
.S

SL
1:

1
E

.F
uz

z
1:

1
E

.IP
ID

1:
1

E
.IP

ID
1:

2
E

.IP
ID

1:
4

0.00

0.05

0.10

0.15

0.20

0.25

E
E

R

Manual Parameters Validation Parameter Generalization Test

Manually Selected Parameters Automatically Selected Parameters

(b) EER comparison (lower is better)

Figure 5: Performance of the automatic parameter selection
in comparison with manually selected parameters.

detection latency, i.e., the time interval between sending the first
malicious packet and detecting the traffic. The overall detection
latency includes the transmitting latency, the queuing latency, and
the processing latency. The cumulative distribution function (CDF)
of the overall detection latency is shown in Figure 7(a). With four
datasets, we find that the detection latency of Whisper is between
0.047 and 0.133 second, which shows thatWhisper achieves real-
time detection in high throughput networks. In order to accurately
measure the processing latency incurred byWhisper, we replay the
low-rate TCP DoS dataset with a 0.5s burst interval to construct
a light load network scenario and measure the execution time of
the four modules inWhisper. The CDF of the processing latency
is shown in Figure 7(b). We observe that the processing latency of
Whisper exhibits uniform distribution because most of the latency
is incurred by polling per-packet features from the packet parser
module in the light load situation. Thus, we can conclude that the
averaged processing latency incurred by Whisper is only 0.0361
second, and the queuing latency raised by Whisper is the majority.

We also analyze the latency raised by each step of Whisper in
Figure 7(c). We see that the measured latency in each step is consis-
tent with the computational complexity analysis in Section 5.2. The
DFT, Modulus Calculation, and Log Transformation have similar
computational complexity and incur similar processing latency. The
most latency is raised from the packet encoding (i.e., 5.20 × 10−3
second on average). The statistical clustering module has averaged
processing latency of 1.30 × 10−4 second, which is significantly
lower than the packet encoding. We find that most of the latency is
incurred by the packet parsing module and the memory copy for
parsing per-packet features incurs the most latency.
Throughput.We replay four MAWI [69] backbone network traffic
datasets with the physical limit bandwidth of laser ports (20 Gbps)
to measure the throughput. We measure the throughput of Whisper
and FAE and validate that detection accuracy does not decrease
when reaching the maximum throughput. We run Kitsune with
the same hardware as Whisper and measure the offline processing

SSL DoS

+Benign TLS
OS Scaning

+Benign UDP

TLS Padding Oracle

+ Benign TLS
Fuzzin

g Scan

+Benign TLS

ACK Side-C
hannel

+Benign TLS

IPID
Side-C

hannel

+Benign TLS

TLS Scanning

+Benign UDP

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

A
U

C

Whisper FSC Kitsune

(a) Averaged AUC on different mix ratio (higher is better)

SSL DoS

+Benign TLS
OS Scaning

+Benign UDP

TLS Padding Oracle

+ Benign TLS
Fuzzin

g Scan

+Benign TLS

ACK Side-C
hannel

+Benign TLS

IPID
Side-C

hannel

+Benign TLS

TLS Scanning

+Benign UDP

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

E
E

R

Whisper FSC Kitsune

(b) Averaged EER on different mix ratio (lower is better)

Figure 6: Detection accuracy under attacks with various
evading strategies.

speed, i.e., we ignore the packet parsing overhead in the online
processing of Kitsune, because it cannot handle high speed traffic.
The CDF of the throughput is shown in Figure 8. We find thatWhis-
per achieves 11.35 Gbps to 13.22 Gbps average throughput, while
Kitsune achieves 112.52 Mbps. Whisper achieves high throughput
because it significantly reduces the processing overhead of the
machine learning. FAE achieves the averaged throughput ranging
between 11.28 Gbps and 13.18 Gbps, which is similar toWhisper.
Note that, FAE uses a similar auto-encoder model in Kitsune and
achieves 100 times higher throughput (though it has limited detec-
tion ability). We conclude that the frequency domain features used
inWhisper enable higher throughput than the packet-level meth-
ods. In summary,Whisper and FAE achieve the most throughput,
around 1.27 ×106 PPS, compared with other detection systems.

7 RELATEDWORK
Machine Learning basedNIDS.Machine learning basedNetwork
Intrusion Detection Systems (NIDSes) can achieve higher detection
accuracy than the traditional signature based NIDSes [6, 35, 62, 64].
In particular, compared with the signature based NIDSes, they can
detect zero-day attacks that have not been uncovered [12, 22]. For
example, Antonakakis et al. [2], Nelms et al. [49], and Invernizzi et
al. [28] detect malware traffic by using statistical machine learning
approaches. Moreover, the specialized features of botnets have been
used in botnet traffic detection [16, 20, 27, 30]. Different from these
methods, Whisper detects various attack traffic including botnet
traffic online. Bartos et al. [4] developed an invariant of statisti-
cal features based detection via matrix transformations, which is
not scalable in large scale detection. Mirsky et al. [42] proposed
Kitsune that leveraged lightweight deep neural networks, i.e., auto-
encoders, to reduce the processing overhead. Whisper uses packet
encoding and DFT to compress the original per-packet features for
reducing feature redundancy. The compressed frequency domain
features allow the machine learning to be readily deployable for
high performance detection.

Session 12C: Traffic Analysis and Side Channels CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3441

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Latency (second)

0.00

0.25

0.50

0.75

1.00

C
D

F

20190102: 0.0470 s

20200101: 0.0578 s

20200325: 0.1339 s

20200610: 0.0769 s

(a) Overall latency (processing and queuing)

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Latency (second)

0.00

0.25

0.50

0.75

1.00

C
D

F

Average: 0.0361 s Processing Latency

(b) Pure processing latency

Encoding DFT Modulus Log
Trans.

Clustering
−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

T
im

e
of

P
ro

ce
ss

[1
0x

S
ec

on
d

]

(c) Processing latency of different steps

Figure 7: Detection latency of Whisper. We present the CDF of overall latency in (a), the CDF of pure processing latency in (b),
the box plot of latency in different steps in (c).

10 11 12 13 14 15
Throughput (Gb/s)

0.00

0.25

0.50

0.75

1.00

C
D

F

20190102: 12.65 Gb/s

20200101: 13.22 Gb/s

20200325: 11.39 Gb/s

20200610: 11.35 Gb/s

(a) Whisper

10 11 12 13 14 15
Throughput (Gb/s)

0.00

0.25

0.50

0.75

1.00

C
D

F

20190102: 12.65 Gb/s

20200101: 13.18 Gb/s

20200325: 11.50 Gb/s

20200610: 11.28 Gb/s

(b) FAE

60 70 80 90 100 110 120
Throughput (Mb/s)

0.00

0.25

0.50

0.75

1.00

C
D

F

Average: 112.52 Mb/s 20190102

(c) Kitsune

Figure 8: CDF and the average number of throughput: Whisper, FAE, and Kitsune.

Traffic Classification. Machine learning algorithms are widely
used in traffic classification [3, 9, 48, 56–59, 61, 66]. For example,
web fingerprinting aims to invalidate the Tor anonymous services
and infer the website that users are visiting by using the features
of TLS encrypted traffic [55, 72, 73]. Similar to Web fingerprinting,
Ede et al. [66] used semi-supervised learning to fingerprint mobile
applications. Siby et al. [61] applied traffic analysis to classify en-
crypted DNS traffic and infer the activities of users. Bahramali et
al. [3] analyzed the features of various realtime communication
applications. Nasr et al. [48] compressed the statistical features of
traffic, which achieved large scale traffic analysis. Zhang et al. [75]
proposed a countermeasure against traffic analysis via adversarial
examples. Although traffic classification achieves a different goal
from malicious traffic detection and cannot be used in traffic detec-
tion, the extracted traffic features in Whisper, i.e., the frequency
domain features, can be applied to perform traffic classifications.
Anomaly Detection with Data Augmentation. Data augmen-
tation is recently developed efficiently model training for anomaly
detection [18, 30, 60]. For example, Jan et al. [30] leveraged Gen-
erative Adversarial Network (GAN) to generate labeled datasets
for botnet detection. Shetty et al. [60] generated paired data by
using GAN to train a seq2seq model that aims to invalidate the
anonymity of text. Fischer et al. [18] solved the dataset scalabil-
ity problem to detect vulnerable code via Siamese Networks. In
Whisper, we leverage the frequency domain features for efficient
anomaly detection.
ThrottlingMalicious Traffic. IP blacklists have been widely used
to throttle malicious traffic [36, 50]. For instance, Ramanathan et
al. [54] proposed an IP blacklist aggregation method to locate at-
tackers. Moreover, programmable data planes [34, 70, 71, 74, 77]
have been recently leveraged to throttle various attack traffic, e.g.,
throttling different types of DoS flows and covert channels. All
these defenses are orthogonal to our Whisper.

8 CONCLUSION
In this paper, we developWhisper, a realtime malicious traffic de-
tection system that utilizes sequential information of traffic via
frequency domain analysis to enable robust attack detection. The
frequency domain features with bounded information loss allow
Whisper to achieve both high detection accuracy and high detection
throughput. In particular, fine-grained frequency domain features
represent the ordering information of packet sequences, which
ensures robust detection and prevents attackers from evading de-
tection. In order to extract the frequency domain features,Whisper
encodes per-packet feature sequences as vectors and uses DFT to
extract sequential information of traffic in the perspective of fre-
quency domain, which enables efficient attack detection by utilizing
a lightweight clustering algorithm. We prove that the frequency
domain features have bounded information loss which is a prereq-
uisite of accuracy and robustness. Extensive experiments show that
Whisper can effectively detect various attacks in high throughput
networks. It achieves 0.999 AUC accuracy within 0.06 second and
around 13.22 Gbps throughput. Especially, even under sophisticated
evasion attacks, Whisper can still detect malicious flows with high
AUC ranging between 0.891 and 0.983.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful comments.
This work was in part supported by the National Key R&D Program
of China with No.2018YFB0803405, China National Funds for Dis-
tinguished Young Scientists with No.61825204, National Natural Sci-
ence Foundation of China with No.61932016 and No.62132011, Bei-
jing Outstanding Young Scientist Programwith No.BJJWZYJH01201
910003011, BNRist with No.BNR2019RC01011. Ke Xu is the corre-
sponding author of this paper.

Session 12C: Traffic Analysis and Side Channels CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3442

REFERENCES
[1] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai,

Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Jingdong Chen, Mike
Chrzanowski, et al. 2016. Deep Speech 2 : End-to-End Speech Recognition in
English and Mandarin. In ICML (JMLR Workshop and Conference Proceedings,
Vol. 48). JMLR.org, 173–182.

[2] Manos Antonakakis, Roberto Perdisci, Yacin Nadji, Nikolaos Vasiloglou, Saeed
Abu-Nimeh, Wenke Lee, and David Dagon. 2012. From Throw-Away Traffic to
Bots: Detecting the Rise of DGA-Based Malware. In USENIX Security. USENIX
Association, 491–506.

[3] Alireza Bahramali, Amir Houmansadr, Ramin Soltani, Dennis Goeckel, and Don
Towsley. 2020. Practical Traffic Analysis Attacks on Secure Messaging Applica-
tions. In NDSS. The Internet Society.

[4] Karel Bartos, Michal Sofka, and Vojtech Franc. 2016. Optimized Invariant Repre-
sentation of Network Traffic for Detecting Unseen Malware Variants. In USENIX
Security. USENIX Association, 807–822.

[5] Leyla Bilge, Davide Balzarotti, William K. Robertson, Engin Kirda, and Christo-
pher Kruegel. 2012. Disclosure: detecting botnet command and control servers
through large-scale NetFlow analysis. In ACSAC. ACM, 129–138.

[6] Kevin Borders, Jonathan Springer, and Matthew Burnside. 2012. Chimera: A
Declarative Language for Streaming Network TrafficAnalysis. InUSENIX Security.
USENIX Association, 365–379.

[7] University Of New Brunswick. Accessed January 2021. A realistic cyber defense
dataset. https://www.unb.ca/cic/datasets/ids-2018.html.

[8] Anna L. Buczak and Erhan Guven. 2016. A Survey of Data Mining and Machine
Learning Methods for Cyber Security Intrusion Detection. IEEE Commun. Surv.
Tutorials 18, 2 (2016), 1153–1176.

[9] Jiahao Cao, Zijie Yang, Kun Sun, Qi Li, Mingwei Xu, and Peiyi Han. 2019. Fin-
gerprinting SDN Applications via Encrypted Control Traffic. In RAID. USENIX
Association, 501–515.

[10] Yue Cao, Zhiyun Qian, Zhongjie Wang, Tuan Dao, Srikanth V. Krishnamurthy,
and Lisa M. Marvel. 2016. Off-Path TCP Exploits: Global Rate Limit Considered
Dangerous. In USENIX Security. USENIX Association, 209–225.

[11] Yue Cao, Zhiyun Qian, Zhongjie Wang, Tuan Dao, Srikanth V. Krishnamurthy,
and Lisa M. Marvel. 2018. Off-Path TCP Exploits of the Challenge ACK Global
Rate Limit. IEEE/ACM Trans. Netw. 26, 2 (2018), 765–778.

[12] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly Detection:
A Survey. ACM Comput. Surv. 41, 3, Article 15 (July 2009), 58 pages.

[13] Cisco. Accessed January 2021. Cisco SPAN. https://www.cisco.com/c/en/us/
support/docs/switches/catalyst-6500-series-switches/10570-41.html.

[14] Holger Dreger, Anja Feldmann, Vern Paxson, and Robin Sommer. 2004. Opera-
tional experiences with high-volume network intrusion detection. In CCS. ACM,
2–11.

[15] Min Du, Zhi Chen, Chang Liu, Rajvardhan Oak, and Dawn Song. 2019. Lifelong
Anomaly Detection Through Unlearning. In CCS. ACM, 1283–1297.

[16] Juan Echeverría, Emiliano De Cristofaro, Nicolas Kourtellis, Ilias Leontiadis,
Gianluca Stringhini, and Shi Zhou. 2018. LOBO: Evaluation of Generalization
Deficiencies in Twitter Bot Classifiers. In ACSAC. ACM, 137–146.

[17] Xuewei Feng, Chuanpu Fu, Qi Li, Kun Sun, and Ke Xu. 2020. Off-Path TCP
Exploits of the Mixed IPID Assignment. In CCS. ACM, 1323–1335.

[18] Felix Fischer, Huang Xiao, Ching-yu Kao, Yannick Stachelscheid, Benjamin John-
son, Danial Razar, Paul Fawkesley, Nat Buckley, Konstantin Böttinger, Paul
Muntean, et al. 2019. Stack Overflow Considered Helpful! Deep Learning Se-
curity Nudges Towards Stronger Cryptography. In USENIX Security. USENIX
Association, 339–356.

[19] Prahlad Fogla andWenke Lee. 2006. Evading network anomaly detection systems:
formal reasoning and practical techniques. In CCS. ACM, 59–68.

[20] David Freeman, Sakshi Jain, Markus Dürmuth, Battista Biggio, and Giorgio Giac-
into. 2016. Who Are You? A Statistical Approach to Measuring User Authenticity.
In NDSS. The Internet Society.

[21] Chuanpu Fu. Accessed January 2021. The source code of Whisper. https://github.
com/fuchuanpu/Whisper.

[22] Pedro Garcia-Teodoro, Jesús Esteban Díaz Verdejo, Gabriel Maciá-Fernández, and
Enrique Vázquez. 2009. Anomaly-based network intrusion detection: Techniques,
systems and challenges. Comput. Secur. 28, 1-2 (2009), 18–28.

[23] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. 2016. Deep
learning. Vol. 1. MIT press Cambridge.

[24] Guofei Gu, Roberto Perdisci, Junjie Zhang, and Wenke Lee. 2008. BotMiner:
Clustering Analysis of Network Traffic for Protocol- and Structure-Independent
Botnet Detection. In USENIX Security. USENIX Association, 139–154.

[25] Amir Herzberg and Haya Shulman. 2010. Stealth DoS Attacks on Secure Channels.
In NDSS. The Internet Society.

[26] Intel. Accessed January 2021. Data Plane Development Kit. https://www.dpdk.
org/.

[27] Luca Invernizzi and Paolo Milani Comparetti. 2012. EvilSeed: A Guided Approach
to Finding Malicious Web Pages. In SP. IEEE Computer Society, 428–442.

[28] Luca Invernizzi, Stanislav Miskovic, Ruben Torres, Christopher Kruegel,
Sabyasachi Saha, Giovanni Vigna, Sung-Ju Lee, and Marco Mellia. 2014. Nazca:
Detecting Malware Distribution in Large-Scale Networks. In NDSS. The Internet
Society.

[29] Muhammad Asim Jamshed, Jihyung Lee, Sangwoo Moon, Insu Yun, Deokjin Kim,
Sungryoul Lee, Yung Yi, and KyoungSoo Park. 2012. Kargus: a highly-scalable
software-based intrusion detection system. In CCS. ACM, 317–328.

[30] Steve T. K. Jan, Qingying Hao, Tianrui Hu, Jiameng Pu, Sonal Oswal, Gang Wang,
and Bimal Viswanath. 2020. Throwing Darts in the Dark? Detecting Bots with
Limited Data using Neural Data Augmentation. In SP. IEEE, 1190–1206.

[31] Samuel Jero, Md. Endadul Hoque, David R. Choffnes, Alan Mislove, and Cristina
Nita-Rotaru. 2018. Automated Attack Discovery in TCP Congestion Control
Using a Model-guided Approach. In NDSS. The Internet Society.

[32] Aleksandar Kuzmanovic and Edward W. Knightly. 2003. Low-rate TCP-targeted
denial of service attacks: the shrew vs. the mice and elephants. In SIGCOMM.
ACM, 75–86.

[33] Aleksandar Kuzmanovic and Edward W. Knightly. 2006. Low-rate TCP-targeted
denial of service attacks and counter strategies. IEEE/ACM Trans. Netw. 14, 4
(2006), 683–696.

[34] Guanyu Li, Menghao Zhang, ShichengWang, Chang Liu, Mingwei Xu, Ang Chen,
Hongxin Hu, Guofei Gu, Qi Li, and JianpingWu. 2021. Enabling Performant, Flex-
ible and Cost-Efficient DDoS Defense With Programmable Switches. IEEE/ACM
Trans. Netw. 29, 4 (2021), 1509–1526.

[35] Hongda Li, Hongxin Hu, Guofei Gu, Gail-Joon Ahn, and Fuqiang Zhang. 2018.
vNIDS: Towards Elastic Security with Safe and Efficient Virtualization of Network
Intrusion Detection Systems. In CCS. ACM, 17–34.

[36] Vector Guo Li, Matthew Dunn, Paul Pearce, Damon McCoy, Geoffrey M. Voelker,
and Stefan Savage. 2019. Reading the Tea leaves: A Comparative Analysis of
Threat Intelligence. In USENIX Security. USENIX Association, 851–867.

[37] Chih-Yuan Lin and Simin Nadjm-Tehrani. 2019. Timing Patterns and Correla-
tions in Spontaneous SCADA Traffic for Anomaly Detection. In RAID. USENIX
Association, 73–88.

[38] Robert Merget, Juraj Somorovsky, Nimrod Aviram, Craig Young, Janis Fliegen-
schmidt, Jörg Schwenk, and Yuval Shavitt. 2019. Scalable Scanning and Automatic
Classification of TLS Padding Oracle Vulnerabilities. In USENIX Security. USENIX
Association, 1029–1046.

[39] Joseph Victor Michalowicz, Jonathan M Nichols, and Frank Bucholtz. 2013. Hand-
book of differential entropy. Crc Press.

[40] Microsoft. Accessed January 2021. A theorem prover from Microsoft Research.
https://github.com/Z3Prover/z3.

[41] Yisroel Mirsky. Accessed January 2021. The source code of Kitsune. https:
//github.com/ymirsky/Kitsune-py.

[42] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. 2018. Kitsune:
An Ensemble of Autoencoders for Online Network Intrusion Detection. In NDSS.
The Internet Society.

[43] Yisroel Mirsky, Naor Kalbo, Yuval Elovici, and Asaf Shabtai. 2019. Vesper: Using
Echo Analysis to Detect Man-in-the-Middle Attacks in LANs. IEEE Trans. Inf.
Forensics Secur. 14, 6 (2019), 1638–1653.

[44] mlpack. Accessed January 2021. mlpack: open source machine learning library
and community. https://www.mlpack.org/.

[45] Gabi Nakibly, Alex Kirshon, Dima Gonikman, and Dan Boneh. 2012. Persistent
OSPF Attacks. In NDSS. The Internet Society.

[46] Gabi Nakibly, Adi Sosnovich, Eitan Menahem, Ariel Waizel, and Yuval Elovici.
2014. OSPF vulnerability to persistent poisoning attacks: a systematic analysis.
In ACSAC. ACM, 336–345.

[47] Jaehyun Nam,Muhammad Jamshed, Byungkwon Choi, Dongsu Han, and Kyoung-
Soo Park. 2015. Haetae: Scaling the Performance of Network Intrusion Detection
withMany-Core Processors. In RAID (Lecture Notes in Computer Science, Vol. 9404).
Springer, 89–110.

[48] Milad Nasr, Amir Houmansadr, and Arya Mazumdar. 2017. Compressive Traffic
Analysis: A New Paradigm for Scalable TrafficAnalysis. InCCS. ACM, 2053–2069.

[49] Terry Nelms, Roberto Perdisci, Manos Antonakakis, and Mustaque Ahamad. 2015.
WebWitness: Investigating, Categorizing, and Mitigating Malware Download
Paths. In USENIX Security. USENIX Association, 1025–1040.

[50] Arman Noroozian, Jan Koenders, Eelco van Veldhuizen, Carlos Hernandez Gañán,
Sumayah A. Alrwais, Damon McCoy, and Michel van Eeten. 2019. Platforms in
Everything: Analyzing Ground-Truth Data on the Anatomy and Economics of
Bullet-Proof Hosting. In USENIX Security. USENIX Association, 1341–1356.

[51] William H Press, Saul A Teukolsky, William T Vetterling, and Brian P Flannery.
2007. Numerical recipes 3rd edition: The art of scientific computing. Cambridge
university press.

[52] Pytorch. Accessed January 2021. An open source deep learning framework.
https://pytorch.org/.

[53] Benjamin J. Radford, Leonardo M. Apolonio, Antonio J. Trias, and Jim A. Simpson.
2018. Network Traffic Anomaly Detection Using Recurrent Neural Networks.
CoRR abs/1803.10769 (2018).

[54] Sivaramakrishnan Ramanathan, Jelena Mirkovic, and Minlan Yu. 2020. BLAG:
Improving the Accuracy of Blacklists. In NDSS. The Internet Society.

Session 12C: Traffic Analysis and Side Channels CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3443

https://www.unb.ca/cic/datasets/ids-2018.html
https://www.cisco.com/c/en/us/support/docs/switches/catalyst-6500-series-switches/10570-41.html
https://www.cisco.com/c/en/us/support/docs/switches/catalyst-6500-series-switches/10570-41.html
https://github.com/fuchuanpu/Whisper
https://github.com/fuchuanpu/Whisper
https://www.dpdk.org/
https://www.dpdk.org/
https://github.com/Z3Prover/z3
https://github.com/ymirsky/Kitsune-py
https://github.com/ymirsky/Kitsune-py
https://www.mlpack.org/
https://pytorch.org/

[55] Vera Rimmer, Davy Preuveneers, Marc Juárez, Tom van Goethem, and Wouter
Joosen. 2018. Automated Website Fingerprinting through Deep Learning. In
NDSS. The Internet Society.

[56] Meng Shen, Yiting Liu, Liehuang Zhu, Xiaojiang Du, and Jiankun Hu. 2021.
Fine-Grained Webpage Fingerprinting Using Only Packet Length Information of
Encrypted Traffic. IEEE Trans. Inf. Forensics Secur. 16 (2021), 2046–2059.

[57] Meng Shen, Yiting Liu, Liehuang Zhu, Ke Xu, Xiaojiang Du, and Nadra Guizani.
2020. Optimizing Feature Selection for Efficient Encrypted Traffic Classification:
A Systematic Approach. IEEE Netw. 34, 4 (2020), 20–27.

[58] Meng Shen, Mingwei Wei, Liehuang Zhu, and Mingzhong Wang. 2017. Classifi-
cation of Encrypted Traffic With Second-Order Markov Chains and Application
Attribute Bigrams. IEEE Trans. Inf. Forensics Secur. 12, 8 (2017), 1830–1843.

[59] Meng Shen, Jinpeng Zhang, Liehuang Zhu, Ke Xu, and Xiaojiang Du. 2021.
Accurate Decentralized Application Identification via Encrypted Traffic Analysis
Using Graph Neural Networks. IEEE Trans. Inf. Forensics Secur. 16 (2021), 2367–
2380.

[60] Rakshith Shetty, Bernt Schiele, and Mario Fritz. 2018. A4NT: Author Attribute
Anonymity by Adversarial Training of Neural Machine Translation. In USENIX
Security. USENIX Association, 1633–1650.

[61] Sandra Siby, Marc Juárez, Claudia Díaz, Narseo Vallina-Rodriguez, and Carmela
Troncoso. 2020. Encrypted DNS -> Privacy? A Traffic Analysis Perspective. In
NDSS. The Internet Society.

[62] Snort. Accessed January 2021. An open source network intrusion detection
system. https://www.snort.org/.

[63] Robin Sommer and Vern Paxson. 2010. Outside the Closed World: On Using
Machine Learning for Network Intrusion Detection. In SP. IEEE Computer Society,
305–316.

[64] Suricata. Accessed January 2021. An open source threat detection engine. https:
//suricata-ids.org/.

[65] Ruming Tang, Zheng Yang, Zeyan Li, Weibin Meng, HaixinWang, Qi Li, Yongqian
Sun, Dan Pei, Tao Wei, Yanfei Xu, et al. 2020. ZeroWall: Detecting Zero-Day Web
Attacks through Encoder-Decoder Recurrent Neural Networks. In INFOCOM.
IEEE, 2479–2488.

[66] Thijs van Ede, Riccardo Bortolameotti, Andrea Continella, Jingjing Ren, Daniel J.
Dubois, Martina Lindorfer, David R. Choffnes, Maarten van Steen, and Andreas
Peter. 2020. FlowPrint: Semi-SupervisedMobile-App Fingerprinting on Encrypted
Network Traffic. In NDSS. The Internet Society.

[67] Serge Vaudenay. 2002. Security Flaws Induced by CBC Padding - Applications
to SSL, IPSEC, WTLS In EUROCRYPT (Lecture Notes in Computer Science,
Vol. 2332). Springer, 534–546.

[68] Ke Wang and Salvatore J. Stolfo. 2004. Anomalous Payload-Based Network Intru-
sion Detection. In RAID (Lecture Notes in Computer Science, Vol. 3224). Springer,
203–222.

[69] WIDE. Accessed January 2021. MAWI working group traffic archive. http:
//mawi.wide.ad.jp/mawi/.

[70] Jiarong Xing, Qiao Kang, and Ang Chen. 2020. NetWarden: Mitigating Network
Covert Channels while Preserving Performance. In USENIX Security. USENIX
Association, 2039–2056.

[71] Jiarong Xing, Wenqing Wu, and Ang Chen. 2021. Ripple: A Programmable,
Decentralized Link-Flooding Defense Against Adaptive Adversaries. In USENIX
Security. USENIX Association, 3865–3880.

[72] Yixiao Xu, Tao Wang, Qi Li, Qingyuan Gong, Yang Chen, and Yong Jiang. 2018.
A Multi-tab Website Fingerprinting Attack. In ACSAC. ACM, 327–341.

[73] Qilei Yin, Zhuotao Liu, Qi Li, Tao Wang, Qian Wang, Chao Shen, and Yixiao
Xu. 2021. Automated Multi-Tab Website Fingerprinting Attack. IEEE Trans.
Dependable Secur. Comput. (2021).

[74] Menghao Zhang, Guanyu Li, Shicheng Wang, Chang Liu, Ang Chen, Hongxin
Hu, Guofei Gu, Qi Li, Mingwei Xu, and Jianping Wu. 2020. Poseidon: Mitigating
Volumetric DDoS Attacks with Programmable Switches. In NDSS. The Internet
Society.

[75] Xiaokuan Zhang, Jihun Hamm, Michael K. Reiter, and Yinqian Zhang. 2019.
Statistical Privacy for Streaming Traffic. In NDSS. The Internet Society.

[76] Peilin Zhao and Steven C. H. Hoi. 2013. Cost-sensitive online active learning
with application to malicious URL detection. In KDD. ACM, 919–927.

[77] Jing Zheng, Qi Li, Guofei Gu, Jiahao Cao, David K. Y. Yau, and Jianping Wu. 2018.
Realtime DDoS Defense Using COTS SDN Switches via Adaptive Correlation
Analysis. IEEE Trans. Inf. Forensics Secur. 13, 7 (2018), 1838–1853.

[78] Shitong Zhu, Shasha Li, Zhongjie Wang, Xun Chen, Zhiyun Qian, Srikanth V.
Krishnamurthy, Kevin S. Chan, and Ananthram Swami. 2020. You do (not) belong
here: detecting DPI evasion attacks with context learning. In CoNEXT. ACM,
183–197.

APPENDIX
A PROOF OF THEOREM 1
Hpacket denotes the overall differential entropy of the sampling
sequence ®𝑠 , i.e., the sum of the differential entropy of each random
variable in ®𝑠: (𝐾 =

√
2𝜋𝑒)

Hpacket = −
𝑁∑
𝑖=1

∫ +∞

−∞
𝑝𝑖 (𝑠) ln𝑝𝑖 (𝑠)d𝑠

=

𝑁∑
𝑖=1

ln𝜎 (𝑖)𝐾

= ln𝐾𝑁
𝑁∏
𝑖=1

𝜎 (𝑖) .

We assume that the statistical feature extraction function f cal-
culates the minimum of ®𝑠 to acquire the flow-level features. 𝐼min
denotes the index of the sample with the minimum value. The
differential entropy of the feature is Hflow−min that equals to the
entropy of the random variable with the minimum value:

𝐼min = argmin
𝑖

𝑠𝑖 ,

Hflow−min = −
∫ +∞

−∞
𝑝𝐼min (𝑠) ln𝑝𝐼min (𝑠)d𝑠

= ln𝐾𝜎 (𝐼min) .

ΔHflow−min denotes the differential entropy loss of the minimum
feature, i.e., the difference between the overall differential entropy
and the differential entropy of the minimum feature:

ΔHflow−min = Hpacket − Hflow−min

= ln𝐾𝑁−1
∏

𝑖≠𝐼min

𝜎 (𝑖) .

We focus on the expectation of the loss, and leverage Jensen in-
equation to get the lower bound of the information loss:

E[ΔHflow−min] ≥ ln𝐾𝑁−1𝐸 [𝜎𝑁−1]
≥ (𝑁 − 1) ln𝐾E[𝜎] .

We conduct the same proof procedure for the features that calculate
the maximum of the per-packet feature sequence and complete the
proof of Theorem 1.

B PROOF OF THEOREM 2 AND THEOREM 3
We consider the situation that a flow-level feature extractionmethod
calculates the average number of sampled per-packet features. We
denote the average of ®𝑠 as a random variable 𝑓𝑚 that obeys a Gauss-
ian distribution:

𝑓𝑚 ∼ N(1
𝑁

𝑁∑
𝑖=1

𝑢 (𝑖), 1
𝑁 2

𝑁∑
𝑖=1

𝜎2 (𝑖)) .

𝑝𝑚 denotes the probability density function (PDF) of 𝑓𝑚 . We use
Hflow−avg and ΔHflow−avg to indicate the differential entropy of

Session 12C: Traffic Analysis and Side Channels CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3444

https://www.snort.org/
https://suricata-ids.org/
https://suricata-ids.org/
http://mawi.wide.ad.jp/mawi/
http://mawi.wide.ad.jp/mawi/

the average feature and the information loss, respectively:

Hflow−avg = −
∫ +∞

−∞
𝑝𝑚 (𝑠) ln𝑝𝑚 (𝑠)d𝑠

= ln 𝐾
𝑁

√√√
𝑁∑
𝑖=1

𝜎2 (𝑖),

ΔHflow−avg = Hpacket − Hflow−avg

= ln𝑁𝐾𝑁−1
∏𝑁

𝑖=1 𝜎 (𝑖)√∑𝑁
𝑖=1 𝜎

2 (𝑖)
.

To get the upper bound, we use 𝑄 to indicate the square mean of
the variances of ®𝑠 . According to the inequality of arithmetic and
geometric means, the geometric mean is not bigger than the square
mean. We get the upper bound of the differential entropy loss:

ΔHflow−avg ≤ ln𝑁𝐾𝑁−1 𝑄𝑁√∑𝑁
𝑖=1 𝜎

2 (𝑖)

≤ ln
√
𝑁𝐾𝑁−1𝑄𝑁−1 .

If and only if 𝜎 (𝑖) is a constant, the information loss ΔHflow−avg
reaches its maximum. We use 𝜎max to indicate the maximum of the
variances of ®𝑠 , and get the lower bound of the information loss by
leveraging the non-negative differential entropy assumption:

𝜎max = max(𝜎 (𝑖)) (1 ≤ 𝑖 ≤ 𝑁),

ΔHflow−avg ≥ ln
√
𝑁𝐾𝑁−1

∏𝑁
𝑖=1 𝜎 (𝑖)
𝜎max

≥ ln
√
𝑁 (𝐾𝜎 (𝑖) ≥ 1) .

The equality holds iff. 𝜎 (𝑖) = 1
𝐾
. When the equality holds, the

upper bound equals the lower bound. Here we complete the proof
of Theorem 3. Similar to the proof of Theorem 1, we apply Jensen
inequation to get ΔHflow−avg and prove Theorem 2.

C PROOF OF THEOREM 4
We consider the situation that a flow-level feature extractionmethod
calculates the variance of the sampling sequence to extract the fea-
tures of traffic. Random variable 𝑉 denotes the variance of ®𝑠:

𝑉 =

∑𝑁
𝑖=1 (𝑠𝑖 −𝑢)2

𝑁
, 𝑢 =

∑𝑁
𝑖=1 𝑠𝑖
𝑁

.

The random variable 𝑉 obeys general Chi-square distribution. We
assume that the Gaussian process S is strictly stationary with
zero mean, i.e., 𝑢 (𝑖) = 0 and 𝜎 (𝑖) = 𝜎 . We present an estimate of
differential entropy loss when 𝑁 is large enough:

𝑉 =

∑𝑁
𝑖=1 𝑠

2
𝑖

𝑁
=
𝜎2

𝑁

𝑁∑
𝑖=1

(𝑠𝑖
𝜎
)2,

𝑁∑
𝑖=1

(𝑠𝑖
𝜎
)2 ∼ 𝜒2 (𝑁) .

Hflow−var denotes the differential entropy of the variance feature:

Hflow−var = H[𝑉] = H[
∑𝑁

𝑖=1 𝑠
2
𝑖

𝑁
]

= ln 𝜎
2

𝑁
+ H[

𝑁∑
𝑖=1

(𝑠𝑖
𝜎
)2]

= ln 𝜎
2

𝑁
+ ln 2Γ (𝑁2) + (1 − 𝑁

2)𝜓 (𝑁2) + 𝑁2 ,

where Γ is Gamma function and𝜓 is Digamma function. When 𝑁
is large enough we take the even number that is closest to 𝑁 to
approach the information loss: (𝛾 is Euler–Mascheroni constant)

𝜓 (𝑥) =
Γ
′ (𝑥)
Γ (𝑥)

Γ (𝑥) = (𝑥 − 1)!
Γ
′ (𝑥) = (𝑥 − 1)!(−𝛾 +∑𝑥−1

𝑘=1
1
𝑘
)

⇒ Hflow−var = ln 𝜎
2

𝑁
+ ln 2(𝑁2)! − 𝑁

2 (−𝛾 +
𝑁
2∑

𝑘=1

1
𝑘
) + 𝑁2 .

Then we approach the Harmonic series as follows,

𝑁∑
𝑘=1

1
𝑘

≈ ln𝑁 + 𝛾,

⇒ Hflow−var = ln 𝜎
2

𝑁
+ ln 2(𝑁2)! − 𝑁

2 ln 𝑁2 + 𝑁2 .

Finally, we use ΔHflow−var to indicate the information loss and
leverage Stirling’s formula to approach the factorial.

ΔHflow−var = Hpacket − Hflow−var

= 𝑁 ln𝐾𝜎 − ln 𝜎
2

𝑁
− 𝑁

2 − ln 2(𝑁2)! + 𝑁2 ln 𝑁2
(𝑛! ≈

√
2𝜋𝑛 (𝑛

𝑒
)𝑛)

= 𝑁 ln𝐾𝜎 − ln 𝜎
2

𝑁
− 𝑁

2 + 𝑁2 ln 𝑁2 − ln 2
√
𝜋𝑁 (𝑁2𝑒)

(𝑁2)

= 𝑁 ln𝐾𝜎 − ln
√
4𝜋𝑁 3

𝜎2 .

Here, we complete the proof of the Theorem 4.

D PROOF OF THEOREM 5 AND THEOREM 6
Without the loss of generality, we analyze 𝑖𝑡ℎ kind of per-packet
features, and denote its sampling sequence as ®𝑠 . Based on the orig-
inal assumption, we assume that Gaussian process S is strictly
stationary with zero mean, i.e., 𝑢 (𝑖) = 0 and 𝜎 (𝑖) = 𝜎 . Whisper
extracts the frequency domain features of the per-packet feature
sampling sequence ®𝑠 with the following steps:

(1) Perform linear transformation by multiplying 𝑤𝑖 on ®𝑠 , for
simplicity, we use𝑤 to indicate𝑤𝑖 .

(2) Perform DFT on𝑤®𝑠 . We denote the result as ®𝐹 = F (𝑤®𝑠) and
its 𝑖𝑡ℎ element as ®𝐹𝑖 = (𝑎𝑖 + 𝑗𝑏𝑖)𝑤 .

(3) Calculate modulus for the result of DFT. ®𝑃 denotes the result
and ®𝑃𝑖 = (𝑎2

𝑖
+ 𝑏2

𝑖
)𝑤2 denotes its 𝑖𝑡ℎ element.

(4) Perform logarithmic transformation on ®𝑃 . ®𝑅 denotes the
extracted frequency domain features for ®𝑠 and ®𝑅𝑖 = ln(®𝑃𝑖 +
1)/𝐶 denotes its 𝑖𝑡ℎ element.

The property of Discrete Fourier Transformation: F (𝑤®𝑠) =

𝑤F (®𝑠), implies that:

𝑏𝑖 =𝑠𝑡 𝑎𝑖 , 𝑎𝑖 ∼ N(0, 𝑁𝜎2) .
We estimate the overall differential entropy of the frequency domain
features by ignoring the impact of the logarithmic transformation

Session 12C: Traffic Analysis and Side Channels CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3445

SSL
DoS

+Benign
TLS

OS
Scaning

+Benign
UDP

TLS
Padding Oracle

+
Benign

TLS

Fuzzing Scan

+Benign
TLS

ACK
Side-Channel

+Benign
TLS

IPID
Side-Channel

+Benign
TLS

TLS
Scanning

+Benign
UDP

1:1

1:2

1:4

1:8

A
U

C

0.915 0.915 0.962 0.979 0.983 0.983 0.974

0.977 0.917 0.945 0.930 0.945 0.981 0.965

0.975 0.905 0.982 0.955 0.978 0.987 0.962

0.972 0.891 0.957 0.939 0.917 0.934 0.956

SSL
DoS

+Benign
TLS

OS
Scaning

+Benign
UDP

TLS
Padding Oracle

+
Benign

TLS

Fuzzing Scan

+Benign
TLS

ACK
Side-Channel

+Benign
TLS

IPID
Side-Channel

+Benign
TLS

TLS
Scanning

+Benign
UDP

1:1

1:2

1:4

1:8

0.714 0.157 0.255 0.658 0.493 0.721 0.585

0.603 0.511 0.575 0.627 0.438 0.419 0.646

0.715 0.592 0.696 0.615 0.714 0.363 0.477

0.395 0.194 0.649 0.749 0.421 0.432 0.545

SSL
DoS

+Benign
TLS

OS
Scaning

+Benign
UDP

TLS
Padding Oracle

+
Benign

TLS

Fuzzing Scan

+Benign
TLS

ACK
Side-Channel

+Benign
TLS

IPID
Side-Channel

+Benign
TLS

TLS
Scanning

+Benign
UDP

1:1

1:2

1:4

1:8

0.964 0.856 0.843 0.934 / / /

0.874 0.768 0.756 0.838 / / /

0.820 0.746 0.750 0.644 / / /

0.631 0.744 0.814 0.763 / / /

1:1

1:2

1:4

1:8

E
E

R

0.106 0.172 0.058 0.037 0.025 0.024 0.069

0.035 0.144 0.086 0.081 0.084 0.033 0.074

0.031 0.195 0.042 0.065 0.032 0.020 0.071

0.035 0.208 0.076 0.081 0.103 0.095 0.089

Whisper

1:1

1:2

1:4

1:8

0.300 0.833 0.745 0.342 0.506 0.279 0.509

0.403 0.503 0.421 0.373 0.563 0.581 0.333

0.286 0.408 0.304 0.386 0.285 0.635 0.536

0.602 0.773 0.351 0.264 0.579 0.568 0.462

FSC

1:1

1:2

1:4

1:8

0.046 0.264 0.232 0.070 / / /

0.184 0.328 0.346 0.289 / / /

0.278 0.319 0.312 0.412 / / /

0.458 0.339 0.274 0.385 / / /

Kitsune

Figure 9: Detection accuracy under 28 evasion attacks. During the attacks, in order to evade the detection, the attackers use
different strategies to inject benign traffic.

and obtain the entropy as HWhisper. According to the properties
of differential entropy and several inequalities about differential
entropy, we obtain an estimation for the differential entropy of the
frequency domain features:

HWhisper = H[®𝑃] =
𝑁∑
𝑖=1

H[𝑃𝑖]

=

𝑁∑
𝑖=1

H[𝑤2 (𝑎2𝑖 + 𝑏2𝑖)]

= 𝑁 ln𝑤2 +
𝑁∑
𝑖=1

H[𝑎2𝑖 + 𝑏2𝑖]

= 𝑁 ln𝑁𝑤2 +
𝑁∑
𝑖=1

H[(𝑎𝑖√
𝑁

)2 + (𝑏𝑖√
𝑁

)2],

(𝑡𝑖 = (𝑎𝑖√
𝑁

)2 + (𝑏𝑖√
𝑁

)2, 𝑡𝑖 ∼ 𝜒2 (2)),

HWhisper = 𝑁 ln𝑁𝑤2 +
𝑁∑
𝑖=1

H[𝑡𝑖]

= 𝑁 ln𝑁𝑤2 + 𝑁 (1 + ln 2) .

We use ΔHWhisper to indicate the information loss of Whisper and
get an estimation of the differential entropy loss of Whisper:

ΔHWhisper = Hpacket − HWhisper

= 𝑁 ln 𝜎

𝑤2

√
𝜋

2𝑒 − 𝑁 ln𝑁 .

We complete the proof of Theorem 5. According to Theorem 1 - 4,
we can obtain Theorem 6.

IP
ID

Si
de

-C
ha

nn
el

+
IC

M
P

(1
:1

)

IP
ID

Si
de

-C
ha

nn
el

+
IC

M
P

(1
:2

)

IP
ID

Si
de

-C
ha

nn
el

+
IC

M
P

(1
:4

)

IP
ID

Si
de

-C
ha

nn
el

+
D

N
S

(1
:1

)

IP
ID

Si
de

-C
ha

nn
el

+
D

N
S

(1
:2

)

IP
ID

Si
de

-C
ha

nn
el

+
D

N
S

(1
:4

)
T

L
S

Sc
an

ni
ng

+
N

A
T

(1
:1

)
T

L
S

Sc
an

ni
ng

+
N

A
T

(1
:2

)
T

L
S

Sc
an

ni
ng

+
N

A
T

(1
:4

)

IP
ID

Si
de

-C
ha

nn
el

+
B

en
ig

n
L
en

gt
h

T
L
S

P
ad

di
ng

O
ra

cl
e

+
B

en
ig

n
L
en

gt
h

SS
L

D
oS

+
B

en
ig

n
R

at
e

A
C

K
Si

de
-c

ha
nn

el

+
B

en
ig

n
R

at
e

0.80

0.85

0.90

0.95

1.00

A
U

C

AUC

0.00

0.02

0.04

0.06

0.08

0.10

E
E

R

EER

Figure 10: Detection accuracy under sophisticated evasion
strategies.

E THE DETAILED RESULTS OF ROBUST
EVALUATION

Figure 9 shows the detailed detection results under different evasion
attacks, i.e., seven types of malicious traffic mixed with benign
traffic with four types of inject ratio. We observe that the injected
benign traffic has negligible effects on the detection accuracy of
Whisper.

We also measure the effects of more sophisticated evasion strate-
gies on the detection accuracy. The strategies include (i) injecting
different types of benign traffic (i.e., ICMP, DNS, and outbound NAT
traffic that includes various types of benign traffic), (ii) changing the
rate of sending malicious packets according to the rate of benign
TLS flows, (iii) manipulating the packet length in the malicious
traffic according to the benign TLS packet length. Figure 10 shows
that the detection accuracy is not significantly impacted by the
attacks, which is consistent with the results shown in Figure 9.

Session 12C: Traffic Analysis and Side Channels CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3446

	Abstract
	1 Introduction
	2 Threat Model and Design Goals
	2.1 Threat Model
	2.2 Design Goals

	3 Overview of Whisper
	4 Design Details
	4.1 Frequency Feature Extraction Module
	4.2 Automatic Parameters Selection Module
	4.3 Statistical Clustering Module

	5 Theoretical Analysis
	5.1 Information Loss in Whisper
	5.2 Analysis of Scalability and Overhead

	6 Experimental Evaluation
	6.1 Implementation
	6.2 Experiment Setup
	6.3 Detection Accuracy
	6.4 Robustness of Detection
	6.5 Detection Latency and Throughput

	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Proof of Theorem 1
	B Proof of Theorem 2 and Theorem 3
	C Proof of Theorem 4
	D Proof of Theorem 5 and Theorem 6
	E The Detailed Results of Robust Evaluation

