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Abstract
Machine Learning (ML) based malicious traffic detection systems
can accurately recognize unseen network attacks by learning from
large-scale traffic datasets. However, deploying such systems across
multiple networks involves substantial efforts to construct large
training datasets for each network. This paper addresses the issue of
training with minimal datasets, that is, achieving accurate malicious
traffic detection by learning a small portion of traffic in entirely new
network environments, thereby eliminating prohibitive labor costs
associated with traffic dataset construction. We develop tFusion
to effectively extract information from limited datasets by treating
network traffic data as multimodal data, comprising features from
multiple sensory modalities of packets, flows, and hosts. In particu-
lar, we design a dedicated crossmodal attention model that fuses
fine-grained per-packet sequential features with coarse-grained
per-flow and per-host statistical features, to synthesize correlations
among the different granularities of traffic features. Moreover, we
design a topology-driven contrastive learning approach that pre-
trains the models while reducing topology-related biases, which
allows tFusion to achieve generic detection across various networks.
We deploy tFusion in an institutional network and measure its per-
formance over five days. tFusion requires human experts to label
only 1.0 ‰ traffic, yet it achieves 99.82% accuracy when detecting
various attacks. Meanwhile, it outperforms 14 existing methods by
improving over 12.76% accuracy on 11 existing datasets.

CCS Concepts
• Security and privacy → Network security.
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1 Introduction
Machine learning (ML) based malicious traffic detection is an im-
portant security technique that inspects traffic generated by various 
protocols and applications to recognize malicious flows with abnor-
mal traffic features [8, 39, 79, 98, 107]. Over more than a decade of 
development, systems based on this technique have been deployed 
at network gateways to protect critical services [33, 34, 36], where 
they have successfully throttled real-world attack traffic [1, 2, 16] 
and outperformed traditional rule-based detection [88]. Currently, 
the market for malicious traffic detection is valued at more than
$3.64 billion, with expectations for expanding deployment across 
various networks [67].

Unfortunately, expanding the deployment of malicious traffic 
detection systems to new networks incurs prohibitive labor costs. 
Specifically, human experts must capture and label millions of be-
nign and attack packets [44, 46, 107], because large-scale traffic 
datasets are essential for ML models to learn the complex traffic 
patterns generated by various applications and protocols in new 
network environments. This labor-intensive process [5, 10, 71] im-
pedes a scalable deployment to protect vast numbers of Internet 
users from malicious traffic [5, 78].

To address this scalability problem, it is necessary to minimize 
the scale of the required training traffic datasets. Therefore, the 
goal of our work is to develop a detection system that maintains high 
precision, even when trained on a very small amount of traffic samples 
from the network environment of interest.

Our solution is based on the notion of multimodal AI, that is, 
a cognitive process that synthesizes patterns from multiple sen-
sory modalities, such as texts, sounds, and images. We observe 
that existing detection methods still treat traffic as unimodal data, 
by exclusively learning per-packet [44, 100], per-flow [8, 107], or 
per-host feature vectors [33, 34] (see Table 1). Consequently, the 
inability to synthesize the different granularities of f eatures re-
sults in significant information loss, requiring large-scale train-
ing datasets [35, 65, 107]. In contrast, we view bytes delivered in 
networks from multiple modalities by extracting heterogeneous 
traffic features from the perspectives of packets, flows, and hosts. 
Subsequently, we correlate the traffic features across the different 
modalities to enrich the information available from limited datasets.

This paper presents tFusion, a malicious traffic detection system 
that effectively extracts information from limited training datasets.

3930

https://orcid.org/0000-0003-4568-6125
https://orcid.org/0000-0001-8776-8730
https://orcid.org/0000-0002-4029-7051
https://orcid.org/0000-0003-2587-8517
https://doi.org/10.1145/3719027.3765143
https://doi.org/10.1145/3719027.3765143


CCS ’25, October 13–17, 2025, Taipei Chuanpu Fu, Qi Li, Elisa Bertino, and Ke Xu

Table 1: The comparison with the state-of-the-art ML based malicious traffic detection methods.

Categories Methods ML Models
Dataset Requirements Detection Abilities Performances

Feature
Modality

Feature
Scale

w/o Large
Datasets

Generic
Detection

Evasion
Attack

Unknown
Attack

Encrypted
Traffic

Realtime
Detection

Efficient
Detection

Supervised
Learning

nPrintML [44] AutoML Packet 𝑂 (105 ) × ✓ × × ✓ ✓ ×

FlowLens [8] Random Forest Flow 𝑂 (104 ) × ✓ × × ✓ × ✓

Taurus [79] SVM Flow 𝑂 (104 ) × ✓ × × × ✓ ✓

NetBeacon [107] Decision Tree Flow 𝑂 (107 ) × ✓ × × × ✓ ✓

BoS [100] RNN Packet 𝑂 (104 ) × ✓ × × ✓ ✓ ✓

N3IC [77] Binary DNN Flow 𝑂 (106 ) × ✓ × × × ✓ ✓

Unsupervised
Learning

Whisper [33] K-Means Host 𝑂 (103 ) × ✓ ✓ ✓ × ✓ ✓

Kitsune [65] AutoEncoder Packet 𝑂 (105 ) × ✓ × ✓ × × ×

EULER [54] GNN+RNN Host 𝑂 (103 ) × × × ✓ ✓ ✓ ×

HorusEye [22] Isolation Forest Flow 𝑂 (105 ) × × × ✓ × ✓ ✓

HyperVision [34] Graph Learning Host 𝑂 (107 ) × ✓ × ✓ ✓ × ✓

Both tFusion (Ours) Crossmodal Model ALL 𝑂 (10) ✓ ✓ ✓ ✓ ✓ ✓ ✓

In particular, tFusion fuses traffic features with different granulari-
ties by using a pre-trained crossmodal model [18, 87, 92]. Specifi-
cally, the crossmodal model employs the attention mechanism to
extract correlations among the different granularities of features.
More precisely, the model calculates weights (attentions) for fine-
grained packet features based on coarse-grained flow and host char-
acteristics, to highlight critical parts of packet sequences. In this
way, tFusion synthesizes correlations among multiple modalities to
obtain rich information from limited datasets, thus providing effec-
tive features to train both supervised and unsupervised lightweight
ML detection models to identify various malicious behaviors.

However, correlation analysis for multimodal data, which com-
prises sequential and non-sequential traffic features, is a non-trivial
task. First, to extract sequential features, we develop a time-aware
positional encoding to synthesize packet-level temporal and spatial
patterns. Second, to fuse the sequential and non-sequential features,
we design a crossmodal attention model that employs host features
as queries and flow features as keys to compute attentions, which
allows tFusion to focus on critical regions of packet sequences as-
sociated with various flows. Third, to pre-train the attention model,
we design a topology-driven contrastive learning approach that uti-
lizes large-scale unlabeled Internet traffic datasets. This minimizes
the need of labeling traffic for many networks. Specifically, our
topology-driven pretraining guides the model to cluster traffic sent
by same addresses in the feature space, regardless of ground-truth
labels. Finally, during the deployment phase, we leverage Auto-
matic ML (AutoML) [44] to select models for learning the features
extracted by the pre-trained model from minimal datasets.

To assess the performance of tFusion, we replay 11 existing
datasets to compare it with 14 state-of-the-art methods. The exper-
imental results show that tFusion outperforms existing methods
by improving the accuracy of 12. 76% in various training dataset
settings. Even in critical settings, such as learning from 50 samples
and 1.0 ‱ traffic, tFusion still retains more than 94. 92% precision
and robustness against evasion attacks [33]. Moreover, tFusion sig-
nificantly outperforms data augmentation methods [6, 47, 95] that
mitigate the data scarcity issue for other ML tasks. Furthermore, the
overall detection latency of tFusion is 34ms, which is comparable
to the latency of existing detection systems [33, 34]. Finally, we
deploy tFusion on an institutional network with more than 140

active users and measure its performance over five days. tFusion
requires an expert team to label 1.0 ‰ flows (91 captured flows) for
training an unsupervised model. Once trained, the model achieves
99.82% accuracy when detecting 25 manually constructed attacks.

In summary, the contributions of this paper are five-fold:
• We utilize crossmodal attention to correlate traffic features
across different granularities, enabling malicious traffic de-
tection with limited training datasets.

• We develop a time-aware packet sequence embedding to
extract fine-grained packet features.

• We design a cross-attention to fuse the packet features and
coarse-grained statistical features for correlation analysis.

• We pre-train the attention model using large-scale unlabeled
Internet traffic via topology-driven contrastive learning.

• We prototype1 tFusion and validate its accuracy and effi-
ciency in various network environments.

Additionally, our key idea, that is, seeing traffic as multimodal
data, may also reduce the dependency of large datasets for other
learning tasks, e.g., classifying benign application traffic [104]. We
present initial comparative experiments to suggest future research.

Note that tFusion is not intended to outperform existing systems
by simply devising similar flow or packet features. Instead, we
aim to eliminate the dependency on large-scale training datasets
by correlating different granularities of traffic features, thereby
promoting broad deployment across various networks.
Road Map. The rest of the paper is organized as follows. Section 2
introduces the threat model, the goals of our design, and the related
solutions. Sections 3 and 4 present an overview and the detailed
design of tFusion, respectively. Section 5 presents the results of our
experimental evaluation of tFusion. Section 6 discusses limitations.
Section 7 reviews related works and Section 8 outlines conclusions.
Ethical Issues.We generate attack traffic within a separate subnet,
and directly forward the traffic to themachine where bothmalicious
and benign traffic is collected. In addition, firewalls are configured to
prevent interference with real users (see Section 5.1). In addition, we
do not disclose personally identifiable information (PII) of users and
experts. The users and administrators consented to our experiments
and the release of the dataset. Furthermore, our system identified

1Source code and datasets: https://github.com/fuchuanpu/TFusion.
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Figure 1: TSNE visualized feature spaces: packet [100] and flow features [28] are extracted from the dataset [34] by default.

unusual traffic which may relate to network events (e.g., routing
updates). We reported these events to the administrators.

2 Problem Statement
Threat Model. We assume that attackers generate various mali-
cious network traffic flows from compromised machines [11, 40, 81].
Note that the attackers may control varying scales of machines,
resulting in highly variable traffic features [50]. In addition, we
assume that the attacker is able to generate stealthy traffic using so-
phisticated strategies, such as generating encrypted traffic [34, 81],
exploiting advanced vulnerabilities [13, 26], crafting behaviors that
mimic benign users [52, 61], and applying adversarial strategies for
evasion, e.g., manipulating features with traffic obfuscation [33]
and concealing topology patterns using tunnels [37].
Design Goals. The design of tFusion should meet several require-
ments: (1) It should achieve accurate detection by learning from
limited training datasets. (2) It should support unsupervised ML, i.e.,
learning from samples with benign labels in the absence of attack
samples [41, 65]. (3) It should meet the traditional requirements
for malicious traffic detection that are listed in Table 1: (i) Generic
detection for various attacks with different speeds and durations;
(ii) Robust detection for existing evasion attacks [33, 35]; (iii) Accu-
rate detection for zero-day attacks [80]; (iv) Ability to capture both
encrypted and plain-text malicious traffic [34]; and (v) Low-latency
detection in high-speed networks.

In general, tFusion focuses on detecting unknown attack traffic
flows among high-speed Internet traffic flows generated by various
protocols and applications in real time. This task is fundamentally
different from off-line supervised traffic classifications for specific
known kinds of applications [59, 104]. Moreover, unlike the classifi-
cation of benign applications [59, 105], tFusion should not directly
learn raw bytes in packet payloads [108], as attackers can easily
manipulate data in the form of raw bytes for evasion attacks [5, 45].
Potential Solutions. We observe that complementing limited
datasets with samples from other datasets cannot mitigate the prob-
lem of data scarcity because the distributions of traffic features
in computer networks differ significantly from each other due to
the diversity of network services (see the flow features [28] in Fig-
ure 1(a)). Moreover, existing data augmentation methods [6, 49, 95]
can only generate a particular type of traffic based on prior knowl-
edge, such as Tor traffic [6] and TLS traffic [95]. Thus, thesemethods
cannot be applied to traffic detection systems, which must handle
various types of traffic for generic detection (see the experiments

in Section 5.2). Unlike these methods, we seek to effectively extract
informative traffic features from limited datasets.

3 Overview
3.1 Key Observations
Existing approaches view traffic as unimodal data [90], exclusively
analyzing homogeneous tabular data with a single granularity, such
as per-packet features [65] and per-flow features [28]. However, as
we can see from Figures 1(b) and 1(c), these features are densely
distributed and thus cannot effectively distinguish benign and ma-
licious traffic. Therefore, large amounts of samples are required by
ML models to regress the complex decision boundaries.

In contrast, we treat traffic as miltimodal data. That is, we view
bytes delivered by networks from multiple modalities, i.e., from the
perspective of packets, flows, and hosts, to extract heterogeneous
features comprising different granularities of sequential and non-
sequential traffic features. From Figure 1(d), we observe that the
distribution of the multimodal features is more sparse. This suggests
that analyzing features across multiple modalities may compensate
for the information loss that occurs with traditional unimodal fea-
ture analysis, which is a promising direction for effective training
with limited datasets.

3.2 High-Level Architecture
We develop tFusion to synthesize traffic features extracted from
multiple perspectives. Specifically, we design a crossmodal model
to capture the correlations among sequential and non-sequential
features based on the attention mechanism2.

Like existing systems [22, 33, 107], tFusion is deployed at Inter-
net gateways, where it inspects traffic mirrored by routers [15],
such as those connecting ASes through optical fibers [94]. When
tFusion identifies abnormal traffic, it cooperates with existing de-
fense systems [60, 97, 103] to effectively throttle the traffic. tFusion
has four modules, as illustrated in Figure 2.
Time-Aware Packet Sequence Embedding. tFusion starts by
extracting fine-grained sequential features. We design a time-aware
positional encoding algorithm to simultaneously embed both tem-
poral information (i.e., packet-arrival intervals) and spatial informa-
tion (i.e., packet sizes). Meanwhile, this module extracts packet-level
sequential information by analyzing the dependencies among the
packets in a flow, which facilitates the detection of stealthy attacks.

2In the full version of this paper [38], Appendix A elaborates detailed procedures of
attention based correlation analysis.
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Figure 2: High-level architecture of tFusion malicious traffic detection system.

Crossmodal Attention Feature Fusion. In this module, we ana-
lyze the correlations between the fine-grained sequential features
and coarse-grained non-sequential features. Specifically, we design
a crossmodal attention mechanism to fuse these features with dif-
ferent granularities into a unified feature vector. More precisely,
we use host features as queries, flow features as keys, and packet
features as values. In this way, host features instruct the model to
concentrate on important packets in various flows, allowing the
fused feature vector to effectively represent multimodal traffic data.
Topology-Driven Contrastive Learning. To pre-train the model,
we develop a contrastive learning approach, which enables uti-
lizing large-scale unlabeled Internet traffic datasets generated by
numerous benign and malicious sources. Note that the unlabeled
traffic is collected from networks other than where tFusion will be
deployed, thereby minimizing the labor costs of labeling training
samples for many different networks. Specifically, our approach
is driven by specific network topological information, that is, the
traffic generation address. It gradually guides the model to gather
traffic generated by same addresses in the feature space, regardless
of their labels. In this way, tFusion can utilize the traffic generated
by various topologies in large data sets to eliminate bias on network
topologies for accurate detection in different networks.
Lightweight ML Detection. In the training phase, human experts
randomly sample a small minority of traffic from new deployment
networks. After labeling the traffic samples, they apply the pre-
trainedmodel to extract traffic features from the constructed dataset.
The extracted features are subsequently input into an AutoML
framework, which trains either four supervised ML models [8, 36,
79, 107] or three unsupervised models [22, 33, 34], depending on the
availability of malicious traffic samples. These lightweight models
are widely used by existing traffic detection approaches to realize
efficient detection. Ultimately, the framework selects the model
with the highest accuracy, which learns the features containing
rich information extracted from the limited datasets.

4 Design Details
4.1 Time-Aware Packet Sequence Embedding
This module extracts fine-grained features by synthesizing spa-
tial and temporal patterns from packet sequences. First, we aggre-
gate packets into flows. The flows consist of packets that share

the same five-tuple attributes: transport layer protocol identifier,
source and destination IP addresses, and associated port num-
bers. The ith arrived flow is denoted by set F𝑖 = {I𝑖 , P(𝑖 ) }, where
I𝑖 = ⟨p, s, d, sp, dp⟩ is the tuple that characterizes the flow and the
matrix P(𝑖 ) = [ ®𝑡𝑖 , ®𝑙𝑖 ] contains the per-packets features, i.e., ®𝑡𝑖 and
®𝑙𝑖 denote the arrival timestamps and the lengths associated with
the 𝑁𝑖 packets in the ith flow, respectively. Note that, we do not
directly use packet header fields as features, such as port numbers
and time-to-live (TTL), because analyzing these fields incurs over-
fitting issues [5, 45]. Instead, we extract sequential features from
matrix P(𝑖 ) .
Time-Aware Packet Embedding.We convert the features of each
packet into a vector. This vector contains both the packet length
information and the arrival time information. First, to effectively
embed the length information, we offset the length based on the
protocol identifier before embedding:

®𝑣𝑖𝑗 = I𝑖 .p × M +min(®𝑙𝑖𝑗 ,M) − 1, (1)

whereM denotes the maximum length of a packet that can be deliv-
ered by the network. Next, we apply a traditional embedding layer
that maps each integer in ®𝑣𝑖 to a floating-point vector, forming a
matrix: E(𝑖 ) = Embed(®𝑣). Note that the layer is trained to maximize
the distances among the mapped vectors to effectively represent
the packets.

Second, we embed the temporal information, because E(𝑖 ) cannot
indicate the order of packets and time intervals among the packets.
Traditional positional encoding for language [18] only considers the
order, but cannot consider time-scale information. Therefore, we
design a time-aware positional encoding algorithm, which converts
timestamps into discrete values that not only indicate a packet’s
position in a flow but also highlights significant time intervals
between packets:

®𝑢𝑖𝑗 =


0, if 𝑗 = 1,

2 · 𝑗 + 1, elseif 𝑇 ≤ ®𝑡𝑖𝑗 − ®𝑡𝑖𝑗−1,
2 · 𝑗, else,

(2)

where 1 ≤ 𝑗 ≤ 𝑁𝑖 . Afterward, we map each element in ®𝑢𝑖 to a
vector using a sinusoidal function, which allows two packets with
non-adjacent positions or large arrival intervals to be represented
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by significantly different vectors:

U𝑗,𝑝 =


sin

(
𝑝 · 𝑒−

𝑗 ·ln𝑇
𝐻

)
, if 𝑗 mod 2 = 0,

cos
(
𝑝 · 𝑒−

𝑗 ·ln𝑇
𝐻

)
, else,

(3)

where 1 ≤ 𝑝 ≤ 𝐻 and 1 ≤ 𝑗 ≤ 𝑁𝑖 . In this way, the embedding
function can effectively represent the index and time of each packet,
since it utilizes exponential functions to amplify the values, and
sinusoidal functions for normalization.

Finally, we compute the time-position embedding matrix as
T(𝑖 ) = U®𝑢𝑖 , and combine it with the length embedding matrix
E(𝑖 ) to produce the matrix representing the packet sequence: S(𝑖 ) =
T(𝑖 ) + E(𝑖 ) . Note that S(𝑖 )

𝑗
is the vector representing jth packet in

ith flow.
Sequential Feature Extraction. For each flow, we extract sequen-
tial features to represent the relationships among the packets. We
employ a self-attention model [87]. First, the model converts an
input matrix into query, key, and value matrices. Afterward, it
computes an attention matrix that indicates correlations, by multi-
plying the three matrices with non-linear transformations. Given
that the scale of our embedding vectors is smaller than those used in
language-related tasks [18], we utilize a smaller model to mitigate
overfitting issues [5].

First, we convert matrix S(𝑖 ) into query, key, and value matrices,
i.e., the input of the attention model:

Q(𝑖 ) = Linear
(
S(𝑖 ) ;W(𝑄 ) , ®𝑏 (𝑄 )

)
= S(𝑖 )W(𝑄 )T + ®𝑏 (𝑄 ) , (4)

where W(𝑄 )
𝐻×𝐻 and ®𝑏 (𝑄 ) are trainable parameters, denoting the

weights and bias of the fully connected layer with 𝐻 states.

K(𝑖 ) = Linear
(
S(𝑖 ) ;W(𝐾 ) , ®𝑏 (𝐾 )

)
, V(𝑖 ) = Linear

(
S(𝑖 ) ;W(𝑉 ) , ®𝑏 (𝑉 )

)
. (5)

In the next step, we calculate the self-attention values according to
the key, value, and query matrices:

A(𝑖 ) = Atten(Q(𝑖 ) ,K(𝑖 ) ,V(𝑖 ) ) = Softmax
(
Q(𝑖 )K(𝑖 )T

√
𝐻

)
V(𝑖 ) , (6)

where A(𝑖 ) denotes the values of attentions. Afterward, we com-
bine the attention matrix A(𝑖 ) with the embedding matrix S(𝑖 ) .
Afterward, we apply the residual connection that directly adds the
model’s input to its output, a widely used technique for improving
deep learning models [18, 87]. Moreover, we employ a fully con-
nected layer with 4𝐻 hidden states to produce the output of this
module:

M(𝑖 ) = GELU
(
Linear

(
A(𝑖 ) + S(𝑖 ) ;W(1)

(𝐻×4𝐻 ) ,
®𝑏 (1)

))
,

U(𝑖 ) = Softmax
(
Linear

(
M(𝑖 ) ;W(2)

(4𝐻×𝐻 ) ,
®𝑏 (2)

)
+ A(𝑖 )

)
.

(7)

Note thatGELU(·) denotes the Gaussian Error Linear Unit function.
Finally, we select the first dimension of the matrix U(𝑖 ) , which is
denoted by ®𝑝𝑖 , to represent the fine-grained sequential information
extracted from the flow.

We plot the attentions in Figure 3 and Figure 4, where a darker
pixel indicates a higher attention value. We observe that a packet
does not exhibit significant correlation to itself, as the values on
the diagonals of the attention matrices are not significantly higher.
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(a) HTTP download.
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(b) HTTPS web access.
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(c) UDP video flow.

Figure 3: Attention values associated with benign flows.
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(a) Pulsing TCP DoS.
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(b) Telnet injection.
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(c) Amplification attack.

Figure 4: Attention values associated with attack flows.

Moreover, we can see the regular and periodic patterns in the atten-
tions associated with malicious flows, such as the periodic bursts
generated by pulsing attacks [61] (see Figure 4(a)). Meanwhile, the
attention values of malicious flows are generally higher than those
of benign flows, because attention models can easily capture their
regular patterns. Note that tFusion captures both temporal and
spatial packet patterns, which are critical for detecting advanced
malicious traffic [8, 33]. In contrast, existing attention based be-
nign application classification methods [17, 59, 104, 105] can only
analyze the spatial patterns.

4.2 Crossmodal Attention Feature Fusion
In this module, we extract coarse-grained statistics from the per-
spectives of hosts and flows. Subsequently, we fuse the sequential
features with these non-sequential features, by designing a cross-
modal attention model.
Flow Statistical Feature Extraction. For each flow F𝑖 , we extract
flow-level statistics from the per-packet feature matrix P(𝑖 ) . Specif-
ically, we calculate six flow features [28, 34]. The flow-level feature
vector ®𝑓 can be denoted as:

®𝑓 𝑖 = Log ©­«
[
𝑁𝑖 , ®𝑡𝑖𝑁𝑖 − ®𝑡𝑖1,

𝑁𝑖∑︁
𝑗=1

®𝑙𝑖𝑗 ,min(®𝑙𝑖 ),max(®𝑙𝑖 ), 1
𝑁𝑖

𝑁𝑖∑︁
𝑗=1

®𝑙𝑖𝑗

]T
+ ®1ª®¬ . (8)

The features are: (i) the number of packets in a flow (i.e.,𝑁𝑖 ); (ii) flow
completion time (FCT) denoted by ®𝑡𝑖

𝑁𝑖
−®𝑡𝑖1; (iii) the number of bytes

in a flow: Sum(®𝑙𝑖 ) = ∑𝑁𝑖
𝑗=1

®𝑙𝑖
𝑗
; the (iv) maximum, (v) minimum, and

(vi) average packet lengths in the flow, denoted bymin(®𝑙𝑖 ),max(®𝑙𝑖 ),
and mean(®𝑙𝑖 ), respectively. In addition, we perform logarithmic
transformations to improve numerical stability.
Host Feature Extraction.We extract host-level statistics to repre-
sent flow interactions among numerous hosts. Therefore, for the
flows that arrive within a small time window 𝐿, we calculate 12
host-level flow interaction features. Specifically, we define the func-
tions fsrc (𝑠;F ) and fdst (𝑑 ;F ), which query the flows with the
same source and destination hosts among all the flows in F :

fsrc (𝑠 ;F ) = {F𝑖 |∀F𝑖 ∈ F , I𝑖 .𝑠 = 𝑠 } ,
fdst (𝑑 ;F ) = {F𝑖 |∀F𝑖 ∈ F , I𝑖 .𝑑 = 𝑑 } . (9)
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Based on the flows with the same source and destination, we define 
the functions that extract the features of sending and receiving 
patterns for one particular host:

send(ℎ) =
 |fsrc (ℎ;F ) |,

∑︁
F𝑗 ∈fsrc (ℎ;F )

𝑁 𝑗 ,
∑︁

F𝑗 ∈fsrc (ℎ;F )

𝑁 𝑗∑︁
𝑘=1

®𝑙 𝑗
𝑘


T

,

receive(ℎ) =
 |fdst (ℎ;F ) |,

∑︁
F𝑗 ∈fdst (ℎ;F )

𝑁 𝑗 ,
∑︁

F𝑗 ∈fdst (ℎ;F )

𝑁 𝑗∑︁
𝑘=1

®𝑙 𝑗
𝑘


T

.

(10)

Afterward, we define the host-level feature associated with one
flow F𝑖 as the sending and receiving features associated with its
source I𝑖 .𝑠 and destination I𝑖 .𝑑 :
®ℎ𝑖 = Log (Cat(send(I𝑖 .𝑠 ), receive(I𝑖 .𝑠 ), send(I𝑖 .𝑑 ), receive(I𝑖 .𝑑 ) ) ) ,

(11)
where the function Cat(·) concatenates all these vectors. Similar
to extracting flow features, we also perform the logarithmic trans-
formations for the host features.
Cross-Modality Feature Fusion. In the last step, we fuse the
non-sequential features ®𝑓 𝑖 and ®ℎ𝑖 with the sequential features ®𝑝𝑖 ,
to capture the relationships among these features at different gran-
ularities. Specifically, we devise a crossmodal attention model to
correlate different granularities of features by using the host fea-
tures as queries, flow features as keys, and packet-level sequential
features as values. This is because the flow and host features are
coarse-grained, and thus cannot directly indicate the fine-grained
patterns. However, these features can guide themodel to assign high
attention values (weights) to focus on critical packets. Note that
unlike the self-attention mechanism employed to extract sequential
features, the key, query, and value matrices in the cross-attention
feature fusion model originate from distinct modalities, enabling
effective fusion for heterogeneous data:

®𝑞𝑖 = Linear( ®ℎ𝑖 ;W𝑞

12×𝐻 ,
®𝑏𝑞 ) = ®ℎ𝑖TW𝑞

12×𝐻 + ®𝑏𝑞,
®𝑘𝑖 = Linear( ®𝑓 𝑖 ;W𝑘

6×𝐻 ,
®𝑏𝑘 ), ®𝑣𝑖 = Linear( ®𝑝𝑖 ;W𝑣

𝐻×𝐻 ,
®𝑏𝑣 ) .

(12)

Here, we use the Hadamard product to substitute the matrix multi-
plication in the original attention designed for sequential data [18,
87], to support applying attentions for fusing features of heteroge-
neous traffic data:

®𝐶𝑖 = CrossAtten( ®𝑞𝑖 , ®𝑘𝑖 , ®𝑣𝑖 ) = Softmax

(
®𝑞𝑖 ◦ ®𝑘𝑖
√
𝐻

)
, ®𝐹 𝑖 = ®𝐶𝑖 ◦ ®𝑣𝑖 + ®𝑞𝑖 .

(13)
Inspired by large language models [18], we apply residual connec-
tions to enhance the relationships between the queries and attention
values. Finally, ®𝐹 𝑖 denotes the fused traffic features.

In Figure 5, we plot the distribution of traditional sequential [100]
and non-sequential [28] features, as well as tFusion features. Specif-
ically, we randomly select 200 benign and malicious flows and
project the high-dimensional traffic features spaces. From Figure 5(a)
and Figure 5(b), we can see that the feature vectors are distributed
in small regions, because the crossfire attack [52] mimics benign
traffic features, i.e., it congests critical links by instructing many
compromised devices to simultaneously generate massive normal
flow. Similarly, the amplification attack triggers massive flooding
traffic by sending few packets at a low speed [73], making the as-
sociated features closer to benign ones (see Figures 6(a) and 6(b)).
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Figure 5: Crossfire attack flows in the traffic feature spaces.
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Figure 6: DNS amplification attack flows in the spaces.

Consequently, existing approaches require large-scale datasets to
learn the complex decision boundaries. In contrast, as we can see
from Figures 5(c) and 6(c), the attack traffic deviates the normal
relationships among the features, and thus tFusion can effectively
capture the attacks by synthesizing these features.

Furthermore, we visualize the cross-attention to investigate
modality-wise correlation. Initially, we extract features of benign
traffic from Internet datasets [94] and our institutional network
testbed (see Section 5.1), as well as malicious traffic from existing
datasets [34]. Afterward, we transform the features according to
Eq. 12 to calculate attention. In Figure 7, each line connecting the
three modality dimensions denotes the attention among packet,
flow, and host features, where transparency of the lines indicates
values of attentions, and red color highlights significantly high at-
tention values (close to 1.0 after normalization). Comparing benign
attentions (Figures 7(a) and 7(b)) to abnormal ones (Figures 7(c)
∼ 7(f)), we can see that values of cross-attention associated with
malicious traffic are generally higher than those of benign traffic.
These high attention values indicate abnormal correlations among
different granularities of traffic features, and thus can be accurately
captured by tFusion.

Note that existing approaches, which either correlate unimodal
raw bytes within same flows [59, 105] or concatenate unimodal
packet-level features of bytes and sizes [42], differ significantly
from our cross-modality model which captures correlations among
multiple modalities of packets, flows, and hosts. Additionally, our
ablation studies show that simply concatenating features [77] fails
to synthesize the correlations among modalities, and thus cannot
achieve effective training on minimal datasets.

4.3 Topology-Driven Contrastive Learning
We design a contrastive learning approach that allows us to utilize
large-scale unlabeled Internet traffic datasets to pre-train the at-
tention models. This ensures that the models provide informative
features for training AutoML module with minimal datasets. Unlike
existing pre-training approaches [17, 49], we do not aim to achieve
high accuracy on the detection task for a particular network, which
restrains the accuracy in other networks. Instead, our topology-
driven method pre-trains the models to maximize the distances
between the features associated with flows generated by different
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(a) Internet benign traffic.
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(b) Testbed benign traffic.
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(c) Crossfire attack.
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(d) Amplification attack.
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(e) Password cracking.
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(f) Spam traffic.

Figure 7: Attention among different modalities synthesized by the fusion model, i.e., packet, flow, and host features.

addresses, while minimizing the distances between flows generated
by same addresses in the feature space.
Contrastive Sample Batch Construction. First, we aggregate
samples for pre-training into batches of size 2𝐵. Each batch contains
an identical amount of flows sent by (or received by) same and
different addresses. We use F𝑇 = {F1, . . . , F𝑌 } to denote all the
flows in an unlabeled large-scale Internet traffic dataset, where each
flow may either be benign or malicious. We first identify the source
and destination addresses that send or receive more than 𝐵 flows:

S = {F𝑖 .𝑠 | |fsrc (F𝑖 .𝑠 ;F𝑇 ) | ≥ 𝐵, ∀F𝑖 ∈ F𝑇 } ,
D = {F𝑖 .𝑑 | |fdst (F𝑖 .𝑑 ;F𝑇 ) | ≥ 𝐵, ∀F𝑖 ∈ F𝑇 } .

(14)

Note that 𝐵 is the batch size hyperparameter. In the next step, we
evenly sample flows in S to construct S containing flows sent by
and not sent by same addresses:

S =
⋃
∀𝑠∈S

{S𝑠 } , S𝑠 = {S 𝑠
same,S

𝑠
diff }, (15)

where S𝑠 denotes sampled flows associated with 𝑠 ∈ S. It contains
S 𝑠

same (the 𝐵 flows sent by 𝑠) and S 𝑠
diff (the 𝐵 flows not sent by 𝑠):

S𝑠 = {samp(fsrc (𝑠 ;F𝑇 ) ;𝐵), samp(F𝑇 − fsrc (𝑠 ;F𝑇 ) ;𝐵) } . (16)

Similarly, we construct D that contains flows received by and not
received by same addresses:

D =
⋃

∀𝑑∈D
{D𝑑 } , D𝑑 = {D𝑑

same,D
𝑑
diff },

D𝑑 = {samp(fdst (𝑑 ;F𝑇 ) ;𝐵), samp(F𝑇 − fdst (𝑑 ;F𝑇 ) ;𝐵) } .
(17)

Finally, we denote the training datasets for the contrastive learning
as C = S ∪ D =

⋃
ℎ∈S∪D {Cℎ

same,C
ℎ
diff}.

Contrastive Training. Initially, we use tFusion to extract the
feature for each flows in a batch {Cℎ

same,C
ℎ
diff}. That is, we construct

the feature matrix (1 ≤ 𝑖 ≤ 2𝐵):

F(ℎ) = [ ®𝐹 1, . . . , ®𝐹𝐵, ®𝐹𝐵+1, . . . , ®𝐹 2𝐵 ], (18){ ®𝐹 𝑖 = tFusion({Cℎsame}𝑖 ), if 𝑖 ≤ 𝐵,

®𝐹 𝑖 = tFusion({Cℎdiff }𝑖−𝐵 ), else.
(19)

Note that tFusion() denotes the overall procedure of our method,
as described in Sections 4.1 and 4.2. Afterward, we project the ex-
tracted features using two fully connected layers, like the approach
by Chen et al. [14]:

Q(ℎ) = proj(F(ℎ) ) = Linear
(
ReLU(Linear(F(ℎ) ;W1, ®𝑏1 ) ) ;W2, ®𝑏2

)
. (20)

Notably, the layers are only used for pre-training, and are not
executed during the training phase. We use cosine similarity to
measure the distance between two samples:

Sim( ®𝑥, ®𝑦) = ®𝑥T · ®𝑦
∥ ®𝑥 ∥ ∥ ®𝑦 ∥ . (21)

Finally, the loss associated with the batch is:

𝑙
(ℎ)
c =

1
𝐵

𝑖=𝐵−1∑︁
𝑖=1

− ln

[
𝑒Sim( ®𝑞𝑖 , ®𝑞𝑖+1 )

𝑒Sim( ®𝑞𝑖 , ®𝑞𝑖+1 ) + 𝑒Sim( ®𝑞𝑖 , ®𝑞𝑖+𝐵 )

]
. (22)

Once we derive the loss for one batch of pre-training data, we
perform back propagation to optimize all the trainable parameters
using the Adam optimizer with a small learning rate and weight
decay. Unlike existing contrastive learning approaches [14], we do
not rely on fixed rules to craft new samples (e.g., image rotation).
Instead, we directly utilize flows generated by different addresses
with diverse traffic patterns. In addition, our contrastive learning
does not rely on labeled datasets, and thus can utilize the rich
traffic patterns in the unlabeled large-scale Internet traffic datasets,
enabling the attention models to effectively extract features in
various network environments.

5 Experiments
We prototype tFusion and compare it with 14 existing detection
systems across 11 public datasets, which include 150 different at-
tacks. To complement the existing synthesized datasets, we also
deploy tFusion in an institution network. The experimental results
demonstrate that:
(1) tFusion outperforms existing methods under various scales of

limited datasets (Section 5.2).
(2) Attackers cannot evade tFusion by constructing adversarial

examples according to existing strategies (Section 5.3).
(3) tFusion is able to processe high-speed traffic with low latency

on a physical testbed (Section 5.4).
(4) tFusion identifies maually constructed attacks, by learning from

minimal training samples. (Section 5.5).

5.1 Experiment Setup
Implementation. We prototype tFusion with 2.7K lines of C++14
and Python 3.10 code. We utilize libpcap++ (v22.05) to implement
the network component for packet parsing and feature extraction
(compiled by GCC v9.4.0, Ninja v1.10.0, and CMake v3.16.3). Mean-
while, we utilize PyTorch (v1.11.0 for CUDA v11.3) to implement
the attention models, and use scikit-learn (v1.1.2) to implement the
AutoML module.
Testbed. We install the prototype on a DELL server with two Intel
Xeon E2699 v4 CPUs, 512GB DDR4 memory, Intel 82599SE NIC (2
× 10Gb/s SFP+ transceivers), and Ubuntu v20.04.2 (Linux v5.15.0).
The attention models are trained and executed on a Tesla V100
GPU (32 GB memory, driver v470.103.01). We connect the server to
another one with a similar configuration using fiber-optic cables.
The other server forwards traffic to this server and coordinates the
speeds of network interfaces.
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Datasets. We use the following datasets to evaluate tFusion: (i) 
HyperVision datasets [34], collected from a 10 Gb/s optical link, 
contain encrypted traffic generated by exploiting real vulnerabil-
ities [48, 63]. (ii) Five datasets collected by CIC that are widely 
used for evaluating traffic detection systems, including DoH covert 
channels [30], Android malware [27], stealthy attacks in IoT net-
works [32], and intrusions in enterprise networks [29, 31]. (iii) 
Whisper datasets [35] cover reconnaissance steps and advanced 
attacks, such as link flooding attacks (LFAs) [52] and pulsing at-
tacks [55, 61]. (iv) Kitsune datasets [65] contain attack traffic tar-
geting IoT devices [82]. (v) NetBeacon datasets [107] are collected 
in a private cloud. (vi) CTU datasets [85] are collected from a cam-
pus network. Note that we replay benign traffic collected from the 
HyperVision datasets when a dataset does not contain benign traf-
fic [29] or contains low-speed simulated traffic [65], to compare the 
methods in complex network environments. By default, tFusion is 
pretrained using Internet traffic collected from the backbone net-
work maintained by the MAWI project [94] in Jan. 2023. Specifically, 
the pretraining dataset contains 1.76 million flows (39 million pack-
ets), which are transmitted through fiber-optic cables connecting 
two ASes in Japan. Detailed network topology and statistics are 
available on the project website [94].
Metrics. We primarily use AUC (AUROC, the area under the re-
ceiver operating characteristic curve) and F1-score (the harmonic 
mean of precision and recall), because they are widely used in pre-
vious work [23, 44, 110]. To prevent biased metric selection [5], 
we measure other accuracy metrics, including the area under the 
precision-recall curve (AUPRC), accuracy (Acc.), precision (Pre.), 
recall (Rec.), true- and false-positive rates (TPR/FPR). 
Baselines. We compare tFusion with 14 existing systems, covering 
both supervised and unsupervised methods. Specifically, we select 
detection methods which analyze packet features [44, 65, 71], flow 
features [8, 79, 107], and host features [33, 34]. We deploy open-
source methods [33, 34, 65], and prototype closed-source meth-
ods [35, 60] and hardware-specific methods [77, 107]. For end-to-
end detection, we use Random Forests to learn the CICFlowMeter
features [28] and the features extracted by Jaqen [60]. All models
are retrained to achieve the highest accuracy. Additionally, we have
attempted to adapt benign traffic classification models [59, 104, 105]
for detecting malicious traffic. However, none of them achieves ac-
ceptable accuracy (above 0.6 AUC), as these methods employ large
transformer models which require large training datasets [108].
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Figure 8: Network topology of deployment.
Deployment. The existing datasets are either synthesized or simu-
lated, which combine traffic from different networks or generated
by tools without real users. To mitigate the issues, we present a
case study in an institutional network, where we invited human
users to investigate the labor consumption required by tFusion.

Figure 8 shows the network topology. We configure a router in
the institutional network to mirror the ongoing traffic targeting
a subnet to our testbed. The subnet hosts servers are owned by
a security research team with around 100 active users. We invite
two graduate students (blue team) to train and deploy tFusion.
Specifically, they randomly sample 1.0 ‰ flows (91) from the traffic
collected in the first 20 minutes (90,319 flows). Afterward, they
manually inspect and label the flows using the WireShark GUI.
Finally, the team selects 87 benign flows as the training data for the
AutoML module to train and select unsupervised models within 10
minutes.

We invite four red teams, each comprising one graduate student
and one security expert from the industry. These teams generate at-
tack traffic from a separate subnet, targeting our own victim servers.
The conducted attacks include: (i) web attacks: using vulnerability
detection tools; (ii) flooding attacks: generating volumetric traffic
according to existing studies; (iii) advanced attacks: exploiting pro-
tocol vulnerabilities; and (iv) malware behaviors: replaying traffic
from sandboxes generated by recently disclosed malware. Note that
the router mixes benign and attack traffic and forwards the mixed
traffic to the testbed. The ground-truth labels are generated based
on whether the traffic originates from the attacker’s subnet. Addi-
tionally, we observed abnormal traffic generated by real users who
were analyzing the prevalence of a recent OpenSSH vulnerability
on the Internet.

5.2 Accuracy Evaluation
We compare tFusion with 14 existing methods on 11 datasets. For
the fairness of comparison, we restrict the AutoML module to select
Random Forest and K-Means models, the widely used supervised
and unsupervised models in existing studies [33, 44, 46, 107].
Comparison with Existing Methods. Table 2 compares accu-
racy when using 10.0% datasets for training. Note that the ratio
is significantly lower than using 60% ∼ 80% samples for training
in previous work [34, 65, 100]. We observe that tFusion achieves
stable accuracy across the datasets, i.e., it allows the supervised and
unsupervised models to achieve 0.9947 and 0.9783 AUC, thereby
outperforming existing methods that achieve the best performances
by 9.25% to 12.76%. Moreover, even though existing methods may
achieve higher accuracy on some datasets, such as nPrintML [44]
and Whisper [33], they cannot achieve high overall accuracy.

Second, when only 1.0 ‰ training samples are available (see
Table 3), tFusion can still retain 0.9492 and 0.9864 accuracy, i.e., a
decrease of 0.83% and 2.97% in accuracy when comparing with train-
ing on 10.0% datasets. In contrast, the accuracy of existing methods
decreases by 5.26% ∼ 34.97%. Specifically, the accuracy of super-
vised methods decreases by at least 14.33%. For instance, Taurus
using SVM models and achieving superior accuracy, suffers from
a 0.129 AUC decrease. Meanwhile, the accuracy of unsupervised
methods decreases by at least 5.226%, e.g., a 0.2985 AUC decrease
by Hypervision [34], because the limited datasets cannot provide
sufficient flow interaction information.

Third, we observe that identifying stealthy attacks with a limited
dataset is challenging. tFusion utilizes 21 ∼ 194 training samples (10
∼ 176 attack flows), to realize 0.9811 ∼ 0.9962 AUC against various
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Table 2: Detection accuracy of using 10.0% datasets as training datasets.

Methods HyperVision Datasets Datasets Collected by CIC Datasets in Exisitng Studies Overall
Flood Prob Web Malware Adv. IDS’17 IDS’18 DoS’19 Android IoT DoH CTU Whisper Kitsune NetB.

N3IC 0.8572 0.7483 0.8774 0.9492 0.8540 0.9839 0.9884 0.7656 0.7023 0.8506 0.9456 0.9073 0.9211 0.8900 0.8145 0.8766
Taurus 0.9062 0.7435 0.9202 0.9512 0.8605 0.9398 0.9895 0.7648 0.7547 0.8950 0.8907 0.9700 0.9224 0.9841 0.9198 0.9029

FlowMeter-RF 0.9225 0.7541 0.8701 0.9068 0.9471 0.9685 0.9778 0.7849 0.7494 0.8610 0.9261 0.9808 0.9079 0.9747 0.8668 0.8946
Jaqen 0.7155 0.7458 0.9224 0.9448 0.9810 0.9977 0.9993 0.7674 0.8859 0.8825 0.9750 0.7265 0.9557 0.8812 0.6885 0.8778

NetBeacon 0.8588 0.7482 0.8755 0.9497 0.9859 0.9800 0.9905 0.7656 0.7808 0.8959 0.6260 0.6673 0.9254 0.8804 0.8153 0.8587
FlowLens 0.7775 0.7260 0.8707 0.8309 0.8495 0.8965 0.7569 0.5520 0.7381 0.7413 0.8851 - 0.8456 0.7725 0.8217 0.7742
nPrintML 0.9987 0.7937 0.8472 0.9342 0.9144 0.9960 0.8408 0.6497 0.7959 0.9453 0.7892 0.6809 0.9555 0.9973 0.9204 0.8735

RAPIER 0.8604 0.7142 0.8570 0.8875 0.8007 0.9802 0.8173 0.7712 0.6212 0.8895 0.7428 0.7105 0.8079 0.9472 0.7488 0.7972
Kitsune 0.6069 0.6999 0.6823 0.5677 0.7790 0.6641 0.6009 0.6478 0.8472 0.6966 0.9924 0.9970 0.6810 0.6645 0.6078 0.7025
FSC 0.8791 0.6736 0.6545 0.7484 0.8081 0.5690 0.7007 0.7754 0.9075 0.6933 0.9451 0.6949 0.8525 0.7906 0.8653 0.7690

Whisper 0.7842 0.9248 0.9617 0.5375 0.7451 0.5952 0.6079 0.7902 0.5246 0.8418 0.9980 0.5147 0.9186 0.8896 0.7753 0.7523
FlowMeter-KM 0.8440 0.6668 0.7495 0.7255 0.8694 0.8049 0.7588 0.6619 0.8605 0.8171 0.9644 0.5726 0.7746 0.7482 0.8024 0.7727

FAE 0.7812 0.9245 0.9478 0.5377 0.7396 0.5924 0.6070 0.7897 0.5247 0.8310 0.9470 0.5147 0.9134 0.8826 0.7712 0.7459
Hypervision 0.8112 0.9832 0.9664 0.9085 0.8440 0.9903 0.9990 0.9993 0.6197 0.8360 0.5287 0.6205 0.8824 0.6373 0.8850 0.8534

tFusion-RF 0.9999 1.0000 1.0000 1.0000 0.9961 1.0000 1.0000 1.0000 1.0000 0.9344 0.9857 0.9976 1.0000 1.0000 0.9999 0.9947
tFusion-KM 0.9851 0.9763 0.9775 0.9684 0.9760 0.9858 0.9900 0.9875 0.9622 0.9063 0.9952 0.9950 0.9839 0.9843 0.9893 0.9783

Table 3: Detection accuracy of using 1.0 ‱ datasets as training datasets.

Methods HyperVision Datasets Datasets Collected by CIC Datasets in Exisitng Studies Overall
Flood Prob Web Malware Adv. IDS’17 IDS’18 DoS’19 Android IoT DoH CTU Whisper Kitsune NetB.

N3IC 0.6860 0.7487 0.7483 0.8044 0.6995 0.6961 0.7651 0.8955 0.6592 0.6960 0.9275 - 0.7538 0.9198 0.6527 0.7333
Taurus 0.7703 0.7273 0.7585 0.8610 0.7709 0.7177 0.6031 0.5385 0.8190 0.8029 0.9247 0.7377 0.8902 0.9319 0.7918 0.7735

FlowMeter-RF 0.7676 0.7610 0.8081 0.7255 0.7152 0.7383 0.6715 0.7586 0.6835 0.7769 0.9446 - 0.7494 0.8784 0.7509 0.7418
Jaqen 0.6925 0.7284 0.8640 0.7682 0.7120 0.6802 0.8090 0.9092 0.5815 0.8615 0.7277 - 0.8052 0.8371 0.6978 0.7382

NetBeacon 0.7343 0.6938 0.8451 0.8046 0.7215 0.6583 0.6023 0.7691 0.6598 0.8755 0.7203 - 0.7766 0.7176 0.7160 0.7121
FlowLens 0.5012 0.5008 0.5428 0.5294 - - - - - - 0.5832 - 0.5004 - 0.5011 0.5093
nPrintML 0.9217 0.7196 0.8145 0.8413 0.7535 0.5555 0.6418 0.6461 0.6083 0.7945 0.7221 - 0.7499 0.8789 0.8776 0.7385

RAPIER 0.5119 0.6709 0.5923 0.6101 0.6291 - - 0.5268 - 0.5765 0.7324 - 0.6482 0.8418 0.5072 0.5792
Kitsune 0.7703 - - - 0.6441 - - - - 0.5679 - - 0.6302 0.5525 0.6122 0.5457
FSC 0.7857 - 0.6161 0.5001 0.7732 - 0.6538 0.6414 0.8218 0.7038 0.8724 0.7594 0.7633 0.6504 0.7475 0.6783

Whisper 0.7809 0.8923 0.8857 0.5375 0.7499 0.5929 0.5864 0.7418 0.5244 0.7904 0.9655 0.5143 0.8809 0.5559 0.7724 0.7127
FlowMeter-KM 0.7841 - 0.5660 0.5171 0.7605 - 0.5971 0.5971 0.7175 0.6411 0.8577 - 0.6580 0.6797 0.7028 0.6299

FAE 0.7779 0.5236 0.8839 0.5308 0.6778 0.5947 0.5897 0.5490 0.5244 0.7838 0.7329 0.5071 0.7340 - 0.7684 0.6484
Hypervision 0.5397 0.5594 0.5872 0.5669 0.6245 0.5702 0.5351 0.5328 0.5448 0.5722 - - 0.5775 0.5791 0.5409 0.5549

tFusion-RF 0.9963 0.9787 0.9877 0.9506 0.9888 0.9966 0.9960 0.9792 0.9565 0.9809 0.9922 0.9726 0.9975 0.9997 0.9973 0.9864
tFusion-KM 0.9445 0.8279 0.9847 0.9262 0.8829 0.9912 0.9937 0.9890 0.9855 0.9183 0.9713 0.9972 0.9316 0.9665 0.9572 0.9492
1 NetB. stands for NetBeacon datasets [107]; Adv. is short for stealthy attacks in HyperVision datasets [34]; RF and KM denote Random Forest and K-Means.
2 The - indicates that the performance is not better than random guessing.

stealthy network probings, web vulnerabilities, and malware infec-
tions. Particularly, tFusion captures advanced attacks with 0.9760
average AUC, including the Crossfire attack [52], side-channel
attack (CVE-2020-36516 [26]), TCP hijacking attacks (CVE-2016-
5696 [13]), and pulsing TCP DoS attacks [61].
Comparing Different Ratios of Samples. Figure 9 reports the
accuracy for different ratios of samples for training. Specifically,
tFusion enables supervised models to achieve 0.9947 ∼ 0.9864 AUC
when using 1.0 ‱, 1.0 ‰, 1.0%, and 10% training datasets. Com-
pared to the supervised baselines, tFusion improves their accuracy
by over 17.79% ∼ 8.20%. Similarly, we compare the accuracy for
unsupervised models in Figure 10. We find that the accuracy of
tFusion ranges between 0.9675 and 0.9784, thereby significantly
outperforming 0.8093 ∼ 0.8489 accuracy achieved by the baselines.

We observed that training with more samples incurs the over-
fitting issue [66], i.e., the model memorizes redundant training

samples, reducing its accuracy in classifying testing samples [19].
Our experiments confirmed the overfitting issue: the accuracy on
training samples was 8.16% higher than on test samples. In addi-
tion, we compare the accuracy using different numbers of samples.
tFusion achieves 0.9863 ∼ 0.9946 accuracy with 50 ∼ 200 training
samples. These details can be found in Appendix C.1.
Comparing Data Augmentation Methods. Existing approaches
generate more data using fixed-rules or Generative Adversarial
Network (GAN), which are applicable to security tasks other than
traffic detection, such as website fingerprinting (WF) attacks [6, 49]
and fake user detection [47]. We adapt five data augmentation
methods for comparison (see Appendix B.2 for configurations).
Figure 11 shows the results of the comparison. First, we observe that
the rule based augmentation strategies (NetAugment and Rosetta)
achieve at most 0.8895 AUC, which is significantly lower than
tFusion. Since their rules are designed for Tor and TLS traffic based
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Figure 9: tFusion enables supervised models to detect various attacks when using different ratios of samples for training.
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Figure 10: tFusion enables unsupervised models to detect various attacks when using different ratios of samples for training.
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Figure 11: Accuracy of existingmethods with augmentations.

on prior knowledge, they cannot effectively augment other types of
traffic. Moreover, GAN based ODDS achieves 0.7404 AUC, because
it can only generate malicious features. Furthermore, by adding
the datasets, the supervised model achieves at most 0.8813 AUC,
as the feature distributions of testing datasets are different from
the complemented ones. Overall, when applying these methods
to supervised detection, their accuracy is 10.52% ∼ 25.52% lower
than tFusion. In addition, the methods achieve 0.7460 ∼ 0.7911 AUC
based on unsupervised methods, which is 18.45% ∼ 23.10% lower.
Comparison for Ablation Study. We replace our cross-attention
traffic feature fusion model with simple fusion methods. Particu-
larly, we use addition and concatenation instead of using our cross-
modal attention to fuse the multimodal features. tFusion outper-
forms the concatenation fusion by over 8.06% accuracy. Meanwhile,
the addition method can only achieve 87.65% of the AUC compared
to tFusion. In addition, we observe that using solely packet, flow,
and host features can only achieve an AUC ranging between 0.8508
and 0.5409, which is at most 44.09% lower than using the fused
traffic features. Moreover, we individually disable the three kinds of

features, i.e., only two modalities are involved in the multiplication.
We observe that the absence of the features leads to an 8.50% to
14.70% AUC decrease for supervised models and a 3.79% to 47.48%
AUC decrease for unsupervised models. Thus, we conclude that
effective detection with minimal datasets can only be achieved by
simultaneously using all the three modalities.

Furthermore, we observe that the AutoML module can improve
3.53% accuracy by accurately selecting ML models with best per-
formances. Meanwhile, it outperforms random model selection by
3.24% accuracy. In Appendix C.2, we validate other design choices,
e.g., packet embedding and contrastive learning.

5.3 Robustness Evaluation
Robustness Against Evasion Attacks. Unlike traditional meth-
ods [42–44], tFusion does not directly use raw bytes as input fea-
tures. Thus, it cannot be easily evaded by tampering payloads [45].
Therefore, we construct adversarial examples according to recent
studies on feature manipulation [33, 35, 71]: (i) Traffic obfuscation:
attackers inject benign TCP/UDP encrypted traffic to obfuscate
attack traffic at a ratio of 1:4; (ii) Sending rate reduction: attack-
ers decrease their sending rates by 50%; (iii) Length manipulation:
attackers mimic benign encrypted flows by manipulating packet
lengths according to 5.0% randomly selected benign flows. Accord-
ing to the strategies, we generate 48 evasion attack based on 16
public traffic datasets [34].

From the results in Figure 12(a), we can see that the accuracy
decrease incurred by the evasion attacks can be bounded by 0.80%
AUC and 1.54% F1. Overall, tFusion allows random forest models
to achieve 0.9927 AUC and 0.9445 F1, which is 0.59% and 0.58%
lower than the accuracy without the interference of evasion at-
tacks. Moreover, for unsupervised models, the evasion attacks can
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Figure 12: Detection accuracy under evasion attacks.

HyperVision
CIC-DoH CTU

Whisper
Kitsune

NetBeacon
CIC-IDS

CIC-Android
CIC-IoT Overall

0.50

0.75

1.00

A
U

C

-1.18% -0.36% +2.98% +0.02% -0.39% +0.67% +0.84% -2.03% -1.24% -0.37%

w/o Dynamic IP w/ Dynamic IP

Figure 13: Impact of dynamic IP assignment on accuracy.

decrease AUC by at most 0.46% ∼ 0.94%. Note that the accuracy
drop is lower than of existing non-robust methods, such as 35.40%
decrease [65], and is similar to existing robust detection, e.g., 3.67%
drop by Whisper [35] and 4.49% drop by HyperVision [34]. The
reason for such robust detection is that existing evasion attacks ex-
clusively manipulate sequential or non-sequential features, which
deviate from the normal relationship among the features. Thus,
tFusion can captures the evasion attack by correlating the different
granulates of feature using the crossmodal attention model.
Robustness Against Dynamic IP. In addition, we analyze the im-
pact of dynamic IP assignment on our topology-driven contrastive
learning method. Specifically, we utilize the probabilistic model
for IP assignment [12] to simulate dynamic environments. That
is, when replaying the traffic datasets, we randomly change the
IP addresses of packets according to the probability of IP reassign-
ment. Figure 13 shows that tFusion retains over 97.9% accuracy,
when unsupervised ML models are trained with 50 samples from
different datasets. Therefore, the impact of dynamic IP assignment
is limited, since existing works [12, 69] show that Internet IPs are
rarely reassigned during short time windows, e.g., a few minutes
of data collection for pretraining traffic datasets [94].
Other Robustness Analysis. In Appendix D, we consider other
adversarial techniques, such as topology manipulation. Moreover,
we evaluate the hyperparameter sensitivity, validate the stability
of pre-training using various traffic datasets, and measure the ro-
bustness with respect to different models.

5.4 Performance Evaluation
We measure efficiency of the ML models and network component
of tFusion. In general, it achieves efficient detection with 32.23ms
latency and 0.7042 million packet per second (MPPS) throughput.
Detection Latency. Figure 14(a) plots the probability distribution
function (PDF) of detection latency on the HyperVision dataset.
The average latency of the ML models and network components is
9.02ms and 17.22ms, respectively. The latency of the network com-
ponent is higher due to the scale of Internet packets. Figure 14(b)
shows the data about the latency for different datasets. The average
latency on Whisper, HyperVision, Kitsune, and NetBeacon datasets
is 40.70ms, 34.21ms, 27.89ms, and 38.17ms, respectively. Moreover,
we analyze the composition of the latency in Figure 15. The embed-
ding module, sequence model, feature fusion, and AutoML module
exhibit 0.23ms, 6.34ms, 0.79ms, and 2.02ms latency, respectively. In
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Figure 14: Latency of the components on different datasets.

0.0 0.5 1.0 1.5
Latency [ms]

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Pr
ob

ab
ili

ty
 D

en
si

ty

Embed
Fuse

0 2 4 6 8 101214
Latency [ms]

0.0
0.3
0.6
0.9
1.2
1.5

Attention
AutoML
ALL

(a) Latency of ML models.

0 5 10 15 20
Latency [ms]

0.0

0.1

0.2

0.3

Pr
ob

ab
ili

ty
 D

en
si

ty Flow
Host

0 10 20 30 40 50
Latency [ms]

0.0

0.1

0.2

0.3
Packet
All

(b) Latency of network components.

Figure 15: Composition of tFusion detection latency.
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Figure 16: Detection throughput of different components.
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Figure 17: Comparing efficiency with existing methods.
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Figure 18: Overheads of pretraining with Internet traffic.

addition, packet, flow, and host feature extractions require 7.75ms,
3.76ms, and 6.81ms on average.
DetectionThroughput. Figure 16(a) shows the data on the through-
put of tFusion. We can see that the ML models and network compo-
nent can process 0.70 and 1.68million packets per second (MPPS), re-
spectively. Thus, the capacity of tFusion is higher than the through-
put of high-speed ISP networks, e.g., 0.28MPPS [94], thereby achiev-
ing low-latency detection in high-speed networks. In addition, the
network component can process 84.50 thousand flows per second
(KFPS) and the ML models achieve 39.23 KFPS throughput. Note
that such performance can be scaled up by running multiple in-
stances of tFusion. Moreover, the data in Figure 16(b) show that
tFusion achieves stable performance and theMLmodels can achieve
7.75 MPPS maximum efficiency.
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Table 4: Detection accuracy in the network environment using 1.0 ‰ of the captured flows as training dataset.

Groups Abnormal Behaviors Times Statistics Speeds Accuracy Metrics
Start End Span Packets Flows KPPS Mb/s AUROC AUPRC F1 Acc. Pre. Rec.

Web
Attack

Scrapy Clawer 17:33 17:40 455.77 116.31K 170 0.2552 1.9892 0.9976 0.9602 0.9630 0.9966 0.9278 0.9982
CSRF Detection 21:10 21:15 329.77 50.43K 887 0.1529 0.8378 0.9975 0.9907 0.9908 0.9966 0.9836 0.9981
SSL Detection 08:14 08:15 88.58 11.98K 1466 0.1352 0.3266 0.9975 0.9956 0.9956 0.9977 0.9926 0.9986
XSS Detection 10:12 10:13 91.43 14.66K 174 0.1603 1.0998 0.9975 0.9637 0.9660 0.9968 0.9337 0.9984
SQL Injection 11:34 11:36 128.79 21.91K 1338 0.1701 0.4644 0.9979 0.9920 0.9921 0.9960 0.9865 0.9977
Nginx Injection 15:57 16:01 284.78 68.94K 1370 0.2421 1.7089 0.9977 0.9960 0.9960 0.9980 0.9931 0.9988
Spam Flooding 17:39 17:50 660.31 110.61K 282 0.1675 1.6358 0.9975 0.9718 0.9732 0.9961 0.9484 0.9980

Flooding
Attack

Crossfire LFA 20:29 20:51 1350.77 395.07K 2654 0.2925 2.0957 0.9974 0.9964 0.9964 0.9973 0.9946 0.9982
Pulsing TCP DoS 22:12 22:27 952.47 517.74K 54 0.5436 6.2035 0.9972 0.9990 0.9990 0.9999 0.9999 0.9981
Coremelt LFA 8:03 08:15 764.78 225.66K 28 0.2951 2.5186 0.9976 0.9990 0.9990 0.9998 0.9999 0.9980
SYN Flooding 10:00 10:00 14.80 5.88K 1726 0.3972 0.1398 0.9974 0.9953 0.9953 0.9972 0.9923 0.9983
Flash Crowd 11:04 11:06 122.01 53.07K 107 0.4349 4.9688 0.9975 0.9245 0.9341 0.9956 0.8705 0.9977

NTP Amplification 16:21 16:21 18.48 160.97K 5630 0.3045 0.1851 0.9974 0.9978 0.9978 0.9979 0.9974 0.9982
SSH Bug Probing (1) 17:26 17:38 749.79 107.52K 17897 0.1434 0.1094 0.9975 0.9988 0.9988 0.9990 0.9992 0.9983

Active Host 19:59 19:59 44.70 21.63K 1690 0.4838 0.1554 0.9976 0.9952 0.9952 0.9972 0.9921 0.9983
CLDAP Amplification 20:37 20:37 6.68 3.38K 845 0.5056 0.3236 0.9976 0.9983 0.9983 0.9987 0.9992 0.9975

DNS Probing 22:41 22:42 63.79 24.00K 29 0.3762 0.4536 0.9976 0.9716 0.9731 0.9996 0.9464 0.9998

Advanced
Attack

Side-Channel DNS 8:57 08:59 127.75 35.80K 1645 0.2802 0.0897 0.9976 0.9927 0.9928 0.9959 0.9881 0.9975
SSH Bug Probing (2) 9:30 10:09 2349.80 240.47K 130 0.1023 0.1086 0.9975 0.9524 0.9564 0.9968 0.9145 0.9984
Side-Channel IPID 10:21 10:25 253.72 57.31K 31 0.2259 0.0653 0.9975 0.9821 0.9827 0.9998 0.9655 0.9999
Side-Channel ACK 10:45 10:46 95.51 19.35K 4255 0.2026 0.0722 0.9979 0.9969 0.9970 0.9972 0.9960 0.9979
Password Cracking 11:25 11:34 575.80 63.09K 117 0.1096 0.1515 0.9972 0.9986 0.9986 0.9996 0.9998 0.9975
Padding Oracle 15:53 15:55 134.77 45.56K 30 0.3380 3.8943 0.9967 0.9992 0.9992 0.9998 0.9999 0.9985
Telnet Injection 16:53 17:07 873.79 99.00K 10 0.1133 0.0363 0.9975 0.9993 0.9993 0.9999 0.9999 0.9987

Lateral Movement 17:42 18:06 1471.80 156.11K 5708 0.1061 0.6400 0.9977 0.9974 0.9974 0.9974 0.9970 0.9978
SSH Bug Probing (3) 22:07 22:16 579.82 57.58K 646 0.0993 0.0488 0.9974 0.9987 0.9987 0.9995 0.9997 0.9977

Malware
Mirai Malware 8:30 08:50 1209.80 200.93K 28672 0.1661 0.0531 0.9977 0.9988 0.9988 0.9992 0.9995 0.9982
Sality Malware 10:17 10:36 1169.45 155.16K 64128 0.1327 0.0605 0.9974 0.9988 0.9988 0.9995 0.9997 0.9978
Topology Change 11:19 11:27 530.77 378.42K 16452 0.7130 4.7164 0.9977 0.9990 0.9990 0.9991 0.9993 0.9986

All Overall - - 534.49 117.88K 5454.17 0.2637 1.2121 0.9975 0.9882 0.9890 0.9980 0.9798 0.9982
1 The shade ■ indicates unseen abnormal traffic generated by real users, and ■ indicates the network reconfiguration event.
2 We highlight the best accuracy in • and the worst accuracy in •.

Efficiency Comparison. In Figure 17(a), we compare the efficiency
with existing realtime methods on the high-speed network testbed.
We find that the overall latency of tFusion is lower than existing
methods. In specific, the latency of FAE [35], HyperVision [34],
Whisper [33] w/o and w/ sampling is 1.41, 26.77, 3.28, and 1.42
times higher, because tFusion can utilize GPUs for efficient feature
extraction. Moreover, the throughput of tFusion is comparable to
that of existing methods. In particular, its throughput is 1.05 and
1.23 times higher than FAE and Whisper. HyperVision has higher
efficiency yet incurs 0.91s high latency. Furthermore, from Fig-
ure 17(b), we observe that the performances in different networks
are similar. That is, tFusion achieves 34.89ms latency and 5.17 Gb/s
throughput in the Internet environment [94], which is similar to
26.45ms latency and 6.52 Gb/s throughput in the cloud [107].
Pretraining Overheads. Our pretraining takes 10.43 minutes us-
ing a single NVIDIA Tesla V100 GPU, where the average GPU
utilization is 13.5%. Such overhead is comparable to those reported
in related studies [17, 37, 71], e.g., training Transformers for traffic
analysis requires 30 minutes [17]. Moreover, Figure 18 compares the
overheads using different datasets collected in different months [94].
The time consumption ranges between 7.14 ∼ 16.58 minutes with an
average of 10.18 minutes. Furthermore, it takes 63.67s to pre-process

datasets, i.e., to construct contrastive data pairs for pretraining. Note
that pretraining overheads on some datasets are relatively higher
(e.g., Aug. 2023), as the datasets contain more flows.

5.5 Deployment
Analyzing the Statistics of Traffic. During the deployment, tFu-
sion processes 25.43M flows (884.25M packets), where 4.823% flows
(3.263M packets) are associated with abnormal behaviors. We plot
the speed of traffic in Figure 19, which ranges between 0.279K and
4.588K packets per second (PPS). Note that the average speed of
attack traffic is only 0.008K PPS, which is significantly lower, due
to the stealthy attacks. Moreover, we observe that the subnet is
accessed by 62 ∼ 140 active users (i.e., the users send over 20 flows
in an hour). In addition, we analyze the flow and packet distribu-
tions. The associated observations are similar to the ones reported
in previous work [34] (see Figure 21 in Appendix B.3).
Accuracy During the Deployment. From Table 4, we observe
that tFusion achieves 0.9975 AUROC, 0.9882 AUPRC, 0.9798 Preci-
sion, and 0.9982 Recall on average. Specifically, tFusion can detect
web attacks, flooding attacks, advanced vulnerability exploits, and
malware traffic by achieving 0.9830 ∼ 0.9988 AUPRC. In particular,
tFusion captures the attacks that generate few flows with 0.9821 ∼
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Figure 19: Traffic statistics of the real traffic dataset.
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Figure 20: Detection accuracy in the network environment.

0.9990 AUPRC; for example, 10 ∼ 54 flows generated Pulsing TCP
DoS attacks [61], TCP hijacking attacks [26], and Telnet command
injections. In addition, tFusion achieves 0.9718 ∼ 0.9986 AUPRC,
when detecting low-speed stealthy attack traffic, such as password
cracking (109 PPS), SMTP-over-SSH spam (167 PPS), and SQL injec-
tions (170 PPS). Furthermore, it identifies attacks with both short
and long durations, e.g., detecting short-term flooding attacks with
0.9953 ∼ 0.9983 AUROC, and long-term malware activities lasting
20.16 ∼ 1471.80 minutes. Note that all the attacks are treated as
unseen attacks during the deployment, as our training datasets only
contain benign samples.
Identifying Abnormal Behaviors from Real Users. Surpris-
ingly, we discovered that tFusion can identify abnormal traffic
generated by real users and administrators. Specifically, it detected
traffic generated by a script that probed for a recently disclosed
OpenSSH vulnerability at 17:27 on the third day and at 9:30 and
22:07 on the fourth day. tFusion detected the three abnormal be-
haviors with 0.9524 ∼ 0.9988 AUPRC. We contacted the research
team to confirm the activities. On the last day, our device identified
unusual traffic routed from unseen subnets, after the administrators
changed the routing policy, as illustrated in Figure 8. To prevent the
unseen traffic from congesting links, we terminated the experiment
to preserve link capacity.
False Alerts Issues. We observe that human users can effectively
respond to raised alarms by filtering false alarms. Specifically, we
plot the number of false alerts in Figure 19. Like previous work [36],
tFusion aggregates the flows associated with raised alerts according
to the distances in the traffic feature space. Overall, tFusion raises
2.322 false alerts per hour, which falls within the manual processing
capability indicated by previous work [24, 36, 41]. In addition, the
blue team can easily handle these false alerts since most of these
alerts are triggered by repetitive probing traffic and plain-text DNS
queries. Furthermore, we validate that tFusion is not significantly
affected by the concept drift problem, as the AUROC and F1 score
remain over 0.9803 and 0.9317 over five days without a surge in FP
numbers.

6 Limitations and Future Works
First, we have validated the robustness of tFusion only against
known evasion attacks from previous works [33, 71]. However, as it
is challenging to manipulate statistical traffic characteristics while
retaining the effectiveness of attacks, we expect novel successful

evasion strategies against tFusion to be developed in the future.
This will open new research directions in novel attacks and related
defenses.

Second, we have carried out some initial experiments to apply
tFusion multimodal strategy to another traffic-related task, that
is, classifying whether encrypted traffic is generated by particular
benign applications. For this application, we have modified the
supervised models of AutoML for multiple classes without modify-
ing other modules. Our experiments show that by using just 100
samples to classify VPN and Tor flows [104], tFusion outperforms
state-of-the-art methods YaTC [105] and ET-BERT [59] by 2.75 ∼
5.75% F1 and 3.67 ∼ 6.62% F1, respectively. Based on these prelim-
inary results, an interesting research direction for future work is
to explore multimodal ML for security tasks other than malicious
traffic detection.

7 Related Work
ML Based Malicious Traffic Detection. Existing generic detec-
tion approaches use a variety of features to simultaneously capture
various malicious traffic: (i) Flow features, such as discrete distribu-
tion features [8], statistical features [28], sequential features [71],
and frequency features; (ii) Packet features, such as Kitsune [65]
and nPrintML [44]. Moreover, task-specific detection aims to cap-
ture the behaviors of malware [11, 21, 81], web attacks [9, 56, 80],
threats in IoT networks [75, 82], and flooding campaigns [74, 99].

In particular, high-speed network devices are leveraged for effi-
cient detection. For example, programmable switch-based systems
support high-speed ML inference, e.g., decision trees [46, 107],
forests [22], and RNNs [100]. Similarly, SmartNICs with many
embedded cores enable flexible deployment [68, 77]. In addition,
there are approaches for implementing detection models on FP-
GAs [37, 79].
Traffic Based Defense Systems.Once abnormal traffic is detected,
these systems throttle the abnormal traffic by using fixed rules. SDN
based methods support automatic rule deployment [25, 53, 106].
Recent approaches implement complex defense behaviors on pro-
grammable switches, e.g., register based Poseidon [103], Sketch
based Jaqen [60], Mew [109] using multiple devices, Ripple dis-
tributed defense [97], ACC-Turbo for pulsing attacks [4], and Net-
Warden for covert channels [96]. Many practical defense strategies
are designed for traditional forwarding devices, e.g., AS-level de-
fense for ISPs [84] and IXP-level defenses [89, 93]. Additionally,
Li et al. [58] analyzed the benefits of the defense using game theory.
Attention Models for Security and Privacy Tasks. Attention
models are promising for analyzing sequential data. For security-
related tasks, these models were initially used to learn instructions
for binary analysis [57, 62]. More recently, by viewing logs as se-
quences and using Transformers, these models have been applied
to attack detection [70], forensic [20], and investigation of security
incidents [86]. Furthermore, attention models have been designed
to discover and mitigate privacy issues, such as web privacy leak-
age [17, 49, 72, 76].
Approaches to Address Training Data Scarcity. To address the
disparity between simulated and real-world datasets, approaches
have been proposed by which rules are manually designed to aug-
ment Tor traffic forWF attacks [6, 49] and TLS traffic for application
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identification [95]. Similarly, Jan et al. [47] generated the attack 
samples for fake user detection using GANs [102]. Moreover, ne-
tUnicorn [10] and ISDC [64] are tools for collecting flow datasets. 
The approach by Qing et al. [71] addresses incorrect label issues, 
and the one by Du et al. [24] enables efficient retraining. In addi-
tion, the few-, single-, and zero-shot learning paradigms enable 
supervised ML to classify one newly added class, e.g., meta-learning 
approaches [56], which are not our potential solutions, as training 
in new networks encounters numerous classes of new applications 
and unknown attacks.
Issues in ML-Based Security Applications. Sommer et al. [78] an-
alyzed the low usability issues of ML-based intrusion detection sys-
tems, and emphasized the prohibitive cost of building new datasets. 
Arp et al. [5] investigated practical issues in applying ML to secu-
rity [65]. Moreover, Alahmadi et al. [3], Vermeer et al. [88], and Fu et 
al. [36] found that ML-based security applications raised numer-
ous false alerts. Furthermore, past work analyzed concept drifting 
issues [7, 51, 101], explainability issues Han et al. [41], Jacobs et 
al. [45], and Wei et al. [91], sampling bias issues [83] and theoretical 
stability of intrusion detection systems Wang et al. [90].

8 Conclusion
This paper presents tFusion, a malicious traffic detection system, 
able to effectively extract features from small training datasets us-
ing the relationships among various modalities of traffic features. 
First, tFusion extracts fine-grained packet-level spatial and tem-
poral features. Second, tFusion fuses these fine-grained features 
with coarse-grained flow and host features through a crossmodal 
attention mechanism. In addition, the paper introduces a novel 
topology-driven contrastive learning method for pre-training. Our 
experiments demonstrate that tFusion enables experts to have to 
label only 1.0 ‰ of traffic, yet it  achieves an  accuracy of  99.82%
against various real-world attacks. Furthermore, it outperforms 14 
existing methods by improving accuracy by more than 12. 76% in 
11 datasets.
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