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Enriching Large-Scale Trips With Fine-Grained
Travel Purposes: A Semi-Supervised Deep
Graph Embedding Framework

Chengwu Liao

Fugiang Gu

Abstract— Knowing why people travel is meaningful for human
mobility understanding and smart services development. Unfor-
tunately, in real-world scenarios, trip purpose cannot be auto-
matically collected on a large scale, thus calling for effective
prediction models. Nevertheless, since passengers’ trip purposes
in the city are diverse and complicated, the prediction is
very difficult especially at a fine-grained level. Worse still, the
informative data sources and real purpose-labels about trips are
commonly limited for model learning. To resolve the dilemma,
we propose a semi-supervised deep embedding framework for
predicting fine-grained trip purposes on a large scale. Specifically,
we first derive augmented trip contexts from the vehicle’s
GPS trajectory and public POI check-in data, then convert
POI contexts into the graph structure. We further establish a
Dual-Attention Graph Embedding Network with Autoencoder
architecture (DAGE-A) to accomplish prediction and reconstruc-
tion simultaneously, in which category-aware graph attention
networks are devised to model the POI semantics at trip’s
origin/destination and extract complementary knowledge from
unlabeled trips; and soft-attention is employed to aggregate
different trip semantics appropriately for the final prediction.
We conduct extensive experiments in Beijing and Shanghai, and
results show our framework outperforms state-of-the-arts and
could reduce labelling efforts by up to 20%. We also find that
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our model is generalized at different times and locations, and the
performance varies for different trip purposes.

Index Terms— Trip purpose, semi-supervised learning, graph
embedding, GPS trajectory, check-in data.

I. INTRODUCTION

RIP purpose is the semantic information answering why

people travel in the city, and has been identified as
an important yet under-explored aspect in travel behavior
analysis [14], [36]. Knowing trip purposes in cities is mean-
ingful for human mobility understanding and smart services
development [7], [21], [24]. For example, knowing the pas-
senger’s trip purpose could enable personalized in-car advertis-
ing/recommendation, and knowing the city-wide trip purposes
could help public transportation planning (e.g., new bus
routes for “Working” purposes). Unfortunately, unlike GPS
trajectories, trip purposes cannot be automatically collected
by sensing devices in real-world scenarios, thus calling for
effective prediction models.

In general, the accurate prediction of trip purpose is
very challenging due to the complexity of human mobility
nature [2], [16], [22]. On one hand, trip purposes refer to the
activities that passengers take after being dropped off, while
human activities are realistically diverse and varying among
people. Thus passengers’ trip purposes are essentially with
great uncertainty. On the other hand, for passengers in the
city, their trip purposes (activities) are implicitly influenced by
many factors (e.g., time, space, personality, and nearby land-
use configuration) [23], so that the prediction would be very
complicated.

In recent years, with the proliferation of Information and
Communication Technologies (ICTs), Internet of Things (IoT)
in daily life, many aspects of human behaviors are able to be
recorded in the cyber space [26], [32]. Hence, one promising
solution for the trip purpose prediction is to understand the
passengers’ activity semantics with multi-sourced informa-
tion [21]. In this regard, a few works in the literature have
achieved over 90% trip purpose prediction accuracy [10],
[38]. However, many of them are in a personalized manner
by employing some sensitive information (e.g., employment,
activity duration) to model the respondent’s preference/life-
circles for prediction. As a matter of fact, with the prevalence
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of data protection laws and regulations (e.g., GDPR [35]),
people have the rights to delete and not reveal their per-
sonal information to a service provider, thus whether this
kind of personalized methods can still be practically applied
becomes doubtful. To make matters worse, such methods
mainly work on a small scale of trips contributed by a fraction
of respondents, and return a coarse granularity of trip purpose.
Consequently, the generalizability to support large-scale and
diversified urban services in real-world scenarios is restricted.

To enable more pervasive and privacy-friendly services,
in this paper, we aim at offering a context-aware prediction
approach that is able to automatically predict the fine-grained
trip purposes (i.e., up to 9 kinds of trip purposes in total)
for the large-scale trips contributed by city-wide passengers.
Note that the target application scenarios are door-to-door ride
services like taxi trips. Nevertheless, enabling trip purpose
prediction in such scenarios still faces two critical challenges:
i) there are very limited useful information to depict the
activity semantics for the accurate prediction; ii) labelling
efforts (e.g., surveys) are very high-cost and with uncontrol-
lable quality, so that in most cases, there are just quite limited
labeled trips available for algorithms to learn how to predict.

In light of the aforementioned challenges, the contributions
of our work can be summarized as follows.

« We propose a novel semi-supervised deep embedding
framework (DAGE-A) for predicting fine-grained trip pur-
poses in a context-aware manner. It leverages pervasive
data to enable the large-scale yet fine-grained prediction,
and is also effective with limited labeled training data,
thus making it more applicable for real-world urban
services.

o We integrate vehicle’s GPS trajectory (for revealing the
trip’s time and space) and public POI check-in data (for
characterizing human activities) to derive trip contexts
with semantic meanings. We are among pioneers of using
graph structure to represent localized POI contexts.

o« We establish a dual-attention graph embedding net-
work (i.e., category-aware graph attention networks and
soft-attention) with autoencoder architecture, to model
the higher-level activity semantics from trip contexts.
It accomplishes the prediction and reconstruction simul-
taneously, so as to improve the performance by incor-
porating the complementary knowledge from unlabeled
trips.

o We conduct a group of experiments with large-scale
datasets in Beijing and Shanghai. The results show
that our approach achieves a considerable improvement
compared with the state-of-the-art baselines, and our
semi-supervised framework could reduce labelling efforts
by up to 20%. Moreover, we investigate the performance
of trip purpose prediction at different times and locations.

The rest of this paper is organized as follows. In Section II,
we introduce a few definitions and the problem we resolved
in this paper. In Section III, we elaborate on the method-
ology of our proposed trip purpose prediction framework.
After that, we present a group of experiments in Section IV.
In Section V, we briefly introduce the related works. Finally,
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we conclude our work and outlook the future research direc-
tions in Section VI.

II. PRELIMINARIES
A. Definitions

Definition 1 (Trip): Each trip is represented by its origin-
destination pair, which consists of two GPS points with
timestamps collected by the vehicle at the pick-up and drop-
off locations, i.e., tr = [(ly, ty), (lg, t2)]. Such information is
used to reveal the original time and space of the passenger’s
trip.

Definition 2 (Point of Interest): A POI refers to a place
that is the very basic unit of taking human activities. POls
are usually represented by their positions and POI category
information. Note that the POI category directly indicates the
type of potential human activities at these POIs.

Definition 3 (Check-in Data): The Check-in data CI is
generated when users checked-in at POIs using LBSN plat-
forms. A check-in record commonly contains information about
the user’s identity, the check-in time and the corresponding
POI venue. Generally, the number of check-ins could reveal
the popularity of a POI [5], [39].

In this paper, the POIs and the corresponding check-in data
are used to reveal the characteristics of human activities at
passenger’s origin and destination locations. The adopted 9
POI categories and check-in data are from a Chinese LBSN
called Jiepang [20]. The mapping of POI categories and the
corresponding human activities (i.e., trip purpose) can be
found in Tab. I.

B. Problem Statement

With the aforementioned definitions, the problem of pre-
dicting trip purpose with limited labels can be viewed as a
classification problem in semi-supervised learning.

Given:

1) Two sets of trips in a city (both labeled and unlabeled

trips), i.e., TR; and TR,,.

2) A set of POIs and the corresponding historical check-in

records C/ in the designated city.

3) A set of candidate trip purposes, i.e., A in Tab. L.

Train a semi-supervised prediction model with labeled and
unlabeled trip data simultaneously.

Predict the probabilities of candidate trip purposes for
an unseen trip fr by using the trained model, i.e.,
p(y=altr,CI),a € A.

III. METHODOLOGY
A. Overview

Figure 1 shows our context-aware semi-supervised trip
purpose prediction framework. The inputs consist of labeled
trips, unlabeled trips, and public POI check-ins. The first
stage is trip context augmentation, in which the public
check-ins are aggregated with labeled and unlabeled trips
respectively, to derive augmented trip contexts, including the
OD (origin and destination) POI contexts and spatiotemporal
context.
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TABLE I
POI CATEGORY AND THE CORRESPONDING TRIP PURPOSE

k POI Category Trip Purpose
1 Recreation and Culture Facilities Recreation
2 Outdoors and Sightseeing Places Outdoors
3 Shop and Service Facilities Shopping
4 Restaurant Dining
5 School and Educational Facilities Education
6 Transportation Facilities — Transportation
7 Apartment and Residence Homing
8 Hospital and Clinic Health
9 Office and Business Buildings Working
Prediction
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Fig. 1. Our semi-supervised trip purpose prediction framework.

The second stage is the dual-attention neural network with
autoencoder architecture (in the three dotted boxes). Generally,
there are two parallel tasks in the working flow, namely
supervised prediction with labeled trips, and unsupervised
reconstruction with combined trips. Note that the combined
trips include all the labeled and unlabeled trips, so as to
provide relatively completed data distribution of all possible
trips in model training. The encoder is a shared component,
in which the augmented OD POI contexts are first converted
into the graph structure, then graph attention networks are
used to extract the latent OD activity semantics. After that, the
labeled trips are sent to the prediction component, in which a
soft-attention mechanism and a classifier are used to aggregate
the activity semantics and obtain the prediction loss (i.e.,
Loss_C). Meanwhile, the combined trips are sent to the
decoder component, in which a reversed encoder network
is used to obtain the reconstruction loss (i.e., Loss_R).
Finally, these two kinds of losses are combined to train the
semi-supervised neural network.

B. Trip Context Augmentation

In general, when and where one taking a trip are two fore-
most significant clues for the trip purpose prediction. In this
component, we aggregate the trip and public POI check-in data
to augment the semantic meaning of trip’s spatiotemporal (ST)
context, and OD POI contexts.

1) Spatiotemporal Context Cs;: For a trip tr, we extract
three kinds of temporal contexts from the vehicle’s GPS trajec-
tory, including the type of day (i.e., workday or non-workday)
TYP (tr) and the hour time H (t) when this trip started
and ended, and the travel time 74-#,. Particularly, in order to
maintain the time similarity between 00:00 and 23:00, ¢ is first
converted to the radian of a unit circle, i.e., =27z (t/24), then
represented by H (t)=(cos®, sin#). Together with the travel

time, the spherical distance between the origin and destination
lg-1, is used as the spatiotemporal cost of this trip. Finally, the
spatiotemporal context Cy; can be obtained as Eq. 1.

Cy tr) = [TYP (tr), H (o) , H (ta) s ta — 1o, la — Lo] (1)

2) POI Contexts Cp,;: To depict the activity conditions
at the origin/destination location, for each POI category,
we extract static and dynamic features from the nearby POI
check-in data within a radius of r meters. In this study, r is set
to 250 meters according to the studies of land-use buffer for
human trips [6]. The static features refer to POI distributions,
i.e., distance and uniqueness. Specifically, the distance feature
is the ratio of the minimum distance among the k-th category
of POIs at the drop-off point /;:

min(distance(POIs*, ld))) )
r

Dist(k) = —log, (

In addition, the uniqueness is adopted to reveal the ratio of
the k-th category of POls:

k
|[POIs"| ) 3)

Sk [POIST]
In terms of dynamic features, we extract period popularity
Popu to reveal the time-variant attractiveness of different
POIs. Specifically, for the k-th POI category, we compute the
total check-in times from the check-in data CI during a given
time period 7, i.e. |CI|kT. Then, Popu(k) is formulated as:

Uniq(k) = —log, (

P (k) log, | 1 ( |CI|kT 4)
opu = — —
? >

ieK |CI |;T
where K denotes the number of all POI categories (i.e.,
K = 9). In particular, for the origin location, we set 7 to
[to — 2, 1,], i.e., 2h before the trip starts. For the destination
location, we set 7 to [t4, 7 + 2], i.e., 2h after the trip ends.

C. Semi-Supervised Graph Embedding Model

In this section, we elaborate on the proposed
semi-supervised neural network for trip purpose prediction
with augmented trip contexts. Generally, the network models
the passenger’s activity semantics in a graph embedding
manner, and uses an autoencoder framework to ingest
unlabeled data in the model training. Such a semi-supervised
way could help the model to abstract latent representations
that capture the semantic meaning of all available samples,
thus improving the model’s performance.

1) Autoencoder With Graph Embedding: When extracting
activity semantics from POI contexts, it’s important to model
the inherent correlations between different POI categories,
since human activities at a location are often associated with
each other, e.g., “Dinning” and “Shopping”. Generally, the
POI categories, POI features, and correlations between POI
categories in the POI context are naturally analogous to the
nodes, nodes’ features, and edges in a graph. Moreover, the
graph structure could maintain the concept of node in hidden
layers, so that the modelling of node correlations is more
intuitive. In this sense, we first convert OD POI contexts into
the graph structure, then employ the graph attention network
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Fig. 2. Illustration of our graph construction and the attention coefficients
computation in the category-aware GAT, i.e., Equation 5.

to extract the neighboring activity semantics for each POI
category.

Graph construction. As shown in Fig. 2 (a), an undirected
completed POI graph is defined as G = (V, E) to represent
the POI context at the origin/destination. V is a set of nodes
representing the existent POI categories (drawn with solid
circles) in the origin/destination POI context, and E is a set
of edges representing their inherent correlations. Note that
the two nodes drawn with dotted lines in the figure refer
to the nonexistent POI categories. In addition, each node
contains 3 kinds of augmented features 1 € RF (i.e., distance,
uniqueness, and period popularity). Consequently, the OD POI
contexts are represented by G, and G, respectively.

Encoder for POI semantics extraction. In this study, G,
and G, representing POI contexts are arbitrarily structured
graphs in reality (some nodes may not exist), since a location
cannot always have all 9 categories of POIs nearby. In this
regard, we adopt the graph attention network (GAT) [34]
to model the non-identical correlations of neighboring POI
categories, and accordingly extract the high-level POI seman-
tics. The normal GAT adopts the attention mechanism to
learn attention coefficients between a central node u and
its neighboring nodes N,. Note that for a central node, the
attention coefficients to different neighbors are computed with
same parameters. However, human activities usually have
different inherent correlations. For example, for the “Dining”
activity, its correlation with “Recreation” is stronger than
“Health”, since “Dining” and “Recreation” are more likely
to be associated in people’s daily life.

To narrow the gap, we propose a new category-aware GAT
to further consider the neighboring nodes’ inherent differences,
i.e., differentiate the inherent correlations between specific
nodes in the POI graph. In such a manner, the extracted
neighboring semantics is also category-aware in the latent
space. Additionally, we also consider the time features T (i.e.,
day type and hour time feature) in the computation, since the
correlations between different activities also demonstrate to be
time-dependent. Hence, the coefficient a,, between u and a
neighbor v € N,, can be obtained by:

exp (g (WUVTWhu + Wi TWh, + WzT'JI‘))
ZneN“ eXp (g (WunTWhu + WlTWhn + WZTT))

Oy =

)

where W € RF*F s a shared weight matrix for linearly
transforming the input node features / into the latent space.
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Way € RF is a unique weight matrix of the center node u
towards a specific neighbor v. Different from that, Wy € R '
and Wy e RITYPIHHAL are shared attention weight matrices
for different neighbors and time features. Figure 2 (b) illus-
trates an example of our category-aware attention coefficients
computation for the “Dining” POlIs.

To obtain the neighboring POI features of u, the attention
coefficients are used to combine the neighbors’ features in a
weighted sum manner. We also adopt the multi-head mech-
anism to extract node’s neighboring features from multiple
perspectives, then the multi-head features are concatenated and
transformed into the final neighboring feature h,,:

M
o Z OLTDWth (6)
=1

m= veN,

Eu =W

where M is the number of multi-head attentions, and a]),

and W™ are the attention coefficient and linear transformation
weight matrix of the m-th attention. ¢ is a nonlinear function.
W e RFXMF jg 4 weight matrix which transforms the
concatenated features into ' dimension. Besides, in this graph
embedding network, we stack two multi-head category-aware
GATs to enhance the learning capability. As a result, we can
obtain the higher-level OD POI contexts with neighboring
activity semantics (i.e., éo, dd).

Besides, for the prediction part, we further aggregate each
node’s own augmented features and neighboring features
as the twofold comprehensive POI semantics (i.e., i), =
[hullul, hl, € RFTF'), obtaining G, and G/,.

Decoder for reconstruction. After the shared encoder, the
features of combined trips (i.e., G, and G4) are sent to
the decoder component. The decoder is used to perform the
inverse operations of the aforementioned encoder, to recon-
struct the original features in POI contexts. Since the encoder
mainly employs GATs to extract the neighboring features of
POI contexts, we adopt a new group of GATs (i.e., Equa-
tions 5, 6) with inverse feature dimensions in the decoder. The
loss function for reconstruction is the mean squared error:

Lr=>) (=) + > (4 -39 (7
i J

where x; and xl.d are the elements of G, and G, respectively.
x? and )?id are the corresponding reconstructed vectors.

The reconstruction loss would be used to train the encoder
together with prediction loss. In this manner, the activity
semantics extraction in encoder would be trained with both
the labeled and unlabeled trips (i.e., large-scale trip data), thus
being more generalized to unseen trips in the city.

2) Prediction: In this section, we first aggregate the seman-
tics of three kinds of trip contexts, then use a classifier
to predict the possibilities of candidate activities being the
passenger’s trip purpose.

Soft-attention for trip semantics aggregation. Soft-
attention can be described as mapping a query and a set of
key-value pairs to an output [33]. The output is the weighted
sum of values, where the weights are computed by using a
compatibility function on the guery and a specific key. In this
study, passenger’s activity at the destination location can be
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viewed as the response to a special query (i.e., a trip with
specific origin and time). Hence, the origin activity semantics
G/ and trip’s spatiotemporal cost Cy; are viewed as the
query. Since POIs are basic units of human activities and the
destination is where a passenger takes the final activity, each
category of POI semantics in the destination is used as the key
and value, i.e., keys = values = h/(D). By modelling such
dependencies on trip purpose, the aggregation of trip contexts
could be more rational for trip purpose prediction.

We first combine G/, and Cs; with a full connected (FC)
layer to serve as the query h,s. Then, we establish a multi-
head soft-attention with a feed-forward network as the com-
patibility function. Then, the coefficient a, for a POI category
u € G/, and the final combined trip activity semantics 7’ can
be computed as follows:

exp (tanh (W, " hogr + Wi h), + b))
> ey exp (tanh (Wo " hogr + Wi 1l + b))

M/
H = W”( o (Z aumh;)) (8)
m'=1 ueV

where W,, Wy and b are parameters of the compatibility
function. M’ denotes the number of attention heads, and
W e RIxMIhl s g parameter matrix that transforms the
concatenated multi-head features into |),| dimensions.

Softmax classifier. A FC layer with softmax function is
adopted as the classifier to output the probabilities of can-
didates. The FC layer contains |A| neurons representing the
candidate trip purposes A. Then, the probability p of the i-th
candidate a; being the purpose of a trip 7r, can be obtained
as follows:

o~

Oy =

p(y=altr,CI) = PR @) ,(zi,zj) € FC(I)
[A]
2o exp(z))
y =argmax p (y = a;|tr, CI) )

1

The prediction result is the candidate § with the highest
probability. The prediction loss function is based on the cross-
entropy:

|A|

L_c=— Z y D log (ﬁ(i))
i=1

where y@ and p® denotes to the actual and predicted
probability of the i-th candidate.

At last, the overall loss function of our semi-supervised
model is the weighted summarization of prediction and recon-
struction, namely L =L_c+ A- L_r.

(10)

1V. EXPERIMENTS
A. Dataset Description

We conduct a group of experiments in Beijing and Shanghai,
based on two kinds of real-world datasets, namely UCar
trip data and POI check-in data. Note that Shenzhou UCar
(a ride-on-demand service) is one of the door-to-door ride
services and further possesses the information of passengers’
trip purposes. Hence, we employ the large-scale UCar data as

the labeled door-to-door ride trips to evaluate our trip purpose
prediction framework.

UCar Trip Data. The data is composed of vehicle trips
generated by arbitrary passengers with Shenzhou UCar in
China, in November and December 2015. Each record con-
tains the GPS information of the pick-up&drop-off locations
(i.e., longitude, latitude, and timestamp), and the name of
passenger’s target POI for this ride (e.g., Beijing Restaurant).
The activity type of this POI (e.g., “Dining”) is served as
the trip purpose (i.e., ground truth). Such a mapping process
is automatically accomplished by using a pre-trained NLP
model (i.e., ERNIE). The model is fine-tuned with large-
scale POI descriptions and the corresponding POI categories
from the Jiepang dataset, and could achieve over 99% pre-
diction accuracy. More details of the mapping process can
be found in our previous study [21]. Finally, we select
366, 783 purpose-labeled trips within the Five-Ring of Beijing,
and 270, 943 purpose-labeled trips within the central area of
Shanghai.

Jiepang POI Check-in Data. It contains 511, 133 Jiepang
check-ins in Beijing and 712, 305 check-ins in Shanghai from
August 2011 to September 2012. Each record contains an
anonymous user ID, a check-in timestamp and the correspond-
ing POI information (i.e., POI description and POI category).
Note that the POIs and human activities are relatively stable
in developed cities [37], [41], so that the time inconsistency
problem has less impact on our study.

Besides, both the datasets used in our experiments are
anonymized. During the prediction in real-life scenarios (e.g.,
taxi trips), our model would merely employ the vehicle’s GPS
trajectory from the trip, and it has no connection with the
passenger in the digital space, thus it does not record or involve
any personal information. In short, the use of data in this
study is privacy-friendly. Moreover, the utilized data sources
are relatively pervasive in door-to-door ride scenarios. Thus,
we believe our framework could be generalized to unseen
people and similar ride services.

B. Baselines and Evaluation Metrics

1) Baselines: We compare our prediction framework with
various baseline models in existing trip purpose prediction
works. Note that in order to compare the models’ performance
in the same pervasive scenario as ours, all baselines are
omitting the privacy-involved information from their original
studies.

o Nearest [3]: Trip purpose is the activity type of a POI
that is closest to the passenger’s drop-off location.

o Bayes’s Rule [13]: Based on a set of spatial and temporal
rules, trip purpose is the activity type of the most likely
to be visited POI near the destination.

o Artificial Neural Network (ANN) [38]: A neural network
with two hidden layers, and the prediction is based on
the day type and the land-use of trip’s end (binary codes
of nearby POI categories).

o Random Forest (RF) [11]: The input variables include the
nearby place characteristics (i.e., proportions of different
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TABLE 11
PREDICTION RESULTS OF DIFFERENT MODELS IN BEIJING
Proportion of labeled trips in the training data
Models 10% 20% 30% 40% 50% 60% 70% 80% 90%

Acc | M_F; | Acc | M_F; | Acc | M_F; | Acc | M_F, | Acc | M_F; | Acc | M_F; | Acc | M_F; | Acc | M_F; | Acc | M_F;
Nearest 26.08 | 24.76 | 26.08 | 24.76 | 26.08 | 24.76 | 26.08 | 24.76 | 26.08 | 24.76 | 26.08 | 24.76 | 26.08 | 24.76 | 26.08 | 24.76 | 26.08 | 24.76
Bayes’ rule | 35.04 | 33.03 | 35.04 | 33.03 | 35.04 | 33.03 | 35.04 | 33.03 | 35.04 | 33.03 | 35.04 | 33.03 | 35.04 | 33.03 | 35.04 | 33.03 | 35.04 | 33.03
ANN 37.05 | 23.22 | 37.20 | 23.42 | 38.26 | 24.43 | 38.40 | 24.88 | 38.63 | 25.71 | 38.93 | 26.63 | 39.21 | 26.91 | 39.27 | 27.18 | 39.49 | 27.60
RF 49.62 | 44.82 | 53.09 | 47.56 | 55.13 | 50.82 | 57.03 | 52.35 | 57.54 | 53.60 | 58.30 | 54.35 | 58.77 | 54.84 | 59.26 | 55.42 | 60.01 | 56.62
DAGE 52.51 | 47.76 | 55.83 | 51.17 | 59.99 | 55.04 | 60.29 | 55.63 | 61.15 | 57.17 | 61.85 | 58.07 | 63.21 | 58.72 | 63.29 | 58.99 | 63.49 | 59.68
DAGE-P | 53.35 | 48.51 | 57.18 | 52.12 | 60.34 | 55.74 | 60.95 | 56.58 | 61.61 | 57.40 | 62.21 | 58.31 | 63.22 | 58.86 | 63.34 | 58.92 | 64.26 | 59.97
DAGE-A | 54.86 | 49.52 | 58.25 | 53.90 | 60.84 | 56.09 | 61.43 | 56.76 | 62.51 | 58.43 | 62.70 | 58.52 | 63.78 | 59.86 | 64.07 | 60.21 | 64.51 | 60.59

POI categories) and time features (i.e., day type and time
period of a day).

In addition, we also establish two variations of our DAGE-A
to evaluate the effectiveness of our semi-supervised framework
in trip purpose prediction and labelling reducing.

o Dual-Attention Graph Embedding (DAGE): The super-
vised version of our dual-attention graph embedding
network, i.e., without the unsupervised reconstruction
task.

o DAGE with Pseudo Label (DAGE-P). Based on the
DAGE, the Pseudo-Labels of unlabeled data are used to
compute complementary losses for the model training.
Details about the Pseudo-Labels techniques can be found
in [18].

Only the DAGE-A and DAGE-P models are trained in a
semi-supervised manner with both the labeled and unlabeled
data.

2) Metrics: We adopt Accuracy and macro Fi-score to
evaluate the cross-type overall prediction performance, and
adopt Fi-score to evaluate the category-specific performance
on each kind of trip purpose. As shown in Eq. 11, Fj-score
is the harmonic mean of precision and recall for the i-th
class, and macro F|-score is the arithmetic mean of class-wise
Fi-score to evaluate the overall performance.

2 % Precision; * Recall;

Fi-score; = —
Precision; + Recall;
N
- F1-score;
M_Fq-score = @ (11)
N
C. Evaluation Environment and Settings
We implement DAGE-A using Python 3.7 with

TensorFlow-2.5, on a PC with 4 NVIDIA GeForce
RTX 2080 Ti GPU and 192 GB RAM. The hyperparameters
of models are selected by comparing the performance of
different groups of settings. Specifically, we employ Adam to
optimize the loss function with a learning rate /, of 0.0001.
The batch size and L2 regularizer parameter are set to
128 and 0.0001, respectively. Additionally, F’ in GATs is set
to 50, and the number of heads for GATs and soft-attention
(M, M') is set to (20, 30), respectively. The settings of

the encoder and decoder are the same. The dimension of
fused origin POI context and spatiotemporal context is set
to 50. Besides, through a sufficient number of tests, the loss
combination 1 is set to 1.

We divide the trip data into the training, validation and test
datasets at a ratio of 6 : 1 : 1. In particular, we assume the
training data is all of the available trips in reality, i.e., the
combination of labeled data and unlabeled data. To evaluate
the performance of different models with limited training
labels, we conduct a group of experiments in which models
are sequentially trained with increasing labeled samples (from
10% to 90%) from the training data. Such a manner can
be viewed as a simulation of increasing labelling efforts.
Accordingly, for supervised models, the training is only based
on the labeled samples, while for the semi-supervised models,
the training is based on all the samples.

D. Effectiveness of Our Framework

Tab. IT and Tab. III show the overall performance of different
models with various proportions of labeled samples in Beijing
and Shanghai, respectively. Since Nearest and Bayes’ rule
are not sensitive to the training data, their performance is
unchanged on the test data. Generally, this group of compari-
son experiments could show us the following insights.

Our modeling of trip semantics is superior. Among the
first five supervised models, our DAGE outperforms other
baselines under all the data proportions in both cities. Partic-
ularly, in Beijing, with 30% labeled data, our model achieves
4.86% improvement in accuracy and 4.22% improvement in
macro Fj-score compared with the state-of-the-art RF. Such
leads are stably maintained at 3% ~ 4% in the rest data pro-
portion settings. Generally, the prediction in Shanghai is more
accurate but the improvements of DAGE are not as significant
as that in Beijing, which indicates the trip purpose prediction
in Beijing is more complicated yet our DAGE could perform
much better than others. Additionally, although both ANN and
our DAGE are neural networks, ANN performs much worse.
It is because ANN simply aggregates all inputs in hidden
layers, while our DAGE carefully models the correlations of
features with two attention mechanisms in the latent space.

Semi-supervised learning is necessary. As shown in Tab. II
and Tab. III, with the increase of labeled data, all the models
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TABLE IIT
PREDICTION RESULTS OF DIFFERENT MODELS IN SHANGHAI

Proportion of labeled trips in the training data
Models 10% 20% 30% 40% 50% 60% 70% 80% 90%
Acc | M_F; | Acc | M_F; | Acc | M_F; | Acc | M_F; | Acc | M_F; | Acc | M_F; | Acc | M_F; | Acc | M_F; | Acc | M_F;
Nearest 26.76 | 23.94 | 26.76 | 23.94 | 26.76 | 23.94 | 26.76 | 23.94 | 26.76 | 23.94 | 26.76 | 23.94 | 26.76 | 23.94 | 26.76 | 23.94 | 26.76 | 23.94
Bayes’ rule | 39.08 | 32.67 | 39.08 | 32.67 | 39.08 | 32.67 | 39.08 | 32.67 | 39.08 | 32.67 | 39.08 | 32.67 | 39.08 | 32.67 | 39.08 | 32.67 | 39.08 | 32.67
ANN 41.23 | 2477 | 41.69 | 25.14 | 41.87 | 25.38 | 42.27 | 26.62 | 42.34 | 26.80 | 42.43 | 27.22 | 42.59 | 27.68 | 42.71 | 27.48 | 42.78 | 27.24
RF 53.55 | 44.60 | 57.61 | 49.89 | 60.30 | 52.23 | 61.21 | 54.20 | 62.31 | 55.06 | 62.95 | 56.10 | 63.16 | 56.23 | 64.16 | 57.27 | 64.28 | 57.48
DAGE 55.67 | 46.66 | 59.97 | 51.58 | 62.12 | 52.33 | 64.05 | 55.33 | 65.03 | 56.53 | 65.92 | 57.79 | 66.63 | 58.46 | 67.01 | 58.63 | 68.01 | 60.54
DAGE-P | 56.97 | 47.88 | 60.16 | 52.33 | 62.27 | 54.36 | 64.40 | 56.42 | 65.13 | 57.53 | 66.45 | 58.61 | 66.96 | 58.74 | 67.85 | 60.14 | 68.63 | 61.33
DAGE-A | 58.35 | 49.43 | 62.87 | 55.00 | 64.03 | 56.13 | 66.20 | 58.54 | 66.89 | 59.58 | 67.43 | 60.34 | 67.77 | 61.30 | 68.29 | 61.16 | 69.05 | 62.02
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Fig. 3. Category-specific performance of DAGE and DAGE-A.

achieve performance improvements. When increasing from
10% to 30%, our DAGE in both cities improves around 7% in
accuracy and macro Fj-score. However, when increasing from
30% to 90%, the improvements are less than 5% in Beijing and
around 7% in Shanghai. It means that for the problem of trip
purpose prediction, the benefits from the high-cost labelling
efforts would degrade at the early stage and the situation is
more obvious in Beijing. Thus, it would be meaningful and
necessary to establish a semi-supervised framework to improve
the model’s performance with unlabeled samples.

Our semi-supervised framework is effective and better.
As shown in the last two rows, when using the semi-supervised
learning framework, the performance of DAGE can be further
improved. Moreover, DAGE-A (with autoencoder architecture)
consistently outperforms DAGE-P (with pseudo-labels). For
example, with 20% labeled data, DAGE-P in Beijing achieves
1.35% improvement in accuracy while our DAGE-A achieves
2.42%, and in Shanghai the improvements are 0.19% and
2.9%, respectively. Such results not only demonstrate the latent
knowledge extracted from the unlabeled data is useful in
the model training, but also show that our semi-supervised
learning framework is more effective in capturing such latent
knowledge. In particular, we find that with 70% labeled data,
DAGE-A is even better than DAGE with 90% labeled data

in Beijing. Such a result shows that our semi-supervised
framework could reduce the labelling efforts by up to 20%.

E. Performance on Different Trip Purposes

In addition to the evaluation of overall performance, we also
examine our model’s performance on specific trip purposes.
To save the place, we only present the detailed analysis in
Beijing.

1) Category-Specific Performance Analysis: Figure 3
presents the category-specific results of DAGE and DAGE-A
models, with the detailed analysis as follows. We obtain the
following differences and insights regarding the 9 trip purpose
categories.

o The prediction difficulty is different. For example,
when using 10% labeled data, DAGE can achieve over
60% in Fi-score for the prediction of “Working” and
“Health”, while for “Recreation” and “Outdoors” that
are around 35%. Such differences might be because
that: i) the POI configurations near the “Working” and
“Health” activities are usually simpler, thus they are eas-
ier to identify; ii) “Recreation” and “Outdoors” activities
are often associated with other activities at time and
space, e.g., “Dining”. Moreover, we can find that even

Authorized licensed use limited to: Tsinghua University. Downloaded on September 18,2022 at 03:29:25 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

with 90% labeled data, the F-scores of “Recreation” and
“Outdoors” are still less than 50%, thus the predictions
of these two trip purposes are very difficult. Besides,
“Health” is the most predictable one among 9 trip pur-
poses, for which our models can achieve nearly 80% in
Fi-score.

o The improvements from labeled data are different.
When increasing the labeled data from 10% to 90%,
the 9 trip purposes also show considerable differences
in their performance improvements. For example, with
our semi-supervised DAGE-A, “Dining” is improved by
nearly 20%, while “Working” is improved by less than
10%. Such results indicate the latent distributions of
all the possible “Dining” trips are more complicated,
thus the increasing labeled data could consistently bring
useful information for the model training. Similarly, the
“Recreation” also achieves over 15% improvement.

o The improvements from our semi-supervised frame-
work are different. From the standpoint of our
semi-supervised DAGE-A, it is generally effective in
improving the model’s performance on each kind of trip
purpose compared with the supervised DAGE. However,
the improvements show two different trends with the
increase of labeled data, i.e., from significant to negli-
gible and the reverse. The first case is the majority of
9 trip purposes. It indicates that when the labeled data is
sparse, the revealed data distributions are also limited thus
the complementary knowledge from the unlabeled data
could significantly enhance the performance. Then, with
the increase of labeled data, the revealed distributions
tend to be completed, so that the improvement goes
down gradually. The second case occurs at “Recreation”
and “Dining” purposes. According to the aforementioned
observations, they are very difficult to predict and with
complicated data distributions. Thus, at the beginning, the
model would easily be over-fitting to the very limited
labeled training data, so that the effects of unlabeled data
are slight in the model training.

e Our semi-supervised framework trained with 70%
labeled data performs well. For most trip purpose
categories, when the labeled data comes over 70%,
the improvements of our semi-supervised DAGE-A are
not significant, but the performance still outperforms
the DAGE with 100% labeled data. Hence, from the
standpoint of real-world applications, it is effective and
cost-efficient to employ 70% labeled data for the model
training with our semi-supervised framework. In the
following, we will evaluate more aspects of the DAGE-A
trained with 70% labeled data.

2) Confusion Matrix: Figure 4 illustrates the normalized
confusion matrix of DAGE-A trained with 70% labels in
Beijing. Each row represents a set of trips corresponding to the
same true purpose, and each column represents a set of trips
with the same predicted purpose. The matrix is normalized
at each row, thus the numbers in each row indicate the
proportions of trips with different predicted labels, and the
diagonal elements in this matrix are recall values.
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Fig. 4. Normalized confusion matrix of DAGE-A trained with 70% labels.

We find that with our prediction model, the recalls of “Shop-
ping” and “Working” are over 70% and “Health” achieves
80%. While the recalls of ““ Recreation” and “Education” are
less than 50%. One reason for such gaps lies in the differences
of their nearby POI configurations. For example, the POI
configurations near the “Health” activities are usually simpler
than “Recreation”. Thus it would be easier for our prediction
model to identify the “Health” purposes through the POI
check-in data. Besides, in reality, some human activities are
usually associated with each other at time and space, so that
our model can not distinguish them very well. For example,
about 13% percent of “Recreation” purposes are predicted as
“Shopping”, and 11% percent of “Transportation” purposes
are wrongly predicted as “Working”.

FE. Performance at Different Times and Locations

In this section, we investigate the performance of our
DAGE-A trained with 70% labels at different times and loca-
tions in Beijing.

1) Temporal Dimension: Figure 5 (a) illustrates the predic-
tion accuracies of our model at different hour times in a day.
As we can see, for the most hour times, the performance is
mainly floating around 60% and 70%, indicating the model
is generalized to different times in a day. Moreover, the
performance in the morning (from 5 am to 11 am) is somewhat
better than that in the afternoon and evening. Such results show
that trip purposes in the morning are less complicated. Besides,
around 3 am, the prediction accuracy achieves 92.31%. It is
because most activities are inactive at midnight, so that the
potential candidates for prediction are much fewer.

Figure 5 (b) presents the category-specific performance
comparison from the perspective of day type. We can find
that our model shows different performance on workday and
non-workday. Specifically, the “Working”, “Homing”, “Trans-
portation” and “Education” are more predictable on workday,
while “Recreation”, “Outdoors”, “Shopping” and “Dining” are
more predictable on non-workday. Such results are generally
consistent with common sense that these activities have certain
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Fig. 5. Performance of DAGE-A at different times.

(b) Origin_day

(c) Origin_night

Fig. 6. Prediction accuracies of DAGE-A at different locations (as the origins
of trips) in Beijing.

regularities at specific day types, accordingly demonstrating
the effectiveness of our model.

2) Spatial Dimension: In order to investigate the perfor-
mance at the spatial dimension, we divide the Five-Ring of
Beijing city into 15 x 15 square grid cells with a width

(b) Destination_day

(c) Destination_night

Fig. 7. Prediction accuracies of DAGE-A at different locations (as the
destinations of trips) in Beijing.

of 2 km. Figure 6 and Figure 7 show the overall performance
of locations as the origins and destinations of trips respectively,
and show the performance during the day and night as well.
The 3D bar illustrates the corresponding prediction accuracy
at each location.

In Fig. 6, we can find that most locations as the origins
are with around 60% prediction accuracies and don’t change
much from day to night. However, a few locations show very
different patterns. For example, the overall accuracy of the
location B is 75% in Fig. 6 (a), but the accuracy is only
66% during the day in Fig. 6 (b) while it achieves 100%
during the night in Fig. 6 (c¢). Similarly, the location C is also
with much higher accuracy during the night. By examining
the prediction results, we find trips departed from these two
locations are mainly for the “Homing” and “Transportation”
purposes. On the contrary, the location A is with much higher
accuracy during the day for “Dining”. Hence, the prediction
performance at locations is highly related to types of posed
trip purposes.

In Fig. 7, we can find that a lot of locations are with higher
accuracies as destinations than as the origins. It means trips
ended at these locations are for naive (i.e., more predictable)
purposes while trips departed from these locations are usually
for complicated purposes. In other words, these locations are
often connected to diverse activities and locations by trips.
Besides, we find when the location C is as the destinations of
trips, the accuracy is 100% during day and night consistently.
It is because this location is mainly composed of residences
and companies and the human activities in this location are
simple and highly time-dependent, so that the trip purposes
are easy to predict. There are also some destinations show
very different patterns between day and night. For example,
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the location D is a place composed of various kinds of POIs.
During the day, the prediction accuracy is only 21%, for which
there are 5 frequently posed trip purpose categories. While
during the night, the accuracy achieves 85%, and the frequent
purposes are mainly “Homing”. Such results indicate that for
locations with complicated POI configurations, the prediction
performance is more likely to show significant differences
between day and night.

V. RELATED WORK
A. Feature Engineering in Trip Purpose Prediction

Since human activities are influenced by various factors in
reality, feature engineering is crucial in trip purpose prediction.
Geography characteristics are widely used to depict the static
activity-related characteristics of passenger’s drop-off location,
such as polygon-based information, POI configuration and
street map [3], [11], [38]. Trip and activity characteristics
(e.g., travel mode, activity duration) are also effective in iden-
tifying trip purposes [28], [38], [40], since human activities
often show strong regularity at time and space. Demographics
characteristics are used to reveal the respondents’ prefer-
ences for activities or their travel patterns (e.g., age, gender,
employment, and family structure) [10], [12], [17]. In real-
life scenarios like taxis, many features cannot be obtained
(e.g., passenger’s activity duration and family structure), thus
methods may lack pervasiveness.

B. Machine Learning Models in Trip Purpose Prediction

In recent years, machine learning algorithms are emerging
in the prediction of trip purpose [8], [27], [30]. For example,
since 2014, Random Forest (RF) [4] is widely adopted in trip
purpose prediction [11], [12], [29]. Based on the Bayes model,
the work in [7] takes both the fine-grained spatial and temporal
patterns of human behaviors into consideration to impute the
most likely trip purpose at the passenger’s drop-off location.
Besides, owing to the effectiveness in nonlinear regression,
neural networks also show impressive performance in iden-
tifying trip purpose with complex input features [10], [28],
[38]. Topic model (i.e., LDA) is used to infer trip purposes
with the cellular network and POI data [43], where trips and
users are regarded as words and documents respectively. In an
unsupervised manner, autoencoder and a clustering algorithm
are used to extract and cluster latent trip features from the GPS
and POI data, then trip purposes are obtained by interpreting
cluster centers [8]. Different from existing models, we are
the first to: i) carefully model the correlations of features in
the latent space; 2) establish a semi-supervised framework to
improve the model’s performance with a plenty of unlabeled
trip data.

C. Semi-Supervised Learning in Mobile Computing

Although the ear of big data and IoT has opened up sub-
stantial opportunities for mobile computing, many researches
still suffer from the problem of label shortage [9], [19].
In this regard, the semi-supervised learning techniques are
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widely used to enhance the model’s performance with unla-
beled data [1], [9], [25], [31], [42]. To name a few, the
work in [31] present a semi-supervised framework for traffic
anomaly detection at the edge of the mobile network, which
only needs one class of samples (normal traffic) to train the
model. In addition, a hierarchical semi-supervised training
method is proposed in [1] for the intrusions detection in
IoT networks, which takes into account the sequential char-
acteristics of the unlabeled IoT traffic data during training.
In [42], mean teacher semi-supervised learning is integrated
with federated learning for the crowdsourced transportation
mode identification, so as to utilize the sensed (unlabeled)
data from distributed workers in the model training. In [9],
a pseudo-label based semi-supervised framework is used to
improve the performance of the graph representation model
in identifying fine-grained driving style with the large-scale
unlabeled GPS trajectory data. Note that the study in this paper
is the first to adopt the semi-supervised learning in the trip
purpose prediction.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a context-aware semi-supervised
framework (DAGE-A) for predicting large-scale yet fine-
grained trip purposes. It is based on pervasive data sources
and is also effective with limited labeled training data, thus
making it more applicable in real-world scenarios. Specifically,
we employ the vehicle’s GPS trajectory and public POI
check-in data to reveal different trip contexts, then propose
a dual-attention graph embedding network with autoencoder
architecture to extract the higher-level activity semantics for
trip purpose prediction. Moreover, our semi-supervised frame-
work could improve the model’s performance by incorporat-
ing the complementary knowledge from large-scale unlabeled
data. Extensive experiments in Beijing and Shanghai demon-
strate that the proposed framework significantly outperforms
baseline models, and could reduce labelling efforts by up to
20%. We also demonstrate the great generalizability of our
model at different times and locations in a city.

In the future, we will broaden and deepen this work in
several directions. Specifically, we plan to explore more urban
data sources to enrich the travel semantics, like the real-time
social event data. Additionally, in some cities with low devel-
opment of economy and infrastructure, it may be infeasible
to collect sufficient trip data for model training, i.e., cold-
start problem [15]. For this problem, since our trip purpose
prediction is based on modelling the high-level human activity
semantics (i.e., lifestyle) that may be similar across cities,
we plan to leverage the prediction knowledge learned from
a data-rich city to enable the prediction in data-scarce cities
(i.e., transfer learning).
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