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Abstract— Knowing why people travel is meaningful for human1

mobility understanding and smart services development. Unfor-2

tunately, in real-world scenarios, trip purpose cannot be auto-3

matically collected on a large scale, thus calling for effective4

prediction models. Nevertheless, since passengers’ trip purposes5

in the city are diverse and complicated, the prediction is6

very difficult especially at a fine-grained level. Worse still, the7

informative data sources and real purpose-labels about trips are8

commonly limited for model learning. To resolve the dilemma,9

we propose a semi-supervised deep embedding framework for10

predicting fine-grained trip purposes on a large scale. Specifically,11

we first derive augmented trip contexts from the vehicle’s12

GPS trajectory and public POI check-in data, then convert13

POI contexts into the graph structure. We further establish a14

Dual-Attention Graph Embedding Network with Autoencoder15

architecture (DAGE-A) to accomplish prediction and reconstruc-16

tion simultaneously, in which category-aware graph attention17

networks are devised to model the POI semantics at trip’s18

origin/destination and extract complementary knowledge from19

unlabeled trips; and soft-attention is employed to aggregate20

different trip semantics appropriately for the final prediction.21

We conduct extensive experiments in Beijing and Shanghai, and22

results show our framework outperforms state-of-the-arts and23

could reduce labelling efforts by up to 20%. We also find that24
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our model is generalized at different times and locations, and the 25

performance varies for different trip purposes. 26

Index Terms— Trip purpose, semi-supervised learning, graph 27

embedding, GPS trajectory, check-in data. 28

I. INTRODUCTION 29

TRIP purpose is the semantic information answering why 30

people travel in the city, and has been identified as 31

an important yet under-explored aspect in travel behavior 32

analysis [14], [36]. Knowing trip purposes in cities is mean- 33

ingful for human mobility understanding and smart services 34

development [7], [21], [24]. For example, knowing the pas- 35

senger’s trip purpose could enable personalized in-car advertis- 36

ing/recommendation, and knowing the city-wide trip purposes 37

could help public transportation planning (e.g., new bus 38

routes for “Working” purposes). Unfortunately, unlike GPS 39

trajectories, trip purposes cannot be automatically collected 40

by sensing devices in real-world scenarios, thus calling for 41

effective prediction models. 42

In general, the accurate prediction of trip purpose is 43

very challenging due to the complexity of human mobility 44

nature [2], [16], [22]. On one hand, trip purposes refer to the 45

activities that passengers take after being dropped off, while 46

human activities are realistically diverse and varying among 47

people. Thus passengers’ trip purposes are essentially with 48

great uncertainty. On the other hand, for passengers in the 49

city, their trip purposes (activities) are implicitly influenced by 50

many factors (e.g., time, space, personality, and nearby land- 51

use configuration) [23], so that the prediction would be very 52

complicated. 53

In recent years, with the proliferation of Information and 54

Communication Technologies (ICTs), Internet of Things (IoT) 55

in daily life, many aspects of human behaviors are able to be 56

recorded in the cyber space [26], [32]. Hence, one promising 57

solution for the trip purpose prediction is to understand the 58

passengers’ activity semantics with multi-sourced informa- 59

tion [21]. In this regard, a few works in the literature have 60

achieved over 90% trip purpose prediction accuracy [10], 61

[38]. However, many of them are in a personalized manner 62

by employing some sensitive information (e.g., employment, 63

activity duration) to model the respondent’s preference/life- 64

circles for prediction. As a matter of fact, with the prevalence 65
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of data protection laws and regulations (e.g., GDPR [35]),66

people have the rights to delete and not reveal their per-67

sonal information to a service provider, thus whether this68

kind of personalized methods can still be practically applied69

becomes doubtful. To make matters worse, such methods70

mainly work on a small scale of trips contributed by a fraction71

of respondents, and return a coarse granularity of trip purpose.72

Consequently, the generalizability to support large-scale and73

diversified urban services in real-world scenarios is restricted.74

To enable more pervasive and privacy-friendly services,75

in this paper, we aim at offering a context-aware prediction76

approach that is able to automatically predict the fine-grained77

trip purposes (i.e., up to 9 kinds of trip purposes in total)78

for the large-scale trips contributed by city-wide passengers.79

Note that the target application scenarios are door-to-door ride80

services like taxi trips. Nevertheless, enabling trip purpose81

prediction in such scenarios still faces two critical challenges:82

i) there are very limited useful information to depict the83

activity semantics for the accurate prediction; ii) labelling84

efforts (e.g., surveys) are very high-cost and with uncontrol-85

lable quality, so that in most cases, there are just quite limited86

labeled trips available for algorithms to learn how to predict.87

In light of the aforementioned challenges, the contributions88

of our work can be summarized as follows.89

• We propose a novel semi-supervised deep embedding90

framework (DAGE-A) for predicting fine-grained trip pur-91

poses in a context-aware manner. It leverages pervasive92

data to enable the large-scale yet fine-grained prediction,93

and is also effective with limited labeled training data,94

thus making it more applicable for real-world urban95

services.96

• We integrate vehicle’s GPS trajectory (for revealing the97

trip’s time and space) and public POI check-in data (for98

characterizing human activities) to derive trip contexts99

with semantic meanings. We are among pioneers of using100

graph structure to represent localized POI contexts.101

• We establish a dual-attention graph embedding net-102

work (i.e., category-aware graph attention networks and103

soft-attention) with autoencoder architecture, to model104

the higher-level activity semantics from trip contexts.105

It accomplishes the prediction and reconstruction simul-106

taneously, so as to improve the performance by incor-107

porating the complementary knowledge from unlabeled108

trips.109

• We conduct a group of experiments with large-scale110

datasets in Beijing and Shanghai. The results show111

that our approach achieves a considerable improvement112

compared with the state-of-the-art baselines, and our113

semi-supervised framework could reduce labelling efforts114

by up to 20%. Moreover, we investigate the performance115

of trip purpose prediction at different times and locations.116

The rest of this paper is organized as follows. In Section II,117

we introduce a few definitions and the problem we resolved118

in this paper. In Section III, we elaborate on the method-119

ology of our proposed trip purpose prediction framework.120

After that, we present a group of experiments in Section IV.121

In Section V, we briefly introduce the related works. Finally,122

we conclude our work and outlook the future research direc- 123

tions in Section VI. 124

II. PRELIMINARIES 125

A. Definitions 126

Definition 1 (Trip): Each trip is represented by its origin- 127

destination pair, which consists of two GPS points with 128

timestamps collected by the vehicle at the pick-up and drop- 129

off locations, i.e., tr = [(lo, to), (ld , td )]. Such information is 130

used to reveal the original time and space of the passenger’s 131

trip. 132

Definition 2 (Point of Interest): A POI refers to a place 133

that is the very basic unit of taking human activities. POIs 134

are usually represented by their positions and POI category 135

information. Note that the POI category directly indicates the 136

type of potential human activities at these POIs. 137

Definition 3 (Check-in Data): The Check-in data C I is 138

generated when users checked-in at POIs using LBSN plat- 139

forms. A check-in record commonly contains information about 140

the user’s identity, the check-in time and the corresponding 141

POI venue. Generally, the number of check-ins could reveal 142

the popularity of a POI [5], [39]. 143

In this paper, the POIs and the corresponding check-in data 144

are used to reveal the characteristics of human activities at 145

passenger’s origin and destination locations. The adopted 9 146

POI categories and check-in data are from a Chinese LBSN 147

called Jiepang [20]. The mapping of POI categories and the 148

corresponding human activities (i.e., trip purpose) can be 149

found in Tab. I. 150

B. Problem Statement 151

With the aforementioned definitions, the problem of pre- 152

dicting trip purpose with limited labels can be viewed as a 153

classification problem in semi-supervised learning. 154

Given: 155

1) Two sets of trips in a city (both labeled and unlabeled 156

trips), i.e., T Rl and T Ru . 157

2) A set of POIs and the corresponding historical check-in 158

records C I in the designated city. 159

3) A set of candidate trip purposes, i.e., Ā in Tab. I. 160

Train a semi-supervised prediction model with labeled and 161

unlabeled trip data simultaneously. 162

Predict the probabilities of candidate trip purposes for 163

an unseen trip tr by using the trained model, i.e., 164

p̂ (y = ā|tr, C I ) , ā ∈ Ā. 165

III. METHODOLOGY 166

A. Overview 167

Figure 1 shows our context-aware semi-supervised trip 168

purpose prediction framework. The inputs consist of labeled 169

trips, unlabeled trips, and public POI check-ins. The first 170

stage is trip context augmentation, in which the public 171

check-ins are aggregated with labeled and unlabeled trips 172

respectively, to derive augmented trip contexts, including the 173

OD (origin and destination) POI contexts and spatiotemporal 174

context. 175
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TABLE I

POI CATEGORY AND THE CORRESPONDING TRIP PURPOSE

Fig. 1. Our semi-supervised trip purpose prediction framework.

The second stage is the dual-attention neural network with176

autoencoder architecture (in the three dotted boxes). Generally,177

there are two parallel tasks in the working flow, namely178

supervised prediction with labeled trips, and unsupervised179

reconstruction with combined trips. Note that the combined180

trips include all the labeled and unlabeled trips, so as to181

provide relatively completed data distribution of all possible182

trips in model training. The encoder is a shared component,183

in which the augmented OD POI contexts are first converted184

into the graph structure, then graph attention networks are185

used to extract the latent OD activity semantics. After that, the186

labeled trips are sent to the prediction component, in which a187

soft-attention mechanism and a classifier are used to aggregate188

the activity semantics and obtain the prediction loss (i.e.,189

Loss_C). Meanwhile, the combined trips are sent to the190

decoder component, in which a reversed encoder network191

is used to obtain the reconstruction loss (i.e., Loss_R).192

Finally, these two kinds of losses are combined to train the193

semi-supervised neural network.194

B. Trip Context Augmentation195

In general, when and where one taking a trip are two fore-196

most significant clues for the trip purpose prediction. In this197

component, we aggregate the trip and public POI check-in data198

to augment the semantic meaning of trip’s spatiotemporal (ST)199

context, and OD POI contexts.200

1) Spatiotemporal Context Cst : For a trip tr , we extract201

three kinds of temporal contexts from the vehicle’s GPS trajec-202

tory, including the type of day (i.e., workday or non-workday)203

T Y P (tr) and the hour time H (t) when this trip started204

and ended, and the travel time td -to. Particularly, in order to205

maintain the time similarity between 00:00 and 23:00, t is first206

converted to the radian of a unit circle, i.e., θ=2π (t/24), then207

represented by H (t)=(cos θ, sin θ). Together with the travel208

time, the spherical distance between the origin and destination 209

ld -lo is used as the spatiotemporal cost of this trip. Finally, the 210

spatiotemporal context Cst can be obtained as Eq. 1. 211

Cst (tr) = [T Y P (tr) , H (to) , H (td) , td − to, ld − lo] (1) 212

2) POI Contexts Cpoi : To depict the activity conditions 213

at the origin/destination location, for each POI category, 214

we extract static and dynamic features from the nearby POI 215

check-in data within a radius of r meters. In this study, r is set 216

to 250 meters according to the studies of land-use buffer for 217

human trips [6]. The static features refer to POI distributions, 218

i.e., distance and uniqueness. Specifically, the distance feature 219

is the ratio of the minimum distance among the k-th category 220

of POIs at the drop-off point ld : 221

Dist (k) = − log2

�
min(distance(P O Isk , ld ))

r

�
(2) 222

In addition, the uniqueness is adopted to reveal the ratio of 223

the k-th category of POIs: 224

Uniq(k) = − log2

� |P O Isk |�
i∈K |P O Isi |

�
(3) 225

In terms of dynamic features, we extract period popularity 226

Popu to reveal the time-variant attractiveness of different 227

POIs. Specifically, for the k-th POI category, we compute the 228

total check-in times from the check-in data C I during a given 229

time period T , i.e. |C I |Tk . Then, Popu(k) is formulated as: 230

Popu(k) = − log2

�
1 −

�
|C I |Tk�

i∈K |C I |Ti

��
(4) 231

where K denotes the number of all POI categories (i.e., 232

K = 9). In particular, for the origin location, we set T to 233

[to − 2, to], i.e., 2h before the trip starts. For the destination 234

location, we set T to [td , td + 2], i.e., 2h after the trip ends. 235

C. Semi-Supervised Graph Embedding Model 236

In this section, we elaborate on the proposed 237

semi-supervised neural network for trip purpose prediction 238

with augmented trip contexts. Generally, the network models 239

the passenger’s activity semantics in a graph embedding 240

manner, and uses an autoencoder framework to ingest 241

unlabeled data in the model training. Such a semi-supervised 242

way could help the model to abstract latent representations 243

that capture the semantic meaning of all available samples, 244

thus improving the model’s performance. 245

1) Autoencoder With Graph Embedding: When extracting 246

activity semantics from POI contexts, it’s important to model 247

the inherent correlations between different POI categories, 248

since human activities at a location are often associated with 249

each other, e.g., “Dinning” and “Shopping”. Generally, the 250

POI categories, POI features, and correlations between POI 251

categories in the POI context are naturally analogous to the 252

nodes, nodes’ features, and edges in a graph. Moreover, the 253

graph structure could maintain the concept of node in hidden 254

layers, so that the modelling of node correlations is more 255

intuitive. In this sense, we first convert OD POI contexts into 256

the graph structure, then employ the graph attention network 257
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Fig. 2. Illustration of our graph construction and the attention coefficients
computation in the category-aware GAT, i.e., Equation 5.

to extract the neighboring activity semantics for each POI258

category.259

Graph construction. As shown in Fig. 2 (a), an undirected260

completed POI graph is defined as G = (V , E) to represent261

the POI context at the origin/destination. V is a set of nodes262

representing the existent POI categories (drawn with solid263

circles) in the origin/destination POI context, and E is a set264

of edges representing their inherent correlations. Note that265

the two nodes drawn with dotted lines in the figure refer266

to the nonexistent POI categories. In addition, each node267

contains 3 kinds of augmented features h ∈ R
F (i.e., distance,268

uniqueness, and period popularity). Consequently, the OD POI269

contexts are represented by Go and Gd , respectively.270

Encoder for POI semantics extraction. In this study, Go271

and Gd representing POI contexts are arbitrarily structured272

graphs in reality (some nodes may not exist), since a location273

cannot always have all 9 categories of POIs nearby. In this274

regard, we adopt the graph attention network (GAT) [34]275

to model the non-identical correlations of neighboring POI276

categories, and accordingly extract the high-level POI seman-277

tics. The normal GAT adopts the attention mechanism to278

learn attention coefficients between a central node u and279

its neighboring nodes Nu . Note that for a central node, the280

attention coefficients to different neighbors are computed with281

same parameters. However, human activities usually have282

different inherent correlations. For example, for the “Dining”283

activity, its correlation with “Recreation” is stronger than284

“Health”, since “Dining” and “Recreation” are more likely285

to be associated in people’s daily life.286

To narrow the gap, we propose a new category-aware GAT287

to further consider the neighboring nodes’ inherent differences,288

i.e., differentiate the inherent correlations between specific289

nodes in the POI graph. In such a manner, the extracted290

neighboring semantics is also category-aware in the latent291

space. Additionally, we also consider the time features T (i.e.,292

day type and hour time feature) in the computation, since the293

correlations between different activities also demonstrate to be294

time-dependent. Hence, the coefficient αuv between u and a295

neighbor v ∈ Nu can be obtained by:296

αuv = exp
	
g

	
Wuv

T Whu + W1
T Whv + W2

T
T


�

n∈Nu
exp

	
g
	
Wun

T Whu + W1
T Whn + W2

T
T


297

(5)298

where W ∈ R
F �×F is a shared weight matrix for linearly299

transforming the input node features h into the latent space.300

Wuv ∈ R
F �

is a unique weight matrix of the center node u 301

towards a specific neighbor v. Different from that, W1 ∈ R
F �

302

and W2 ∈ R
|T Y P|+|H | are shared attention weight matrices 303

for different neighbors and time features. Figure 2 (b) illus- 304

trates an example of our category-aware attention coefficients 305

computation for the “Dining” POIs. 306

To obtain the neighboring POI features of u, the attention 307

coefficients are used to combine the neighbors’ features in a 308

weighted sum manner. We also adopt the multi-head mech- 309

anism to extract node’s neighboring features from multiple 310

perspectives, then the multi-head features are concatenated and 311

transformed into the final neighboring feature �hu : 312

�hu = W�
⎛⎝







M

m=1
σ

⎛⎝ �
v∈Nu

αm
uvWmhv

⎞⎠⎞⎠ (6) 313

where M is the number of multi-head attentions, and αm
uv 314

and W m are the attention coefficient and linear transformation 315

weight matrix of the m-th attention. σ is a nonlinear function. 316

W� ∈ R
F �×M F �

is a weight matrix which transforms the 317

concatenated features into F � dimension. Besides, in this graph 318

embedding network, we stack two multi-head category-aware 319

GATs to enhance the learning capability. As a result, we can 320

obtain the higher-level OD POI contexts with neighboring 321

activity semantics (i.e., �Go, �Gd ). 322

Besides, for the prediction part, we further aggregate each 323

node’s own augmented features and neighboring features 324

as the twofold comprehensive POI semantics (i.e., h�
u = 325

[hu��hu], h�
u ∈ R

F+F �
), obtaining G�

o and G�
d . 326

Decoder for reconstruction. After the shared encoder, the 327

features of combined trips (i.e., �Go and �Gd ) are sent to 328

the decoder component. The decoder is used to perform the 329

inverse operations of the aforementioned encoder, to recon- 330

struct the original features in POI contexts. Since the encoder 331

mainly employs GATs to extract the neighboring features of 332

POI contexts, we adopt a new group of GATs (i.e., Equa- 333

tions 5, 6) with inverse feature dimensions in the decoder. The 334

loss function for reconstruction is the mean squared error: 335

L_r =
�

i

(xo
i − x̂ o

i )2 +
�

j

(xd
j − x̂ d

j )
2 (7) 336

where xo
i and xd

i are the elements of Go and Gd , respectively. 337

x̂ o
i and x̂ d

i are the corresponding reconstructed vectors. 338

The reconstruction loss would be used to train the encoder 339

together with prediction loss. In this manner, the activity 340

semantics extraction in encoder would be trained with both 341

the labeled and unlabeled trips (i.e., large-scale trip data), thus 342

being more generalized to unseen trips in the city. 343

2) Prediction: In this section, we first aggregate the seman- 344

tics of three kinds of trip contexts, then use a classifier 345

to predict the possibilities of candidate activities being the 346

passenger’s trip purpose. 347

Soft-attention for trip semantics aggregation. Soft- 348

attention can be described as mapping a query and a set of 349

key-value pairs to an output [33]. The output is the weighted 350

sum of values, where the weights are computed by using a 351

compatibility function on the query and a specific key. In this 352

study, passenger’s activity at the destination location can be 353
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viewed as the response to a special query (i.e., a trip with354

specific origin and time). Hence, the origin activity semantics355

G�
o and trip’s spatiotemporal cost Cst are viewed as the356

query. Since POIs are basic units of human activities and the357

destination is where a passenger takes the final activity, each358

category of POI semantics in the destination is used as the key359

and value, i.e., keys = values = h�
(D). By modelling such360

dependencies on trip purpose, the aggregation of trip contexts361

could be more rational for trip purpose prediction.362

We first combine G�
o and Cst with a full connected (FC)363

layer to serve as the query host . Then, we establish a multi-364

head soft-attention with a feed-forward network as the com-365

patibility function. Then, the coefficient �αu for a POI category366

u ∈ G�
d and the final combined trip activity semantics H can367

be computed as follows:368

�αu = exp
	
tanh

	
Wq

T host + Wk
T h�

u + b


�

s∈V exp
	
tanh

	
Wq

T host + Wk
T h�

s + b


369

H = W��
�







M �

m�=1
σ

��
u∈V

�αm�
u h�

u

��
(8)370

where Wq , Wk and b are parameters of the compatibility371

function. M � denotes the number of attention heads, and372

W�� ∈ R
|h�

u |×M �|h�
u | is a parameter matrix that transforms the373

concatenated multi-head features into |h�
u | dimensions.374

Softmax classifier. A FC layer with softmax function is375

adopted as the classifier to output the probabilities of can-376

didates. The FC layer contains | Ā| neurons representing the377

candidate trip purposes Ā. Then, the probability p̂ of the i -th378

candidate āi being the purpose of a trip tr , can be obtained379

as follows:380

p̂ (y = āi |tr, C I ) = ex p (zi )�| Ā|
j=1 ex p

	
z j


 , (zi , z j ) ∈ FC(H )381

ŷ = arg max
i

p̂ (y = āi |tr, C I ) (9)382

The prediction result is the candidate ŷ with the highest383

probability. The prediction loss function is based on the cross-384

entropy:385

L_c = −
| Ā|�
i=1

y(i) log
�

p̂(i)
�

(10)386

where y(i) and p̂(i) denotes to the actual and predicted387

probability of the i -th candidate.388

At last, the overall loss function of our semi-supervised389

model is the weighted summarization of prediction and recon-390

struction, namely L = L_c + λ · L_r .391

IV. EXPERIMENTS392

A. Dataset Description393

We conduct a group of experiments in Beijing and Shanghai,394

based on two kinds of real-world datasets, namely UCar395

trip data and POI check-in data. Note that Shenzhou UCar396

(a ride-on-demand service) is one of the door-to-door ride397

services and further possesses the information of passengers’398

trip purposes. Hence, we employ the large-scale UCar data as399

the labeled door-to-door ride trips to evaluate our trip purpose 400

prediction framework. 401

UCar Trip Data. The data is composed of vehicle trips 402

generated by arbitrary passengers with Shenzhou UCar in 403

China, in November and December 2015. Each record con- 404

tains the GPS information of the pick-up&drop-off locations 405

(i.e., longitude, latitude, and timestamp), and the name of 406

passenger’s target POI for this ride (e.g., Beijing Restaurant). 407

The activity type of this POI (e.g., “Dining”) is served as 408

the trip purpose (i.e., ground truth). Such a mapping process 409

is automatically accomplished by using a pre-trained NLP 410

model (i.e., ERNIE). The model is fine-tuned with large- 411

scale POI descriptions and the corresponding POI categories 412

from the Jiepang dataset, and could achieve over 99% pre- 413

diction accuracy. More details of the mapping process can 414

be found in our previous study [21]. Finally, we select 415

366, 783 purpose-labeled trips within the Five-Ring of Beijing, 416

and 270, 943 purpose-labeled trips within the central area of 417

Shanghai. 418

Jiepang POI Check-in Data. It contains 511, 133 Jiepang 419

check-ins in Beijing and 712, 305 check-ins in Shanghai from 420

August 2011 to September 2012. Each record contains an 421

anonymous user ID, a check-in timestamp and the correspond- 422

ing POI information (i.e., POI description and POI category). 423

Note that the POIs and human activities are relatively stable 424

in developed cities [37], [41], so that the time inconsistency 425

problem has less impact on our study. 426

Besides, both the datasets used in our experiments are 427

anonymized. During the prediction in real-life scenarios (e.g., 428

taxi trips), our model would merely employ the vehicle’s GPS 429

trajectory from the trip, and it has no connection with the 430

passenger in the digital space, thus it does not record or involve 431

any personal information. In short, the use of data in this 432

study is privacy-friendly. Moreover, the utilized data sources 433

are relatively pervasive in door-to-door ride scenarios. Thus, 434

we believe our framework could be generalized to unseen 435

people and similar ride services. 436

B. Baselines and Evaluation Metrics 437

1) Baselines: We compare our prediction framework with 438

various baseline models in existing trip purpose prediction 439

works. Note that in order to compare the models’ performance 440

in the same pervasive scenario as ours, all baselines are 441

omitting the privacy-involved information from their original 442

studies. 443

• Nearest [3]: Trip purpose is the activity type of a POI 444

that is closest to the passenger’s drop-off location. 445

• Bayes’s Rule [13]: Based on a set of spatial and temporal 446

rules, trip purpose is the activity type of the most likely 447

to be visited POI near the destination. 448

• Artificial Neural Network (ANN) [38]: A neural network 449

with two hidden layers, and the prediction is based on 450

the day type and the land-use of trip’s end (binary codes 451

of nearby POI categories). 452

• Random Forest (RF) [11]: The input variables include the 453

nearby place characteristics (i.e., proportions of different 454
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TABLE II

PREDICTION RESULTS OF DIFFERENT MODELS IN BEIJING

POI categories) and time features (i.e., day type and time455

period of a day).456

In addition, we also establish two variations of our DAGE-A457

to evaluate the effectiveness of our semi-supervised framework458

in trip purpose prediction and labelling reducing.459

• Dual-Attention Graph Embedding (DAGE): The super-460

vised version of our dual-attention graph embedding461

network, i.e., without the unsupervised reconstruction462

task.463

• DAGE with Pseudo Label (DAGE-P): Based on the464

DAGE, the Pseudo-Labels of unlabeled data are used to465

compute complementary losses for the model training.466

Details about the Pseudo-Labels techniques can be found467

in [18].468

Only the DAGE-A and DAGE-P models are trained in a469

semi-supervised manner with both the labeled and unlabeled470

data.471

2) Metrics: We adopt Accuracy and macro F1-score to472

evaluate the cross-type overall prediction performance, and473

adopt F1-score to evaluate the category-specific performance474

on each kind of trip purpose. As shown in Eq. 11, F1-score475

is the harmonic mean of precision and recall for the i -th476

class, and macro F1-score is the arithmetic mean of class-wise477

F1-score to evaluate the overall performance.478

F1-scorei = 2 ∗ Precisioni ∗ Recalli

Precisioni + Recalli
,479

M_F1-score =
�N

i F1-scorei

N
(11)480

C. Evaluation Environment and Settings481

We implement DAGE-A using Python 3.7 with482

TensorFlow-2.5, on a PC with 4 NVIDIA GeForce483

RTX 2080 Ti GPU and 192 GB RAM. The hyperparameters484

of models are selected by comparing the performance of485

different groups of settings. Specifically, we employ Adam to486

optimize the loss function with a learning rate lr of 0.0001.487

The batch size and L2 regularizer parameter are set to488

128 and 0.0001, respectively. Additionally, F � in GATs is set489

to 50, and the number of heads for GATs and soft-attention490

(M , M �) is set to (20, 30), respectively. The settings of491

the encoder and decoder are the same. The dimension of 492

fused origin POI context and spatiotemporal context is set 493

to 50. Besides, through a sufficient number of tests, the loss 494

combination λ is set to 1. 495

We divide the trip data into the training, validation and test 496

datasets at a ratio of 6 : 1 : 1. In particular, we assume the 497

training data is all of the available trips in reality, i.e., the 498

combination of labeled data and unlabeled data. To evaluate 499

the performance of different models with limited training 500

labels, we conduct a group of experiments in which models 501

are sequentially trained with increasing labeled samples (from 502

10% to 90%) from the training data. Such a manner can 503

be viewed as a simulation of increasing labelling efforts. 504

Accordingly, for supervised models, the training is only based 505

on the labeled samples, while for the semi-supervised models, 506

the training is based on all the samples. 507

D. Effectiveness of Our Framework 508

Tab. II and Tab. III show the overall performance of different 509

models with various proportions of labeled samples in Beijing 510

and Shanghai, respectively. Since Nearest and Bayes’ rule 511

are not sensitive to the training data, their performance is 512

unchanged on the test data. Generally, this group of compari- 513

son experiments could show us the following insights. 514

Our modeling of trip semantics is superior. Among the 515

first five supervised models, our DAGE outperforms other 516

baselines under all the data proportions in both cities. Partic- 517

ularly, in Beijing, with 30% labeled data, our model achieves 518

4.86% improvement in accuracy and 4.22% improvement in 519

macro F1-score compared with the state-of-the-art RF. Such 520

leads are stably maintained at 3% ∼ 4% in the rest data pro- 521

portion settings. Generally, the prediction in Shanghai is more 522

accurate but the improvements of DAGE are not as significant 523

as that in Beijing, which indicates the trip purpose prediction 524

in Beijing is more complicated yet our DAGE could perform 525

much better than others. Additionally, although both ANN and 526

our DAGE are neural networks, ANN performs much worse. 527

It is because ANN simply aggregates all inputs in hidden 528

layers, while our DAGE carefully models the correlations of 529

features with two attention mechanisms in the latent space. 530

Semi-supervised learning is necessary. As shown in Tab. II 531

and Tab. III, with the increase of labeled data, all the models 532
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TABLE III

PREDICTION RESULTS OF DIFFERENT MODELS IN SHANGHAI

Fig. 3. Category-specific performance of DAGE and DAGE-A.

achieve performance improvements. When increasing from533

10% to 30%, our DAGE in both cities improves around 7% in534

accuracy and macro F1-score. However, when increasing from535

30% to 90%, the improvements are less than 5% in Beijing and536

around 7% in Shanghai. It means that for the problem of trip537

purpose prediction, the benefits from the high-cost labelling538

efforts would degrade at the early stage and the situation is539

more obvious in Beijing. Thus, it would be meaningful and540

necessary to establish a semi-supervised framework to improve541

the model’s performance with unlabeled samples.542

Our semi-supervised framework is effective and better.543

As shown in the last two rows, when using the semi-supervised544

learning framework, the performance of DAGE can be further545

improved. Moreover, DAGE-A (with autoencoder architecture)546

consistently outperforms DAGE-P (with pseudo-labels). For547

example, with 20% labeled data, DAGE-P in Beijing achieves548

1.35% improvement in accuracy while our DAGE-A achieves549

2.42%, and in Shanghai the improvements are 0.19% and550

2.9%, respectively. Such results not only demonstrate the latent551

knowledge extracted from the unlabeled data is useful in552

the model training, but also show that our semi-supervised553

learning framework is more effective in capturing such latent554

knowledge. In particular, we find that with 70% labeled data,555

DAGE-A is even better than DAGE with 90% labeled data556

in Beijing. Such a result shows that our semi-supervised 557

framework could reduce the labelling efforts by up to 20%. 558

E. Performance on Different Trip Purposes 559

In addition to the evaluation of overall performance, we also 560

examine our model’s performance on specific trip purposes. 561

To save the place, we only present the detailed analysis in 562

Beijing. 563

1) Category-Specific Performance Analysis: Figure 3 564

presents the category-specific results of DAGE and DAGE-A 565

models, with the detailed analysis as follows. We obtain the 566

following differences and insights regarding the 9 trip purpose 567

categories. 568

• The prediction difficulty is different. For example, 569

when using 10% labeled data, DAGE can achieve over 570

60% in F1-score for the prediction of “Working” and 571

“Health”, while for “Recreation” and “Outdoors” that 572

are around 35%. Such differences might be because 573

that: i) the POI configurations near the “Working” and 574

“Health” activities are usually simpler, thus they are eas- 575

ier to identify; ii) “Recreation” and “Outdoors” activities 576

are often associated with other activities at time and 577

space, e.g., “Dining”. Moreover, we can find that even 578
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with 90% labeled data, the F1-scores of “Recreation” and579

“Outdoors” are still less than 50%, thus the predictions580

of these two trip purposes are very difficult. Besides,581

“Health” is the most predictable one among 9 trip pur-582

poses, for which our models can achieve nearly 80% in583

F1-score.584

• The improvements from labeled data are different.585

When increasing the labeled data from 10% to 90%,586

the 9 trip purposes also show considerable differences587

in their performance improvements. For example, with588

our semi-supervised DAGE-A, “Dining” is improved by589

nearly 20%, while “Working” is improved by less than590

10%. Such results indicate the latent distributions of591

all the possible “Dining” trips are more complicated,592

thus the increasing labeled data could consistently bring593

useful information for the model training. Similarly, the594

“Recreation” also achieves over 15% improvement.595

• The improvements from our semi-supervised frame-596

work are different. From the standpoint of our597

semi-supervised DAGE-A, it is generally effective in598

improving the model’s performance on each kind of trip599

purpose compared with the supervised DAGE. However,600

the improvements show two different trends with the601

increase of labeled data, i.e., from significant to negli-602

gible and the reverse. The first case is the majority of603

9 trip purposes. It indicates that when the labeled data is604

sparse, the revealed data distributions are also limited thus605

the complementary knowledge from the unlabeled data606

could significantly enhance the performance. Then, with607

the increase of labeled data, the revealed distributions608

tend to be completed, so that the improvement goes609

down gradually. The second case occurs at “Recreation”610

and “Dining” purposes. According to the aforementioned611

observations, they are very difficult to predict and with612

complicated data distributions. Thus, at the beginning, the613

model would easily be over-fitting to the very limited614

labeled training data, so that the effects of unlabeled data615

are slight in the model training.616

• Our semi-supervised framework trained with 70%617

labeled data performs well. For most trip purpose618

categories, when the labeled data comes over 70%,619

the improvements of our semi-supervised DAGE-A are620

not significant, but the performance still outperforms621

the DAGE with 100% labeled data. Hence, from the622

standpoint of real-world applications, it is effective and623

cost-efficient to employ 70% labeled data for the model624

training with our semi-supervised framework. In the625

following, we will evaluate more aspects of the DAGE-A626

trained with 70% labeled data.627

2) Confusion Matrix: Figure 4 illustrates the normalized628

confusion matrix of DAGE-A trained with 70% labels in629

Beijing. Each row represents a set of trips corresponding to the630

same true purpose, and each column represents a set of trips631

with the same predicted purpose. The matrix is normalized632

at each row, thus the numbers in each row indicate the633

proportions of trips with different predicted labels, and the634

diagonal elements in this matrix are recall values.635

Fig. 4. Normalized confusion matrix of DAGE-A trained with 70% labels.

We find that with our prediction model, the recalls of “Shop- 636

ping” and “Working” are over 70% and “Health” achieves 637

80%. While the recalls of “ Recreation” and “Education” are 638

less than 50%. One reason for such gaps lies in the differences 639

of their nearby POI configurations. For example, the POI 640

configurations near the “Health” activities are usually simpler 641

than “Recreation”. Thus it would be easier for our prediction 642

model to identify the “Health” purposes through the POI 643

check-in data. Besides, in reality, some human activities are 644

usually associated with each other at time and space, so that 645

our model can not distinguish them very well. For example, 646

about 13% percent of “Recreation” purposes are predicted as 647

“Shopping”, and 11% percent of “Transportation” purposes 648

are wrongly predicted as “Working”. 649

F. Performance at Different Times and Locations 650

In this section, we investigate the performance of our 651

DAGE-A trained with 70% labels at different times and loca- 652

tions in Beijing. 653

1) Temporal Dimension: Figure 5 (a) illustrates the predic- 654

tion accuracies of our model at different hour times in a day. 655

As we can see, for the most hour times, the performance is 656

mainly floating around 60% and 70%, indicating the model 657

is generalized to different times in a day. Moreover, the 658

performance in the morning (from 5 am to 11 am) is somewhat 659

better than that in the afternoon and evening. Such results show 660

that trip purposes in the morning are less complicated. Besides, 661

around 3 am, the prediction accuracy achieves 92.31%. It is 662

because most activities are inactive at midnight, so that the 663

potential candidates for prediction are much fewer. 664

Figure 5 (b) presents the category-specific performance 665

comparison from the perspective of day type. We can find 666

that our model shows different performance on workday and 667

non-workday. Specifically, the “Working”, “Homing”, “Trans- 668

portation” and “Education” are more predictable on workday, 669

while “Recreation”, “Outdoors”, “Shopping” and “Dining” are 670

more predictable on non-workday. Such results are generally 671

consistent with common sense that these activities have certain 672
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Fig. 5. Performance of DAGE-A at different times.

Fig. 6. Prediction accuracies of DAGE-A at different locations (as the origins
of trips) in Beijing.

regularities at specific day types, accordingly demonstrating673

the effectiveness of our model.674

2) Spatial Dimension: In order to investigate the perfor-675

mance at the spatial dimension, we divide the Five-Ring of676

Beijing city into 15 × 15 square grid cells with a width677

Fig. 7. Prediction accuracies of DAGE-A at different locations (as the
destinations of trips) in Beijing.

of 2 km. Figure 6 and Figure 7 show the overall performance 678

of locations as the origins and destinations of trips respectively, 679

and show the performance during the day and night as well. 680

The 3D bar illustrates the corresponding prediction accuracy 681

at each location. 682

In Fig. 6, we can find that most locations as the origins 683

are with around 60% prediction accuracies and don’t change 684

much from day to night. However, a few locations show very 685

different patterns. For example, the overall accuracy of the 686

location B is 75% in Fig. 6 (a), but the accuracy is only 687

66% during the day in Fig. 6 (b) while it achieves 100% 688

during the night in Fig. 6 (c). Similarly, the location C is also 689

with much higher accuracy during the night. By examining 690

the prediction results, we find trips departed from these two 691

locations are mainly for the “Homing” and “Transportation” 692

purposes. On the contrary, the location A is with much higher 693

accuracy during the day for “Dining”. Hence, the prediction 694

performance at locations is highly related to types of posed 695

trip purposes. 696

In Fig. 7, we can find that a lot of locations are with higher 697

accuracies as destinations than as the origins. It means trips 698

ended at these locations are for naive (i.e., more predictable) 699

purposes while trips departed from these locations are usually 700

for complicated purposes. In other words, these locations are 701

often connected to diverse activities and locations by trips. 702

Besides, we find when the location C is as the destinations of 703

trips, the accuracy is 100% during day and night consistently. 704

It is because this location is mainly composed of residences 705

and companies and the human activities in this location are 706

simple and highly time-dependent, so that the trip purposes 707

are easy to predict. There are also some destinations show 708

very different patterns between day and night. For example, 709
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the location D is a place composed of various kinds of POIs.710

During the day, the prediction accuracy is only 21%, for which711

there are 5 frequently posed trip purpose categories. While712

during the night, the accuracy achieves 85%, and the frequent713

purposes are mainly “Homing”. Such results indicate that for714

locations with complicated POI configurations, the prediction715

performance is more likely to show significant differences716

between day and night.717

V. RELATED WORK718

A. Feature Engineering in Trip Purpose Prediction719

Since human activities are influenced by various factors in720

reality, feature engineering is crucial in trip purpose prediction.721

Geography characteristics are widely used to depict the static722

activity-related characteristics of passenger’s drop-off location,723

such as polygon-based information, POI configuration and724

street map [3], [11], [38]. Trip and activity characteristics725

(e.g., travel mode, activity duration) are also effective in iden-726

tifying trip purposes [28], [38], [40], since human activities727

often show strong regularity at time and space. Demographics728

characteristics are used to reveal the respondents’ prefer-729

ences for activities or their travel patterns (e.g., age, gender,730

employment, and family structure) [10], [12], [17]. In real-731

life scenarios like taxis, many features cannot be obtained732

(e.g., passenger’s activity duration and family structure), thus733

methods may lack pervasiveness.734

B. Machine Learning Models in Trip Purpose Prediction735

In recent years, machine learning algorithms are emerging736

in the prediction of trip purpose [8], [27], [30]. For example,737

since 2014, Random Forest (RF) [4] is widely adopted in trip738

purpose prediction [11], [12], [29]. Based on the Bayes model,739

the work in [7] takes both the fine-grained spatial and temporal740

patterns of human behaviors into consideration to impute the741

most likely trip purpose at the passenger’s drop-off location.742

Besides, owing to the effectiveness in nonlinear regression,743

neural networks also show impressive performance in iden-744

tifying trip purpose with complex input features [10], [28],745

[38]. Topic model (i.e., LDA) is used to infer trip purposes746

with the cellular network and POI data [43], where trips and747

users are regarded as words and documents respectively. In an748

unsupervised manner, autoencoder and a clustering algorithm749

are used to extract and cluster latent trip features from the GPS750

and POI data, then trip purposes are obtained by interpreting751

cluster centers [8]. Different from existing models, we are752

the first to: i) carefully model the correlations of features in753

the latent space; 2) establish a semi-supervised framework to754

improve the model’s performance with a plenty of unlabeled755

trip data.756

C. Semi-Supervised Learning in Mobile Computing757

Although the ear of big data and IoT has opened up sub-758

stantial opportunities for mobile computing, many researches759

still suffer from the problem of label shortage [9], [19].760

In this regard, the semi-supervised learning techniques are761

widely used to enhance the model’s performance with unla- 762

beled data [1], [9], [25], [31], [42]. To name a few, the 763

work in [31] present a semi-supervised framework for traffic 764

anomaly detection at the edge of the mobile network, which 765

only needs one class of samples (normal traffic) to train the 766

model. In addition, a hierarchical semi-supervised training 767

method is proposed in [1] for the intrusions detection in 768

IoT networks, which takes into account the sequential char- 769

acteristics of the unlabeled IoT traffic data during training. 770

In [42], mean teacher semi-supervised learning is integrated 771

with federated learning for the crowdsourced transportation 772

mode identification, so as to utilize the sensed (unlabeled) 773

data from distributed workers in the model training. In [9], 774

a pseudo-label based semi-supervised framework is used to 775

improve the performance of the graph representation model 776

in identifying fine-grained driving style with the large-scale 777

unlabeled GPS trajectory data. Note that the study in this paper 778

is the first to adopt the semi-supervised learning in the trip 779

purpose prediction. 780

VI. CONCLUSION AND FUTURE WORK 781

In this paper, we propose a context-aware semi-supervised 782

framework (DAGE-A) for predicting large-scale yet fine- 783

grained trip purposes. It is based on pervasive data sources 784

and is also effective with limited labeled training data, thus 785

making it more applicable in real-world scenarios. Specifically, 786

we employ the vehicle’s GPS trajectory and public POI 787

check-in data to reveal different trip contexts, then propose 788

a dual-attention graph embedding network with autoencoder 789

architecture to extract the higher-level activity semantics for 790

trip purpose prediction. Moreover, our semi-supervised frame- 791

work could improve the model’s performance by incorporat- 792

ing the complementary knowledge from large-scale unlabeled 793

data. Extensive experiments in Beijing and Shanghai demon- 794

strate that the proposed framework significantly outperforms 795

baseline models, and could reduce labelling efforts by up to 796

20%. We also demonstrate the great generalizability of our 797

model at different times and locations in a city. 798

In the future, we will broaden and deepen this work in 799

several directions. Specifically, we plan to explore more urban 800

data sources to enrich the travel semantics, like the real-time 801

social event data. Additionally, in some cities with low devel- 802

opment of economy and infrastructure, it may be infeasible 803

to collect sufficient trip data for model training, i.e., cold- 804

start problem [15]. For this problem, since our trip purpose 805

prediction is based on modelling the high-level human activity 806

semantics (i.e., lifestyle) that may be similar across cities, 807

we plan to leverage the prediction knowledge learned from 808

a data-rich city to enable the prediction in data-scarce cities 809

(i.e., transfer learning). 810
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