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Abstract—Internet of Things (IoT) has already been in the
period of rapid development and widespread deployment, while
it is still vulnerable to various malicious attacks. Security
detection before system installation is not enough to ensure
that IoT devices are always secure, because newly emerging
vulnerabilities can still be exploited to launch attacks. To address
this issue, retrospective detection is often required to trace the
security status of IoT systems. Unfortunately, existing centralized
detection mechanisms cannot easily provide a comprehensive
security analysis. In particular, consumers cannot automatically
receive security notification whenever a new vulnerability is
uncovered. In this paper, we propose a novel blockchain-powered
incentive platform, called SmartRetro, that can incentivize and
attract more distributed detectors to participate in retrospective
vulnerability detection and contribute their detection results.
Leveraging smart contracts, consumers in SmartRetro receive
automatic security feedback about their installed IoT systems.
We perform the security and theoretical analysis to demonstrate
that SmartRetro achieves our desirable security goals. We further
implement SmartRetro prototype on Ethereum to evaluate its
performance. Our experimental results show SmartRetro is
technically feasible and economically beneficial.

Index Terms—Blockchain, Incentives, Retrospective Detection

I. INTRODUCTION

Internet of Things (IoT) has achieved rapid development and
widespread deployment in recent years: IoT connected devices
will reach almost 31 billion by 2020 [1]. However, IoT devices
are usually vulnerable to various attacks due to insecure
design and implementation. Although anti-virus software is
available for identifying security issues before an IoT device
is installed, other vulnerabilities that cannot be identified
with pre-installation scanning would remain undiscovered, and
could be exploited to launch attacks after installation. For
instance, the Mirai botnet [2] infests unsecured IoT devices
(i.e., cameras with default login credentials) to launch large-
scale DDoS attacks against the Internet services [3] [4]. Given
the foreseeable growth in IoT device deployment, it is crucial
to build a secure IoT ecosystem to minimize its social impact.
Retrospective security detection for IoT devices, as a necessary
complement to pre-installation scanning, is a critical building
block towards that goal.

Fig. 1. The detection results for an IoT App (Nest).

Existing mechanisms for retrospective detection have sev-
eral limitations. On one hand, retrospective detection relying
on centralized services, e.g., cloud computing [5] [6] [7] and
third-party authorities [8] [9] [10] [11] [12] often produce
inconsistent and incomplete detection results. For example,
as shown in Fig. 1, different third-party detection services
share a very limited similarity in their detection results for
one same IoT App (Nest1) in Google Play. Additionally,
centralized detection services that release vulnerabilities in
a batch typically incur longer delay from the time that a
vulnerability is detected to the time that the vulnerability
is publicly known by all stakeholders. On the other hand,
although existing decentralization-based schemes (e.g., Clou-
dAV [14] and Vigilante [15]) could produce more comprehen-
sive retrospective detection, they fail to automatically provide
detection feedback to consumers whenever a new vulnerability
is uncovered on their installed devices. Further, they lack a
well-designed incentive mechanism to attract more distributed
detectors to participate in the detection.

In this paper, we propose a blockchain-based incentive
platform, called SmartRetro, to address the above limita-
tions. First, SmartRetro is a decentralized platform where
detection results contributed by all peers, stored on public
blockchain, are universally accessible to all stakeholders.
As a result, comparing with existing centralized services,

1Nest is a mobile App to connect your IoT devices (e.g., thermostat) so
that you can adjust them and get notifications for important events [13].



SmartRetro produces consistent and comprehensive detection
results. Further, relying on smart contracts, SmartRetro re-
wards participating detectors instantaneously when their de-
tection results are accepted and committed to the blockchain.
Such automated rewarding design incentivizes more partici-
pation. Third, SmartRetro enables consumers to upload the
system information of their installed IoT devices through smart
contracts, called SmartRetro contracts, that are executed on
blockchain. Whenever new detection results are committed
on the blockchain, SmartRetro contracts will be triggered
automatically, resulting in timely security notification to the
corresponding consumers.

In summary, the major contributions of this paper are as
follows.

• We present SmartRetro, a blockchain-based incentive
platform that can attract distributed detectors to retro-
spectively detect IoT systems and automatically provide
security notification to consumers whenever new vulner-
abilities are detected.

• We introduce a novel incentive scheme in SmartRetro that
achieves automated incentive allocation without relying
on a centralized service.

• We perform sound security analysis of SmartRetro,
implement a prototype of SmartRetro on Ethereum
and evaluate the prototype extensively to demonstrate
SmartRetro’s feasibility.

The remainder of this paper is organized as follows. Section
II mainly shows the background of this paper, especially
blockchain technology, smart contracts. In Section III, we pro-
vide the problem statement and adversary model. SmartRetro
overview and details are shown in Section IV and V, re-
spectively. In Section VI and VII, we conduct security and
theoretical analysis about our proposed SmartRetro platform.
Performance evaluation is performed in Section VIII. We
present the related work and conclude this paper in Section
IX and X, respectively.

II. BACKGROUND

This section describes the background of blockchain tech-
nology and smart contracts, which are fundamental building
blocks in our platform.

The blockchain technology starts to attract massive attention
since 2009, when crypto-currency systems, such as Bitcoin
[16], that built upon blockchain gains popularity. Essentially,
blockchain is a distributed ledger that leverages existing
technologies, including peer-to-peer (P2P) networks for data
transmission, consensus schemes for data consistency, and
encryption algorithms for security verification. The blockchain
consists of a series of blocks connected in order, each of
which records transaction data that is organized in form of
Merkel tree. The peer nodes (often referred to as miners)
collect transactions in the network and package them into
blocks. Then, they participate in a distributed consensus
process to determine which block will be appended to the
current blockchain. Several types of consensus algorithms
have been proposed, including Proof-of-Work (PoW) [17],

(Delegated) Proof-of-Stake (PoS) [18], and Byzantine fault
tolerance (BFT) algorithm [19].

Decentralization is the central tenet of blockchain tech-
nology, in which transactions are verified and completed by
distributed miners without any centralized or trusted author-
ities. Additionally, decentralization also makes a blockchain-
powered system more secure and hard to be manipulated since
transaction commitment typically required the consent from a
majority of stakeholders.

Smart contract, which was first implemented on on
Ethereum [20] blockchain, is what makes blockchain to po-
tentially be more influential than the Internet, the largest
distributed system people have ever invented so far. Smart
contracts are essentially pieces of codes running all peers in
the network, yielding a global-scale distributed super-computer
that is unhackable and unstoppable. As a result, whenever
a smart contract is triggered with valid conditions, it is
guaranteed to unambiguously execute the code to compute the
final result. When a smart contract is deployed on Ethereum,
a certain number of fees, called gas, is required to be reserved
in the contract because the execution of smart contract is not
free. This prevents adversaries from deploying meaningless
contracts (e.g., an empty while loop) on the network simply
to exhaust resources on peers.

III. PROBLEM STATEMENT

This paper presents SmartRetro, a system that incentivizes
distributed detectors to participate in retrospective detection
for IoT systems, and meanwhile ensures fair reward allocation
among detectors and automated security feedback to IoT
consumers whose installed devices are detected with vulner-
abilities. Before diving into design detail, we first clarify our
design scope as well as the adversary model and assumptions
of this paper.

A. Design Scope

Before releasing, IoT systems/devices may experience scan-
ning or analysis to uncover possible security issues. However,
pre-release scanning alone is not enough to secure the entire
lift-time of IoT devices because additional vulnerabilities
could be uncovered after the devices are widely deployed.
This raises a serious threat to the healthy of IoT ecosystem.
For instance, a lot of unsecured IoT devices are infested and
recruited in a botnet, which has been used to launch large-scale
DDoS attacks against the Internet. The scope of this paper is to
design a decentralized platform to attract distributed detectors
to perform retrospective security detection of IoT devices to
uncover post-installation security issues.

B. Adversary Model

SmartRetro is a permissionless system that can be joined
by any distributed detectors. In order to perform retrospective
detection, detectors can either built its own analysis software,
for instance, based on CloudAV [14] and Vigilante [15], or
leverage existing detection services (e.g., QUIXXI [12] and
NVISO [21]). We assume that a malicious detector could i)
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Fig. 2. The architecture of SmartRetro that leverages blockchain technology
and smart contracts to incentivize distributed retrospective detections for IoT
systems and send automated security feedback to consumers.

deliberately ignore certain vulnerabilities, ii) report incorrect
detection results, or/and iii) plagiarize other detectors’ detec-
tion reports in order to gain more rewards.

Since our underlying blockchain system is permissionless
and relies on Proof-of-Work to reach consensus, we assume
that no single participator could control the majority (>50%)
of computation capability of entire detector network. This
assumption is not a fundamental limitation of SmartRetro since
SmartRetro can be built on any type of blockchains. Thus,
security issues of the underlying blockchain system, such as
routing attacks [22] and eclipse attacks [23], are out of this
paper’s scope.

IV. SMARTRETRO OVERVIEW

In this section, we present the overview of SmartRetro
platform that can incentivize distributed detectors to retrospec-
tively detect IoT systems and automatically provide security
feedback to consumers.

A. Architecture

The SmartRetro is built upon on a blockchain system. As
shown in Fig. 2, SmartRetro has three major participators:

• IoT providers release IoT systems with different ver-
sions. They are also responsible for constructing and
maintaining the underlying blockchain system.

• IoT detectors identify post-installation vulnerabilities on
IoT systems, and are motivated to submit their detection
reports to earn regards.

• IoT consumers are the downstream users of IoT sys-
tems. Any consumers who would like to track the secu-
rity status and obtain the security issue notification for
their installed IoT devices can opt in to participate in
SmartRetro.

SmartRetro designs called SmartRetro contracts to ensure
the automation of incentives allocation to detectors and secu-
rity issue notification to consumers. Two types of SmartRetro
contracts are developed: one is used by consumers to announce
the installation of IoT devices, the other one is used by
distributed detectors to submit retrospective detection results.

B. Workflow and Challenges

The workflow of SmartRetro is as follows.
Step #1: System installation announcement. Consumers
who opt in SmartRetro to track the security issues of their
installed IoT systems need to first announce their system
installations. This announcement is organized as a SmartRetro
contract containing incentives/rewards for attracting detectors’
participation on detecting vulnerabilities on their IoT systems.
Step #2: Distributed retrospective detection. IoT detectors
who are motivated by rewards perform retrospective security
analysis on IoT systems. Once any new issue are uncovered,
they report their detection results, which will be recorded in
the blockchain once these results are verified by the majority
of IoT providers.
Step #3: Decentralized and automated incentives. When the
detection results match with the installation announcements,
SmartRetro contracts will be triggered automatically to allo-
cate rewards to the corresponding detectors fairly and instantly,
without relying on any trusted authorities.
Step #4: Automated security issue notification. SmartRetro
contracts enable consumers to define callbacks such that a
notification or feedback about the security issues of their
IoT systems is automatically sent to them whenever their
SmartRetro contracts are called and executed.

While designing SmartRetro, we explicitly address the fol-
lowing challenges.
Preventing spoofed installation announcement. A malicious
consumer could launch spoofing attacks by announcing a
forged system installation, so that the consumers who have
announced the authentic system installation would have to pay
rewards when a vulnerability on the system is detected.
Preventing forging and plagiarizing detection results. A
malicious detector could try to forge or plagiarize other
detectors’ detection results in order to steal rewards.
Ensuring the correctness of detection results without a cen-
tral authority. It is crucial to ensure that no invalid detection
results could be published, especially in a decentralized and
permissionless system where a wide variety of detectors may
participate.
Guarantee fair reward allocation. A malicious consumer
could try to refuse to give any pre-defined rewards to detectors
even if detectors identify legitimate vulnerabilities. SmartRetro
needs to guarantee fair reward allocation without relying any
centralized entity.

V. SMARTRETRO DESIGN DETAIL

In this section, we detailedly describe our proposed
SmartRetro platform that achieves decentralized incentive al-
location and automated security feedback. Concretely, con-
sumers release an announcement through SmartRetro contracts
when installing an IoT systems. The distributed detectors
perform retrospective detections for IoT systems and report
their detection results. When a detection result is accepted
and recorded in the blockchain, the detector can automati-
cally obtain incentives from consumers without relying on
a centralized authority. The accepting detection results can



also trigger SmartRetro contracts, resulting in an automated
security feedback to consumers.

A. System Installation Announcement

SmartRetro enables consumers to perform system installa-
tion announcements (SIAs) for better tracking the security
status of their IoT devices. In order to prevent a spoofing
SIA, consumers’ signatures have to be inserted into SIA.
Meanwhile, SmartRetro enforces each consumer to submit an
incentive in SIA, which has the following two purposes: i) it
is a deposit that will not be refunded once the released SIA is
detected to be spoofed; ii) it acts as an incentive for attracting
detectors to retrospectively detect installed IoT systems.

SIA is released in the form of SmartRetro contracts that will
be automatically performed once it is triggered. Eq. 1 shows
the construction of SIA that contains six elements.

SIA = {Ui, Ei, Si, Vi, in, fbk,HSIA, USigni
}, (1)

where Ui, Ei, Si and Vi are the unique identifications of
consumers, IoT devices, IoT systems and system versions,
respectively. in denotes the inserted incentives in SIA, which
can attract more detectors’ participation. fbk is used to send
security feedback to consumers when some vulnerabilities
have occurred in this IoT system (described in Section V-D).
HSIA (see Eq. 2) is the hash value of Ui, Ei, Si, Vi and in.

HSIA = H(Ui||Ei||Si||Vi||in||fbk), (2)

USigni
is the signature of Ui, which is calculated with Ui’s

private key K−1
Ui

, as Eq. 3 shows. Then, SmartRetro contracts
that records various SIAs will be broadcast to the network.

USigni
= SignK−1

Ui

(HSIA), (3)

In SmartRetro, the blockchain is constructed and maintained
by IoT providers who have more resources compared to
IoT devices. When receiving released SIAs in SmartRetro
contracts, IoT providers firstly verify HSIA and check sig-
nature USigni

using consumer Ui’s public key KUi
. Only

passing the above verification, SIA of SmartRetro contracts
can be recorded in the blockchain. Using the existing consen-
sus mechanism (e.g., PoW [17], PoS [18] and PBFT [24]),
SmartRetro enables IoT providers to ensure data consistency
in the blockchain.

B. Distributed Retrospective Detection

SmartRetro can incentivize and attract more detectors to
perform retrospective detection for IoT systems. More dis-
tributed detectors’ participations can not only easily introduce
a more comprehensive detection results but also lighten the
detection burden of IoT devices that does not require to run a
complex detection system. SmartRetro can prevent the forging
or plagiarizing detection results by following two methods.
i) A deposit is enforced to be submitted when each detector
reports its detection results. If any error occurs in the detection
report, this deposit will never be refunded. ii) SmartRetro
enables each detector to firstly submit the hash value of
detection results. In this case, no one can plagiarize others’

Algorithm 1 The Initialization Algorithm for IRi and FRi

1: Require: Di, Si, Vi, dpt1, dpt2, res
2: Compute:
3: IDIR = H(Di||Si||Vi||dpt1)
4: IDFR = H(IDIR||dpt2||res)
5: DSignFR

= SignK−1
Di

(IDFR)

6: DSignIR
= SignK−1

Di

(HFR||IDFR)

7: Result 1:
8: FRi = {IDIR, dpt2, resi, IDFR, DSignFR

}
9: Compute:

10: HFR = H(FRi)
11: Result 2:
12: IRi = {Di, Si, Vi, dpt1, HFR, IDIR, DSignIR

}
13: Return: IRi and FRi

results as the sovereignty of detection results has already been
stated in the initial report.

The submission of a detection result is divided into two
phases: the first is to submit an initial report that only records
the hash value of detection results, and the second is to submit
a final report that details the detection results. Algorithm
1 show Di’s initialization for the initial and final detection
report, i.e., IRi and FRi.
Initial report submission. The initial detection report IRi

is used to determine the order of vulnerability discovery for
distributed detectors, which is also associated with incentive
allocations (detailed in Section V-C). The construction of IRi

for a detector Di contains seven elements as follows:

IRi = {Di, Si, Vi, dpt1, HFR, IDIR, DSignIR
}, (4)

where dpt1 is the Di’s deposit inserted in IRi, which can
prevent Di from submitting a forged IRi. HFR is the hash
values of Di’s final detection report FRi, which is used to
prevent detectors from plagiarizing others’ detection results.
IDIR is the identification of IRi, which is computed by the
following equation:

IDIR = H(Di||Si||Vi||dpt1). (5)

DSignIR
is the signature of detector Di, which is calculated

with Di’s private key K−1
Di

(see Eq. 6).

DSignIR
= SignK−1

Di

(HFR||IDIR). (6)

Therefore, other detectors can only learn Di has discovered
some vulnerabilities instead of knowing the concrete content
of detection results. That can defend against a plagiarized
detection reports. After initialization, IRi is then delivered
to the network and verified by IoT providers. Only the valid
IRi can be recorded in the blockchain (described later).
Final report submission. The final detection report FRi

records the detailed retrospective detection results for IoT
systems. SmartRetro enables detectors to submit FRi only
when the corresponding IRi has been stored in the blockchain.



Di’s final detection report FRi must correspond with IRi,
whose construction is as Eq. 7 shows.

FRi = {IDIR, dpt2, resi, IDFR, DSignFR
}, (7)

where dpt2 is Di’s deposit for submitting FRi. This can
prevent compromised detectors from spoofing attacks, where
dpt2 would not be refunded if FRi is verified to be forged.
resi is Di’s detailed detection results for an IoT system. IDFR

is the identification of FRi, which is the hash value of HIR,
dpt2 and resi. DSignFR

is the Di’s signature that is calculated
using K−1

Di
(see Eq. 8).

DSignFR
= SignK−1

Di

(IDFR). (8)

The submitted final report FRi should correspond to the
initial report IRi that has already recorded in the blockchain.
Concretely, HFR in IRi should equal to the hash value of
FRi, i.e., HFR = H(FRi). FRi should be firstly verified
before it is accepted and written in the blockchain (described
in Section V-C).
C. Decentralized and Automated Incentives

SmartRetro provides the decentralized and automated in-
centives that is a vital function for attracting more detec-
tors to participate in retrospective detection for IoT systems.
To ensure the correct incentive allocation, detection results
should be correctly verified and aggregated in the blockchain.
SmartRetro employs the PoW consensus scheme for guaran-
teeing the detection results in each local blockchain stored by
IoT providers are consistent.
Detection results aggregation is a critical premise for
SmartRetro to correctly allocate incentives to the correspond-
ing detectors. To achieve this aggregation, SmartRetro enables
IoT providers to verify the submitted detection results and fil-
ter the invalid ones. This includes authenticity verification and
correctness verification. When receiving detection results, IoT
providers firstly perform authenticity verification by checking
the report identifications (i.e., IDIR and IDFR) and the
signatures (i.e., DSignIR

and DSignFR
). Meanwhile, HFR

should also be verified and check whether HFR = H(FRi)
by recomputing the hash of FRi. Algorithm 2 shows the
process of authenticity verification for detection reports (IRi

and FRi), which can defend against spoofing attacks launched
by compromised detector(s). After authenticity verification,
the correctness verification of detection results should be
performed. In SmartRetro, IoT providers have richer resource
(e.g., computation, storage and detection) compared to IoT
devices, which can identify the detected vulnerabilities, i.e.,
res in detection report FRi. This can be achieved by installing
their own detection system (e.g., CloudAV [14] and Vigilante
[15]) or using the existing third-party detection services (e.g.,
VirusTotal [9], Andrototal [11] and Ostorlab [8]). Only the de-
tected vulnerabilities that have been verified by IoT providers
can be eligible to be written in the blockchain. SmartRetro
employs PoW-based consensus protocol to ensure the consis-
tency of blockchain among multiple IoT providers. Namely,
if a detected vulnerability has been verified and accepted

Algorithm 2 Authenticity Verification for Detection Reports.
1: function AUTHENTICITY VERIFICATION FOR IRi ( )
2: Require: IRi and KDi

3: Compute: ID
′
IR = H(Di||Si||Vi||dpt1)

4: if (ID
′
IR == IDIR) && (CheckSignKDi

(DSignIR
)) then

5: Accept IRi and try to record it in the blockchain;
6: else
7: Drop IRi and break;
8: end if
9: end function

10: function AUTHENTICITY VERIFICATION FOR FRi ( )
11: Require: IRi, FRi and KDi

12: Compute: ID
′
FR = H(IDIR||dpt2||res)

13: if (ID
′
FR == IDFR) && (CheckSignKDi

(DSignFR
)) then

14: if HFR == H(FRi) then
15: FRi is authentic;
16: end if
17: else
18: Drop FRi;
19: end if
20: end function

by the majority of IoT providers, it will be recorded in the
blockchain, permanently. Therefore, SmartRetro enables the
detection result aggregation in the blockchain by performing
authenticity and correctness verification and using PoW-based
consensus scheme.
Incentives allocation. SmartRetro enables each system instal-
lation announcement, i.e., SIA, to be released in the form
of SmartRetro contracts. When a detection result is recorded
in the blockchain, some SmartRetro contracts that record the
corresponding SIA can be triggered, which can automatically
allocate incentives to the detector who submitted the detection
result. Note that the allocated incentives are in of SIA, which
may be submitted by multiple consumers. In this case, the
detector can obtain more than one incentive once finding
a vulnerability. Besides, SmartRetro ensures that the entire
incentive allocation is totally decentralized due to leveraging
blockchain technology. Therefore, SmartRetro can prevent
compromised consumers from repudiating incentives alloca-
tion because SmartRetro contracts can make the incentives in
in SIA automatically allocated.

D. Automated Security Feedback

Security feedback is automatically provided to the re-
lated consumers once a vulnerability is newly discovered in
SmartRetro. This is because SmartRetro makes consumers
insert their feedback requirement, i.e., fdk, in SmartRetro
contracts when releasing an SIA. Security feedback is ac-
companied with the incentive allocation, which all relies on
the automated execution of SmartRetro contracts. Concretely,
when the detection results are aggregated and recorded in the
blockchain, the triggered SmartRetro contracts can not only
introduce the automated incentive allocation, but also provide
automated security feedback to consumers.

VI. SECURITY ANALYSIS

In this section, we perform the security analysis for
SmartRetro that can defend against the attacks from vulnerable



IoT systems and the interferences from malicious consumers,
detectors and IoT providers.

Security against the newly uncovered vulnerabilities. Un-
like centralized detection services whose detection coverage
is determined by the central entity’s capability, SmartRetro’s
detection capability is determined by all distributed detectors.
With properly designed incentive mechanism, SmartRetro can,
arguably, attract more diverse detectors such that the combined
detection capacity from all peer detectors outweigh any single
centralized services. Besides, on SmartRetro, consumers can
track the security status of their installed IoT systems by
retrospective detection more timely, rather than waiting until
the release from centralized services.

Security against the malicious consumers. In SmartRetro,
malicious consumers could launch spoofing attacks to disrupt
our incentive allocation through the following ways: i) imi-
tating other consumers to release a spoofed SIA; ii) refusing
to pay rewards to detectors. Both types of spoofing attacks
can cause financial loss to benign consumers and detectors.
SmartRetro mitigate the above attacks by enabling each con-
sumer to submit incentives as a deposit, i.e., in, when releasing
an SIA. As a result, once an SIA is detected to be spoofed, a
compromised consumer suffers from financial losses because
in will not be refunded. Meanwhile, SmartRetro enables
consumers to add a signature USigni in a released SIA to
identify the authenticity of an SIA.

Security against the compromised IoT detectors. Compro-
mised IoT detectors can try to forge or plagiarize the detection
results submitted by other benign detectors so as to gain more
rewards. SmartRetro prevents this attack by enabling each
detector to firstly submit the initial report IRi that only records
the hash value, i.e., HFR of its detection results. This prevents
the detection results from being plagiarized by others because:
i) the detection results can not be learned from IRi; ii) IRi can
be used to declare the order that one vulnerability is identified
even though the detection results can be publicly viewed
in FRi. Meanwhile, IoT detectors are required to submit a
deposit (i.e., dpt1 and dpt2) when reporting detection results.
Later, our authenticity and correctness verification mechanism
can filter the forged or plagiarized detection results, resulting
in financial losses from those malicious detectors.

Security against the misbehaved IoT providers. The sub-
mitted detection results are stored in the blockchain that is
maintained by distributed IoT providers. In SmartRetro, one
compromised IoT provider could impact our reward allocation
by selectively packaging detection results, such as deliberately
ignore some valid detection results and only including de-
tection results from colluding detectors. SmartRetro addresses
the above security threat by leveraging PoW-based consensus
scheme. In this case, the detection results contained in the
final blockchain are statisically determined by the majority of
IoT providers rather than a single one. Thus, any minority
set of compromised IoT providers have minimal impact on
SmartRetro’s reward allocation.

VII. THEORETICAL ANALYSIS

In this section, we perform theoretical analysis of the incen-
tive mechanism designed in SmartRetro platform. Note that
since the detection reports (IRi and FRi) are all submitted in
the form of SmartRetro contracts, certain gas fees are required
to deploy these smart contracts on blockchain. Therefore,
the net benefit of an IoT detector equals its received reward
for retrospective detection minus the costs for submitting its
detection results. Consider that the number of IoT systems is
m, each IoT system has a version number up to l, and the
total number of IoT devices is n.
Incentives for retrospective detections. The rewards allo-
cated to detectors in SmartRetro are mainly determined by
the inserted in in SIA. Thus, the total incentives (denoted by
Intotal) of IoT ecosystem are calculated as follows:

Intotal =

m∑
i=1

l∑
j=1

in · n · Pij , (9)

where Pij is the probability that IoT device Ek (1 ≤ k ≤ n)
have installed an IoT system Si (1 ≤ i ≤ m) with version
Vj (1 ≤ i ≤ l). We use {Si, Vj} to denote the IoT system
and version pair. We define DCi as the detection capability
of detector Di. Namely, the probability that Di can uncover
a new vulnerability is DCi. Therefore, the proportion of
detection capability (denoted by DCPi) can be calculated
from Eq. 10, where q is the number of detectors.

DCPi =
DCi∑q
j=1 DCj

. (10)

Thus, the detector Di can gain the following incentives (InDi

in Eq. ), which is positively correlated with its detection
ability. We can learn more inserted incentives in or the larger
detection capability proportion DCPi can help detectors gain
more incentives. Especially, if there is only one detector in
SmartRetro, the allocated incentives grow linearly with its
detection capability.

InDi
= Intotal ·DCPi. (11)

Cost for submitting detection results. The cost of detector
Di is the gas that is deposited in SmartRetro contracts of
IRi and FRi. We assume n1 and n2 are the number of
Di’s submitted IRi and FRi, respectively. Therefore, the cost
(denoted by Ci) is calculated as follows.

Ci = gas1 · n1 + gas2 · n2, (12)

where gas1 and gas2 are the consumed gas that is required to
execute SmartRetro contracts of IRi and FRi, respectively.
Thus, in SmartRetro, the net reward of detector Di, denoted
by BDi

, is computed according to Eq. 13.

BDi
= InDi

− Ci. (13)

In SmartRetro, any fake detection report can also cause Di’s
financial loss. We define the fake report rate (denoted by ϑi) as
the probability that the submitted detection reports (i.e., IRi



Fig. 3. The block time of SmartRetro platform.

and FRi) are forged or plagiarizing. Thus, the loss of Di’s
submitting fake report is as Eq. 14 shows.

LDi = (dpt1 · n1 + dpt2 · n2) · ϑi. (14)

Therefore, the net reward of Di ia adjusted as Eq. 15 if the
loss of faking report is taken into consideration.

BDi
= InDi

− Ci − LDi
. (15)

We can learn that improving detection capability and en-
hancing the credibility of detection results enable detectors
to gain more rewards. This essentially regulate detectors’
behavior and ensures the healthiness of our platform.

VIII. PERFORMANCE EVALUATION

In this section, we evaluate SmartRetro platform with the
following metrics: i) the incentives that detectors can gain
from retrospective detection for IoT systems; ii) the cost that
detectors pay when submitting detection results; iii) the pun-
ishment when misbehaved detectors declare fake reports; iv)
the payout that consumers provide to incentivize decentralized
retrospective detections and automated security feedbacks.

We implement our proposed SmartRetro platform on a
private test blockchain that is built using the current Ethereum
system [25]. This test blockchain runs on Dell PowerEdge
R710 with Ubuntu 14.04, Inter(R) Xeon(R), CPU X5560 @
2.80GHz and 35G memory. The cryptocurrency ether is
employed to evaluate the above metrics of SmartRetro. We use
solidity language [26] of 225 lines to implement SmartRetro
contracts for releasing SIAs and submitting detection reports
(i.e., IRi and FRi). Fig. 3 shows the block time of SmartRetro
platform, where we can learn the average block time is 6.5
seconds. In our SmartRetro implementation, there are 100
consumers, each of which has 5 IoT devices, and 5 IoT
systems, each of which has 2 versions. Besides, each version
of one IoT system has up to 10 potential vulnerabilities.
Therefore, up to 50 vulnerabilities can occur in each con-
sumer’s IoT devices. For an SIA, we set the value of the
inserted incentives, i.e., in, is 0.001∼0.003, 0.002∼0.004,
0.003∼0.005 ether. For the submission of IRi or FRi, 5 ethers
should be required as a deposit, i.e., dpt1 = dpt2 = 5 ethers,
in our implemented SmartRetro. 0.001∼0.003, 0.002∼0.004,
0.003∼0.005 ether. For the submission of IRi or FRi, 5 ethers
should be required as a deposit, i.e., dpt1 = dpt2 = 5 ethers,

Fig. 4. Incentives vs. Detection Capability (DC).

Fig. 5. Incentives vs. DC Proportion.

in our implemented SmartRetro. Besides, some gas should be
consumed to execute SmartRetro contracts that record SIA,
IRi and FRi. In the implementation, 404502, 356890 and
541324 gas are required for running SmartRetro contracts for
SIA, IRi and FRi, respectively. The incentives of detectors
are derived from retrospective detections for IoT systems. By
leveraging SmartRetro contracts, the incentives in inserted in
SIAs will be automatically transformed to the detector Di once
the final detection report FRi is written in the blockchain.

A. Incentives for retrospective detection

We firstly evaluate the obtained incentives for retrospective
detection when there is only one detector in SmartRetro. Fig.
4 shows this relationship between allocated incentives and
detection capability (DC) for different inserted incentives, i.e.,
in in SIAs. We can learn the obtained incentives increase
nearly linearly with detector’s DC. This is the same as our
theoretical analysis for allocated incentives of retrospective
detection (see Section VII). Meanwhile, more inserted incen-
tives in can enables detectors gain more incentives for the
same detection capability. For example, 0.02 ∼ 0.04 and 0.03
∼ 0.05 ether as an incentive in each SIA can make detectors
gain 1.5 and 2 times incentives compared to the case of 0.01
∼ 0.03 ether. Then, we evaluate the incentives of multiple
detectors that simultaneously run in SmartRetro. Fig. 6 shows
the incentive variation for different DC proportions. We can
learn the detectors with higher DC proportion can gain more
incentives. We define incentives proportion as the ratio of
allocated incentives to the total, which has been be evaluated
in Fig. 5. We can learn the amount of inserted incentives in
in SIAs have no effect on incentives proportion.



Fig. 6. Incentives Proportion vs. DC Proportion.

Fig. 7. The balance of detectors for different fake report rates.

B. Punishment for faking detection reports

As described in Section V-B, the detectors will also insert
deposits (i.e., dpt1 and dpt2) in the detection reports (i.e., IRi

and FRi) when reporting their detection results. In particular,
these deposits will not to be refunded if the submitted IRi

and FRi are detected to be forged or plagiarized. Therefore,
SmartRetro enables detectors to be punished when they fake
detection reports for IoT systems.

We adjust the value of fake report rate ϑi to evaluate the
balance of detectors. In SmartRetro, we set 3 ethers is required
as the deposit for detectors to submit IRi or FRi. As Fig. 7
shows, with the increasing ϑi, the balance of detectors will
become less and less. This is because the larger value of ϑi

can cause more punishments for an IoT detector. In particular,
this balance can be the reach break-even point, for example,
at ϑi = 5% for the DC of 0.3. Meanwhile, the detector with
higher DC will have a higher balance for the same ϑi. This
is because the higher DC can help detectors to gain more
incentives for performing retrospective detections under the
same punishments.

C. Payout of consumers

The incentives allocated to detectors in SmartRetro derive
from the submitted in when consumers release SIAs. From
the perspective of consumers, their inserted incentives in SIA
can help to keep a track of security status of IoT systems
by attracting more detectors’ participation, and automatically
obtain security feedback.

We evaluate the payout of consumers when the number of
discovered vulnerabilities changes. In our experiment settings,

Fig. 8. The payout of consumers vs. the number of detected vulnerabilities.

up to 50 vulnerabilities can occur in one consumer’s IoT de-
vices. Fig. 8 shows the experimental result, where consumers
will provide more payouts if more vulnerabilities are identified
in their IoT systems. Meanwhile, when more in is required to
be inserted in SIA, the consumers will have more payouts.

IX. RELATED WORK

In this section, we discuss the related work about retrospec-
tive detection. In particular, three main areas are included:
retrospective detection, incentive schemes, and blockchain-
based security solutions.
Retrospective detection for IoT systems. Retrospective de-
tection can help to identify the newly discovered vulnerabili-
ties and track the security status for IoT systems. CloudAV
[14] introduces a novel solution for malware detection by
enabling distributed endhosts to provide N-version protection
as an in-cloud network service. CloudEyes [6] is presented
as a cloud-based anti-malware system for providing efficient
and reliable security detections for IoT devices, which can
provide retrospective orientations for abnormal data fragments.
Vigilante [15] is an end-to-end security mechanism, which
uses a collaborative worm detection to detect and contain
the Internet worms. Using a self-certifying alert (SCA), the
detectors in Vigilante can retrospectively detect the worms in
the Internet. Liu et al. [5] propose a method of retrospective
detections for malware attacks by cloud computing, which is
mainly based on Portable Executable (PE) format file relation-
ships. Ke et al. [27] propose PPV that can be used to perform
source and path verification for the secure communication
between IoT devices. However, these methods either are based
on centralized detections that fail to obtain a comprehensive
result, or can not provide an automated security feedback.
Incentive schemes in the blockchain. Stephanos et al.,
present IKP platform that can incentivize certificate authorities
(CAs) to behave normally and detectors to report misbehaved
certificates [28]. Andrychowicz et al., illustrate the Bitcoin
system can be used as incentives to make multiparty compu-
tation protocols (MPCs) more secure [29]. Kumaresan et al.,
try to build a model to incentivize correct computations (e.g.,
verifiable computation, secure computation with restricted
leakage, fair secure computation, and noninteractive bounties)
[30]. However, these mechanisms can not fully be adapted



to the area of IoT retrospective detections duo to the limited
resource of IoT devices.
Blockchain-based security enhancements. Boudguiga et al.,
introduce the blockchain-based infrastructure for securing the
update of IoT devices, which relies on some distributed nodes
for validating and checking the innocuousness of released IoT
systems before they are installed by IoT devices [31]. Ali et
al., propose Blockstack, a blockchain-based global naming and
storage system [32]. It separates control and data plane and
introduces more secure verification for naming and storage
without modifying the underlying blockchain. Rodrigues et
al., propose a blockchain-based solution to mitigate DDoS
attacks, which can record the occurrence of attacks through
smart contracts and share detections among domains [33].
Garman et al., employ the blockchain technology to build a
novel anonymous credential that no longer relies on a trusted
credential issuer [34]. They provide a proof for the security of
the proposed decentralized anonymous credential system that
enables strong privacy guarantees.

X. CONCLUSION

In this paper, we propose a blockchain-based incentive
platform, called SmartRetro, to motivate retrospective detec-
tions for IoT systems. SmartRetro supports and incentivizes
distributed detections by attracting more detectors’ participa-
tion, which is conducive to construct a more comprehensive
report. Based on the detection contribution, each detector can
automatically gain incentives that eliminate the need of a
decentralized authority. Meanwhile, SmartRetro can keep a
track of security status of IoT systems and identify which IoT
devices have been affected. In particular, an automated security
feedback can be delivered to the corresponding consumers
when a new vulnerability is discovered. We make the security
analysis that demonstrates SmartRetro can benefit to build a
higher security guarantee under retrospective detections for
IoT systems. We implement SmartRetro in Ethereum and
evaluate the performance of SmartRetro. The experimental
results show the detectors and consumers in SmartRetro can
be beneficial financially and safely, respectively.
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