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a b s t r a c t 

The current Internet is vulnerable to various attacks, e.g., source spoofing and flow hijacking attacks,

which are incurred by misconfigurations or attacks. Either users or network operators are unable to eas- 

ily localize these faults. Existing fault localization mechanisms can detect such attacks under an assump- 

tion that localization is performed upon reliable communication channels. Unfortunately, the assumption

does not always hold. The forwarding paths of localization are not always reliable. Packets are usually

dropped for some reasons. In particular, adversaries can interfere with fault localization by maliciously

dropping packets. In this paper, we relax the assumption and propose a robust data-plane fault local- 

ization protocol named RFL that can localize faults and achieve source authenticity and path compliance

even if communication channels in the network are not reliable. RFL samples and verifies packets in each

network entity so that the packet source can efficiently localize faults of packet forwarding by verifying

the sampled packets. By leveraging packet acknowledgment, packet sampling based fault localization is

not impacted by packet loss in the communication channels. In particular, RFL leverages a symmetric

key distribution scheme to implement robust key distribution among different entities, which ensures

that packet sources can always correctly fresh their keys to perform correct localization. Our security and

theoretical analysis demonstrates the robustness of RFL protocol. We implement the RFL prototype on

Click routers. The experiment results with the prototype demonstrate that RFL achieves more than 99.5%

localization accuracy while incurring only 10% throughput degradation.

© 2019 Published by Elsevier B.V.
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1. Introduction

Reliable and secure data delivery in networks is highly desir-

able, especially for security-critical services enabled in a set of ad-

ministrative domains (e.g., campuses, enterprises ISP, IXP and dat-

acenter networks) [1] , which ensures correct packet delivery along

desired forwarding paths and with authentic origins. However, the

current design of the Internet does not have such a property and

always suffers from various attacks, e.g., packet source spoofing,

traffic hijacking [2] , and even DDoS attacks [3,4] . It is difficult to

identify such attacks in networks in real time. IETF and ITU-T all
∗ Corresponding author.

E-mail addresses: wub14@mails.tsinghua.edu.cn (B. Wu), xuke@tsinghua.edu.cn

(K. Xu), qi.li@sz.tsinghua.edu.cn (Q. Li), liubingyang@huawei.com (B.

Liu), renshoushou@huawei.com (S. Ren), y-f14@tsinghua.org.cn (F. Yang),

shenmeng@bit.edu.cn (M. Shen), kuiren@zju.edu.cn (K. Ren).

o  

b  

t  

c  

i  

c  

https://doi.org/10.1016/j.comnet.2019.04.023

1389-1286/© 2019 Published by Elsevier B.V.
llustrate the higher requirements for fault indication and localiza-

ion, especially on a service provider network [5,6] . Existing trou-

leshooting tools, e.g., ping and traceroute, cannot effectively de-

ect and localize the faults incurred by attacks, either. Thus, it is

ecessary to develop a data-plane fault localization to deter attack-

rs and ensure correct packet forwarding. In order to address this

ssue, end-to-end source authentication [7,8] and path validation

9–11] have been extensively studied. They verify packet origins

nd forwarding paths by embedding cryptographic tags (or mark-

ngs) to localize faults in packet forwarding. However, they assume

hat the packets used to verify markings can be correctly delivered

ver reliable communication channels. In fact, it is not always true

ecause the channels to deliver packets are not always reliable due

o attacks or network failures [12–14] . In particular , an adversary

an drop the localization packets and interfere with the fault local-

zation. Therefore, none of the existing schemes can accurately lo-

alize faults in unreliable networks without the help of centralized
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Fig. 1. Adversary model where R 2 is the misbehaved entity and the purposed for- 

warding path is � = 〈 R 1 , R 2 , R 3 , R 4 , R 5 〉 between S and D . 
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1 Actually, traffic hijacking is one of the instantiations of forwarding path incon- 

sistency attack. 
ervers. For example, OPT [2] and OSV [15] perform source authen-

ication and path validation by verifying received packets. With-

ut packet acknowledgment from intermediate entities and packet

eceivers, the packet sources cannot correctly localize the misbe-

aved entities. Existing fault localization mechanisms [13,16] can-

ot localize malicious entities if the localization packets are deliv-

red over unreliable transmission channels. Meanwhile, centralized

ocalization mechanisms [17,18] can only identify attacks and lo-

alize faults by leveraging central controllers, which is not easy to

chieve in practice. 

Therefore, the robust data-plane fault localization that can tol-

rate unreliable communication channels is not well addressed. We

bserve that source authentication and path validation is still an

ffective approach to localize faults in networks. However, it is

till challenging to realize accurate and efficient fault localization

f packets are delivered on unreliable channels. As we mentioned

bove, traditional fault localization cannot be tolerant to unreliable

ommunication channels. Specifically, they are unable to tolerate

nterference from various adversaries, e.g., packet dropping, mod-

fication, and packet hijacking, which aim to bypass localization.

oreover, fault localization should not incur significant communi-

ation overhead in networks so that it will not significantly impact

he performance of packet forwarding. 

In this paper, we propose RFL, a robust fault localization, which

nsures source authenticity and forwarding path compliance, even

f localization is performed under unreliable communication chan-

els. RFL leverages a packet marking mechanism to sample and

erify the packets, which allows packet sources to efficiently ac-

nowledge and verify the sent packets. In particular, it enables

obust key sharing among different entities so that they can al-

ays have the correct keys to perform localization. RFL main-

ains a timer for each entity to ensure the robustness of localiza-

ion, which allows them to request correct packets and drop unso-

icited packets if the packets are dropped, modified, and hijacked

uring secret key distribution and packet forwarding verification.

hereby, each entity can effectively perform source and path veri-

cation with correct keys. Moreover, RFL uses a probabilistic sam-

ling function to sample and verify packets at each hop, which ef-

ciently verifies packets and localizes faults while significantly re-

ucing the overhead incurred by verification. We qualitatively an-

lyze the overhead of RFL. The theoretical analysis shows RFL in-

roduces small overhead. For example, it only incurs around 6.03%

ommunication overhead, which significantly outperforms existing

chemes. We prototype RFL upon Click Modular Router and use ex-

erimental results to demonstrate the performance of RFL. The ex-

erimental results show that RFL achieves more than 99.5% local-

zation accuracy, and obtains more than 90% throughput and 85%

oodput. Therefore, RFL provides robust fault localization, while in-

urring negligible performance overhead. 

The contributions of this paper are four-fold: 

• We propose RFL, a scheme ensures fault localization for reliable

data delivery, which tolerates interference from unreliable com-

munication channels and does not require the help of central

servers. 

• We develop a robust secret key sharing scheme (RSKey) that

achieves secure and robust symmetric key setup and distribu-

tion over unreliable communication channels. 

• We design algorithms to verify source authenticity and cor-

rect packet forwarding paths, which can defend against various

source spoofing and traffic hijacking attacks. 

• We perform the security and theoretical analysis of RFL, and

use real experiment upon RFL prototype to demonstrate the

feasibility of RFL. 

Compared with our previous paper [19] , we propose an im-

roved fault localization protocol such that it can tolerate unreli-
ble communication channels. In particular, it resists interferences

rom adversaries, e.g., modifying, dropping and redirecting local-

zation packets. Moreover, we develop a robust symmetric key

istribution scheme called RSKey to ensure secure key sharing

mong entities even under reliable communication channels. We

lso evaluate the performance of RSKey. We analyze the fault lo-

alization accuracy and the analysis results are consistent with our

xperimental results. 

The remainder of this paper is organized as follows: in

ection 2 , we present our problem statement, including the adver-

ary model and design goals. In Section 3 , a high-level overview of

FL protocol is provided. In Sections 4, 5 and 6 , we introduce the

esign details of RFL protocol, including robust symmetric key dis-

ribution, source and path verification, and fault localization. We

espectively make some security analysis and theoretical analysis

f RFL protocol in Sections 7 and 8 . In Section 9 , the experimental

erformance and evaluation are presented. In Section 10 , we dis-

uss a number of issues related to RFL. We cover the related work

n Section 11 . Finally, we conclude this paper in Section 12 . 

. Problem statement 

In this section, we present the adversary model and design

oals. In this paper, we consider fault localization for end-to-end

ommunication in multi-hop networks, where packets are deliv-

red through a set of intermediate routers R i (1 ≤ i ≤n ) between

 source S and a destination D , where n is the path length (not

ncluding S and D ), and S , D and R i are network entities in a net-

ork. Under an unreliable communication channel, a network en-

ity may drop, modify, and hijack forwarding packets, which is usu-

lly incurred by attacks or network failures (e.g., misconfiguration

nd link failure). Both compromised and misconfigured entities are

reated as misbehaved entities because they incur packet forward-

ng anomalies. 

.1. Adversary model 

In this paper, we focus on fault localization by performing

acket delivery verification, which ensures packet source authen-

icity and correct packet forwarding. Intuitively, Fig. 1 shows ex-

mples of attacks. We assume R 2 is the misbehaved entity, and

= 〈 R 1 , R 2 , R 3 , R 4 , R 5 〉 , where � is the desired forwarding path.

n this case, R 2 can modify source address of IP packets originating

rom S for launching source spoofing attack. Besides, R 2 can also

ake the packets delivered along a path that differs from � , e.g.,

 R 2 , R 6 , R 3 〉 , 〈 R 2 , R 6 , R 7 , R 4 〉 and 〈 R 2 , R 4 〉 for the purpose of path

nconsistency 1 attack. Moreover, if more than one misbehaved en-

ities occur on � , the packets can be transmitted along unordered

ntities, e.g., 〈 R 2 , R 4 , R 3 , R 5 〉 . 
As packets may be forwarded on unreliable communication

hannels, in particular, adversaries may interfere with fault local-

zation, it is difficult to identify misbehaved entities. The misbe-

aved entity can launch various sophisticated attacks to evade to
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be localized. In details, the attacks can be classified into two cate-

gories. Firstly, the misbehaved entity can destroy or interfere with

fault localization by unexpectedly discarding, modifying and redi-

recting some messages used to localize the fault. For example,

when S tries to establish symmetric keys with intermediate en-

tities on � , R 2 can drop request packets (from S to R i ) or ack pack-

ets (from R i to S ) to destroy this procedure of key distribution; or

when R 3 reports ack packet to S , R 2 can modify this packet data

to interfere with fault localization. Secondly, the misbehaved en-

tity can frame benign entities of their unrealistic misbehavior by

launching frame attacks. For example, when receiving a packet, R 2 
greatly reduces TTL value to 2, causing an illusion that R 4 is re-

garded as the fault due to its dropping packets. 

2.2. Design goals 

To defend against the above adversary model, the following de-

sired properties should be satisfied in fault localization. 

2.2.1. Source and path verification 

Each entity on � can perform source and path verification.

Once source spoofing or path inconsistency occurs, the entity can

identify and filter the unreliable packets. 

2.2.2. High accuracy of fault localization 

The packet source can effectively localize the fault with a high

localization accuracy if any error occurs during symmetric key dis-

tribution or packet forwarding verification. 

2.2.3. Robustness and lightweight 

The fault localization can be robust, which no longer relies

on reliable communication channels. Each entity is expectedly

lightweight that does not store symmetric keys shared with other

network entities. 

In this paper, we focus on the data-plane fault localization by

verifying source authenticity and path compliance. Considering the

unreliable communication channels, we hope a robust fault local-

ization scheme should be proposed, especially for the administra-

tive domains that may be campus, ISP, datacenter or IXP networks.

Then, it can be likely to be extended as a solution for fault local-

ization in the general Internet. We will treat the detected entity

and its neighbor as misbehaved entities because it is impossible

to achieve the accuracy to a concrete entity of fault localization

as the research [20] describes. As the current Internet, including

network devices and end-hosts, are all unreliable, we hope the In-

ternet users that try to pursue a higher security requirement for

their outbound traffic should have the privilege to detect and lo-

calize the fault in this paper. Besides, this fault localization can be

suitable for a set of various administrative domains (e.g., campus,

ISP, datacenter and IXP networks) by making two pairs of van-

tage points periodically localize the offending routing entity. We

assume end hosts ( S and D ) are trusted because it is meaningless

for a malicious source to detect faked packet source and wrong

forwarding path. Also, S should know the packet forwarding path

� , which can be learned by the existing control-data plane rout-

ing protocols [21,22] , or it can be achieved by source routing [23] .

Meanwhile, each entity on � has long-lived public and private

keys, and the public keys can be retrieved and verified by others,

which is similar to existing secure routing protocols [2,13,16] . For

an administrative domain, this can be achieved more easily under

the centralized security management [17] . 

3. Overview of RFL 

We now present an overview of RFL protocol that can ac-

curately localize faults even on unreliable transmission channels
n the presence of an adversary, e.g., dropping packets for by-

assing localization. Similar to existing fault localization mecha-

isms [13,16,18] , RFL performs fault localization based on various

onsecutive epochs that vary with different end-to-end communi-

ation sessions and different phases of the sessions. In each ses-

ion, the epoch value will be updated after S sends a number of

ackets to D or a period of time interval expires. For an adminis-

rative domain (e.g., campus, ISP, datacenter and IXP network), the

nd-hosts ( S and D ) can also be the trusted pairs that are selected

or monitoring network traffic and localizing the fault. RFL allows

ach entity to perform hop-by-hop verification during each epoch.

n particular, RFL requires each entity to maintain a timer such that

he entity can acknowledge the verification results if the timer ex-

ires, which ensures tolerance of unreliable transmission channels.

Fig. 2 shows the workflow of RFL protocol. At the beginning, RFL

nables the source S to establish symmetric keys with all the other

ntities on � . Using the symmetric keys, the packets verification

nd fault localization will then be carried out. Concretely, before

ach packet’s departure, S firstly initializes RFL packets. Each en-

ity will verify and probabilistically sample the packets on receiv-

ng them. At the end of each epoch, S will perform fault localiza-

ion according to the sampling information from entities. 

.1. Robust symmetric key distribution 

RFL introduces a robust symmetric key distribution called

SKey to guarantee secure key establishment and allocation be-

ween S and network entities in a forwarding path. As shown in

ig. 2 , S sends a request packet (denoted by ReqKey) along � to-

ards D . Each entity computes and temporarily stores the sym-

etric key. Upon receiving ReqKey, D initializes and sends an ack

acket (denoted by AckKey) back to S , which will gradually record

he encrypted symmetric keys and signatures of each entity on �

op by hop during AckKey delivery to S . Based on the received

ckKey, S decrypts and obtains symmetric keys. 

.2. Lightweight source and path verification 

After obtaining the symmetric keys, S pre-computes a marking

or each entity on � before sending out a data packet. All mark-

ngs are inserted into a new header called RFL header between IP

eader and TCP header. During the packet transmission, each en-

ity R i performs packet forwarding verification by recalculating its

wn marking using symmetric key K S,R i 
once receiving packets, and

omparing it with the inserted one on RFL header. Only these two

alues are equal, can R i forward the packet to downstream enti-

ies. Note that each intermediate entity R i does not require to store

ymmetric keys for each flow, which introduces lightweight RFL

outers. 

.3. Robust fault localization 

RFL enables entities to sample packets for fault localization. S
ses the packet sampling information of each entity on � to local-

ze the fault. Our developed probabilistic packet sampling function

determines which entity will sample this packet in one epoch.

he packet sampling results of each entity can be only predicted by

 , but unknowable to others. Concretely, S uses F to learn which

ntities will sample this packet. Upon receiving a packet, the en-

ities ( R i and D ) perform F to sample this packet and store the

esults in a bloom filter. At the end of each epoch, S sends a re-

uest probing packet, called ReqProb, to ask all entities on � for

heir sampling results of this epoch. The ack message (denoted by

ckProb) carrying the encrypted sampling results will be delivered

rom D to S . Thereby, based on the received AckProb, S determines

here the fault occurs. 
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Fig. 2. The workflow of RFL protocol for the source ( S ), intermediate entities ( R i ) and the destination ( D ), where ReqKey and AckKey (ReqProb and AckProb) respectively 

represent the request and acknowledgment messages for secret key distribution (fault localization) probing. 
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However, it is challenging to implement RFL because of the fol-

owing issues: 

.4. Corrupting symmetric key distribution 

The symmetric key is an important guarantee to correctly per-

orm packet forwarding verification and fault localization. If an

dversary maliciously corrupts symmetric key distribution (e.g.,

odify, drop and redirect keys). RFL will not be able to perform

ocalization correctly. 

.5. Heavyweight verification overhead 

To verify packet forwarding, each intermediate entity may suf-

er high verification overhead, especially the overhead to store

arious keys for verification. Thus, it is necessary to design a veri-

cation mechanism that does not require storing keys in the inter-

ediate entities. 

.6. Corrupting fault localization 

An adversary can interfere with the transmission of request or

ck packet to corrupt RFL. For example, a misbehaved entity does

ot correctly respond S with its symmetric key or packet sampling

esults, incurring a failure of fault localization. Also, the misbe-

aved entity can also launch frame attacks to corrupt RFL, which

an trigger benign entities to drop packets by mistake, e.g., because

f the TTL values manipulated by the misbehaved entity. 

. Robust symmetric key distribution 

In this section, we present our proposed RSKey, a robust sym-

etric key sharing between S (or a vantage entity within an ad-

inistrative domain) and each entity on � , which allows different

ntities to obtain correct keys so that it can perform correct lo-

alization. Similar to DRKey [2] , RSKey provides the stateless oper-

tion on routers and enables each router not to store symmetric

eys. More especially, it is tolerant to unreliable communication

hannels during symmetric key distribution, which does not rely

n routing entities to work normally. RSKey scheme offers robust-

ess against the interference of misbehaved entities and enables S

o localize the fault even facing an offending entity that may be

nder attack or behave malevolently. 
.1. ReqKey transmission from S to D 

To achieve sharing symmetric keys with other entities, RSKey

nables the request packet i.e., ReqKey, to be transmitted from S
o D , as Algorithm 1 shows. S firstly initializes ReqKey packet and

lgorithm 1 ReqKey Transmission from S to D. 

1: function ReqKey Initialization by S ( ) 

2: Obtain : �= { S, R 1 , . . . R n , D } , PubK = { K 1 , . . . K n } 

3: Measure : T start 

4: Compute : 

5: SessionID = H( K S || K D || T start ) 

6: Sign S = Sign 
K −1 

S 
( H( D || �SessionID || PubK) 

7: ReqKey = { � , SessionID , PubK , Sign S } 

8: Start timer T S 
9: end function 

10: function ReqKey Transmission from S to R n ( ) 

11: Forward ReqKey from S to each router R i along �

12: Check Sign S 
13: Record TTL value ttl r 

i 
of ReqKey 

14: Compute and temporarily store K S,R i 
= PRF LSI i 

( SessionID || S) 

15: Start timer T i 
16: end function 

17: function ReqKey Transmission from R n to D ( ) 

18: Forward ReqKey from R n to D 
19: Check Sign S 

0: Record TTL value ttl r 
d 

of ReqKey 

21: Compute K S,D = PRF LSI d 
( SessionID || S) 

2: end function 

elivers it to D through � . ReqKey contains � , session identifier

essionID , the public key set PubK of all entities on � and S ’s sig-

ature Sign S , as Eq. (1) shows. 

eqKey = { �, SessionID , PubK , Sign S } , (1)

here SessionID is the session identifier that is the hash over the

ublic keys of end-hosts ( K S and K D ) and the start time of this ses-

ion ( T start ). It can be computed by the following equation: 

essionID = H( K S || K D || T start ) . (2)

s Eq. (3) shows, Sign S uses the destination address ( D ) as one of

he inputs, contributing to defending against redirection or hijack-

ng attack by modifying the destination address of ReqKey packet.



162 B. Wu, K. Xu and Q. Li et al. / Computer Networks 158 (2019) 158–174 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w  

k  

c  

I

 

K  

s  

R  

n  

b  

t  

w  

q  

k  

l  

T  

A  

a  

o  

s  

n  

4

 

o  

i  

A

c  

c  

d  

e  

u  

t  

k

L  

 

w  

s

L  

T  

b  

A  

a  

f  

p  

b  

t

Certainly, Sign S is also keyed with K 

- 1 
S 

that makes ReqKey away

from source spoofing. 

Sign S = Sign 

K - 1 S 
H( D || �|| SessionID || PubK ) . (3)

In addition to checking Sign S , each intermediate entity R i cre-

ates and temporarily stores the symmetric key K S,R i 
, which is cal-

culated using pseudo-random function (PRF) keyed by local secret

information ( LSI i ), only known by R i (see Eq. (4) ). 

K S , R i = PRF LSI i ( SessionID || S ) . (4)

R i starts a timer T i when ReqKey is delivered to the downstream

entity, where T i is a timer maintained on R i . It starts when ReqKey

arrives and expires after a certain timeout, called timer threshold

that can be obtained by round-trip time (RTT). The created key

K S,R i 
is temporarily stored until AckKey comes or T i expires. More

considerately, RSKey makes each entity temporarily record the TTL

value ttl r 
i 

when receiving ReqKey, which helps to avoid TTL attack

(detailed shortly). 

4.2. AckKey transmission from D to S 

To reply ReqKey, AckKey is initialized by D and then sent back

through intermediate entities towards S , whose construction is as

Eq. (5) shows. 

AckKey = { ReqKey , EncK S,D , SignK D } . (5)

EncK S,D and SignK D are the encrypted K S , D and D ’s signature, re-

spectively (detailed in Algorithm 2 ). 

Algorithm 2 AckKey Transmission from D to S. 

1: function AckKey Initialization by D ( ) 

2: Compute : 

3: EncK S,D = Enc K S ( K S,D ), ttl d = ttl r 
d 

4: SignK D = Sign 
K −1 

D 
( H( K S || ttl d || ReqKey || EncK S,D )) 

5: AckKey = { ReqKey , EncK S,D , SignK D } 

6: end function 

7: function AckKey Transmission from D to S ( ) 

8: Forward AckKey from D to each router R i along �

9: if T i < timer threshold then 

10: Check SignK i+1 and record TTL value ttl a 
i 

of AckKey 

11: Compute: 

12: Enck S,R i 
= Enc K S ( K S,R i 

), ttl i = ttl r 
i 

+ ttl a 
i 

13: EncKset i = { EncK S,R i 
, . . . , EncK S,D } 

14: SignKset i = { SignK i+1 , . . . , SignK D } 

15: SignK R i 
= Sign 

K −1 
i 

( H( K S || ttl i || ReqKey || EncKset i || SignKset i )) 

16: AckKey = { ReqKey , EncKset i , SignKset i , SignK R i 
} 

17: else 

18: Compute: 

19: Enck S,R i 
= Enc K S ( K S,R i 

) 

20: SignK R i 
= Sign 

K −1 
i 

( H( K S || ttl i || ReqKey || EncK S,R i 
)) 

21: AckKey = { ReqKey , EncK S,R i 
, SignK R i 

} 

22: end if 

23: Forward AckKey from R 1 to S 

24: end function 

During AckKey transmission, each entity adds its encrypted

symmetric key EncK S,R i 
and signature SignK R i 

into AckKey. Note

that when computing the signature SignK R i 
, the encrypted sym-

metric keys and signatures of downstream entities (i.e., R i+ 1 , . . . ,

R D ) will also be added as the input. In this case, each router R i 
only checks SignK R i+ 1 

of its 1-hop downstream R i+ 1 , which can also

defend against frame attacks. Therefore, AckKey has the following

construction ( Eq. (6) ) when it arrives at R i : 

AckKey = { ReqKey , EncKset i , SignKset i , SignK S , R i 
} , (6)
here EncKset i and SignKset i are the sets of encrypted symmetric

eys and signatures, respectively. Thus, AckKey can record the en-

rypted symmetric keys of all entities when it arrives at S , as case

 in Fig. 3 shows. 

To deal with the malicious discarding of either ReqKey or Ack-

ey packet by the misbehaved entity, each entity (including S )
tarts the timer T i when ReqKey passes through. If T i expires, i.e.,

 i does not receive AckKey within timer threshold, R i initializes a

ew AckKey, which contains EncK S,K R i 
and Sign K R i 

. Thus, if any mis-

ehaved entity drops ReqKey or AckKey, its upstream entity close

o S will forward its AckKey to S . This is as case II in Fig. 3 shows,

here the misbehaved entity R 3 can modify, drop and redirect Re-

Key or AckKey packet for interfering with S obtaining symmetric

eys from all intermediate entities. In this case, S can achieve fault

ocalization to identify the misbehaved entity (described shortly).

o avoid TTL attack, we use TTL values of both received ReqKey and

ckKey as the input to compute SignK R i 
. When AckKey is verified

t each hop, R i obtains purposed TTL value of ReqKey and AckKey

f other entities based on � , and then use them to check others’

ignatures. If the misbehaved entity launches TTL attack, the sig-

atures of its downstream entities will not be verified successfully.

.3. Symmetric key acquisition 

The source S needs to retrieve the symmetric keys shared with

ther entities on � , which can be used to perform packet forward-

ng verification and fault localization (see Algorithm 3 ). In RFL, S

lgorithm 3 Symmetric Key retrieval by S. 

1: function Symmetric Key Retrival by S ( ) 

2: Require : AckKey 

3: Compute : 

4: if T S < timer threshold then 

5: for 1 ≤ i ≤n+1 do 

6: if Check SignK R i 
then 

7: K S,R i 
= Dec 

K −1 
S 

( EncK S,R i 
) 

8: else Locate 〈 R i-1 , R i 〉 as the fault. 

9: end if 

10: end for 

11: else Locate R 1 as the fault. 

12: end if 

13: end function 

an obtain symmetric keys from the received AckKey packet. Con-

retely, once receiving AckKey, S firstly checks the signatures and

ecrypts the encrypted keys to obtain symmetric keys. For each

ntity from R 1 to D on � , if its signature is verified successfully

sing its public key, S can obtain the symmetric key by decrypting

he encrypted key using S ’s private key. In this way, the symmetric

ey set (denoted by L ) can be obtained: 

 = 〈 K S , R 1 , K S , R 2 , . . . , K S , D 〉 . (7)

Obviously, as there may be misbehaved entities to interfere

ith the transmission of ReqKey and AckKey, S may only gain the

ubset (denoted by L 

′ ) of L , i.e., L 

′ ⊆ L : 

 

′ = 〈 K S , R 1 , K S , R 2 , . . . , K S , R m 〉 . (8)

hen S affirms confidently there is at least one misbehaved entity

etween R m 

and R m+ 1 on � . Another case is that S never receives

ckKey (i) before T S expires, which illustrates R 1 did not initialize

nd send AckKey 1 back. In this case, R 1 will be localized as the

ault. With the function of fault localization, our proposed RSKey

rovides more robust symmetric key distribution, where the mis-

ehaved entity has to behave normally for bypassing fault localiza-

ion. 
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Fig. 3. RSKey can ensure the robustness of symmetric keys distribution even facing unreliable communication channels. The red rectangle represents the ack of each network 

entity. Case I shows the AckKey packet can be securely delivered to S , while case II depicts the misbehaved entity R 3 can interfere with ReqKey or AckKey packet transmission. 
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2 In fact, integrity protection is crucial for the design and deployment of any net- 

work protocols and architecture [27] . 
. Lightweight source and path verification 

In this section, we present lightweight source and path verifi-

ation to detect packet forwarding anomalies by verifying packets

orwarding at different entities, which does not require retrieving

nd storing keys in intermediate entities for verification. RFL allows

 (or a vantage entity) to initialize RFL protocol by using the keys

btained during the key distribution phase such that different in-

ermediate entities can perform packet verification. It uses the keys

o pre-compute markings for each entity on � and inserts these

arkings into packets. During the packet delivery towards D , each

ntity dynamically recomputes the secret key and then verifies the

acket by recalculating their own marking. 

.1. RFL protocol initialization 

RFL protocol is initialized to make markings for each entity

alculated and inserted in the packet header. RFL enables S to

ompute the markings using symmetric keys for all entities, and

enerates a new packet header called RFL header to include these

arkings. Inspired by some current secure network architectures

e.g., HIP [24,25] and DONA [26] ), the RFL header locates at 3.5

ayer between IP header and TCP header, which is conducive to

op-by-hop packet verification. Before sending packets, S initial-

zes RFL headers with the following structure: 

FL header = { SessionID , epoch , PacketID , M Path } . (9)

acketID is the unique packet identifier, calculated based on

q. (10) : 

acketID = H ( SessionID || epoch || IP cst ) , (10)

here IP cst represents the constant portion of an IP packet (exclud-

ng variable fields, such as TTL and checksum) during forwarding.

 Path (in Eq. (9) ) denotes the pre-computed marking sequence for

ater verification at each entity, as Eq. (11) shows. 

 Path = 〈 M 1 , M 2 , . . . , M n , M D 〉 , (11) 

here M i is pre-calculated for each entity using PRF keyed with

hared symmetric keys, as Eq. (12) shows, where M 

in 
cst is the splice

f constant input: SessionID || epoch || PacketID || S || D . Adding source

nd destination address (denoted by S and D ) as the input can also

elp to defend against both source spoofing and traffic redirection

hat are caused by modifying the source and the destination ad-

ress of an IP packet, respectively. 

In Eq. (12) , TTL i and TTL D respectively denote the purposed TTL

alue when the packet arrives at R i and D . The marking is pre-

omputed for each entity on the reverse � . More especially, if

here is a misbehaved routing entity on the forwarding path, it

an maliciously modify the inserted markings that are used for

acket verification at downstream entities. This can bring illegal

acket losses when the packet is delivered to downstream enti-

ies, who will be localized as the fault. In order to address this
ssue, RFL supports the integrity protection for RFL header, espe-

ially for inserted markings, 2 i.e., M path . In Eq. (12) , the markings

f downstream entities are firstly computed and R i ’s marking M i 

s pre-computed by using its downstream entities markings as in-

uts. Therefore, if an intermediate entity maliciously modifies the

arking(s) of downstream entities, this malicious entities’ next

op(s) will drop the delivered packet(s), preventing frame attacks

aused by malicious modification of the pre-inserted markings on

FL header. 

 D = PRF K S,D 
( M 

in 
cst || TTL D || R n ) . 

M i = PRF K S,R i 
( M 

in 
cst || TTL i || R i- 1 || M i+ 1 || . . . || M n || M D ) . (12) 

The fields SessionID, epoch and PacketID in RFL header respec-

ively occupies 128 bits, 16 bits and 128 bits. Each marking occu-

ies 32 bits, whose rationality analysis is shown in Section 8 . 

.2. Source and path verification 

RFL allows each intermediate entity to verify packet source and

orwarding path by verifying the markings encoded in RFL header.

ote that RFL enables each entity on � not to store any symmet-

ic key, which can be calculated according to Eq. (4) . This makes

ntities lightweight and can protect the state of exhaustion (e.g.,

oS) attack. During transmission, the packet is verified for its ori-

in and forwarding path at each hop. Concretely, each entity uses

q. (12) to recalculate the marking M 

′ 
i 
. If the computed M 

′ 
i 

equals

o M i in RFL header, it illustrates that the source and the forward-

ng path are all correct up to the current entity. Else, i.e., the ver-

fication fails, the packet will be dropped at this hop. This verifi-

ation by each entity for the received packet can also prevent the

tate exhaustion attacks on D . 

. Robust fault localization 

In this section, we present a robust fault localization that can

ccurately localize faults even if an adversary interferes with the

ocalization. RFL allows each entity to probabilistically sample for-

arding packets and send sampling results to S (or a vantage

ntity within administrative domains). By using a positive-ratio-

ound fault localization algorithm, S can efficiently and accurately

ocalize the fault, which also tolerates unreliable communication

hannels. For every epoch, S respectively establishes one bloom

lter [28] for each entity. We define B 

e 
i 

and B 

e 
D 

as the bloom fil-

er with L -bits length for the packet sampling on R i and D for an

poch, which is established by S . 
Before the departure of each packet, S uses probabilistic packet

ampling function F (detailed below) to learn which entity will
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3 Actually, many forwarding paths in today’s Internet are asymmetric [29] , which 

will be discussed in Section 10 . 
sample this packet. For example, if R η will sample this packet ac-

cording to F , S samples this packet in B 

e 
η . In other words, F de-

termines the packet sampling on R i , which is only known by S and

R i . Concretely, with symmetric keys and PacketID in RFL header, S
computes and gains the 128-bit hash value: 

H sampling = H ( K S , R i || PacketID ) . (13)

We define ω as the number of selected bottom bits of H sampling .

If ω binaries are all equal to 0, i.e., no 1 appears in this lower ω
bits binary, this packet will be sampled on the corresponding en-

tity. In this case, ρ-th binary in the corresponding B 

e 
i 

or B 

e 
D 

will

be switched from 0 to 1, where ρ = PRF ( H sampling ) , 0 ≤ ρ < L . For

different packets that have been sampled, RFL might result in a

same value of ρ , which is called sampling collision in this paper.

To address this issue, RFL enables the entity to switch the next bit,

i.e., ( ρ+1)-th bit, from 0 to 1 until no sampling collision occurs. At

the same time, each entity establishes two local bloom filters, one

( B 

e 
R i 

or B 

e 
d 
) for the current epoch and another ( B 

e+ 1 
R i 

or B 

e+ 1 
d 

) for

the next. Note that the storage overhead is analyzed in Section 8 .

Then packet sampling is carried out at each entity according to F ,

where the result is stored in the local bloom filter and can only be

known by the corresponding entity and S . 
At the end of each epoch, S tries to obtain the packet sampling

information of all entities for localizing the fault by sending a re-

quest packet (ReqProb), which is initialized as Algorithm 4 shows.

Algorithm 4 ReqProb and AckProb Initialization. 

1: function ReqProb Initialization by S ( ) 
2: Require : � , SessionID , epoch , S , D 

3: Compute : 

4: M 

req 
cst = �|| SessionID || epoch || S|| D 

5: M 

req 
D 

= PRF K S,D 
( M 

req 
cst || TTL D || R n ) 

6: for i from n to 1 do 

7: M 

req 
i 

= PRF K S,D 
( M 

req 
cst || TTL i || R i −1 || M 

req 
i +1 

|| . . . || M 

req 
n || M 

req 
D 

) 

8: end for 

9: M 

req 
Path 

= 〈 M 

req 
1 

, . . . , M 

req 
n , M 

req 
D 

〉 
10: ReqProb = { � , SessionID , epoch , M 

req 
Path 

} 

11: S delivers ReqProb to intermediate entities towards D . 
12: end function 

13: function AckProb Initialization by D ( ) 
14: Require : � , SessionID , epoch , B 

e 
d 
, K S , K 

- 1 
D 

15: Compute : 

16: EncB 

e 
d 

= Enc K S,D 
(B 

e 
d 
) 

17: Sign B 

e 
d 

= Sign 
K -1 

D 
( H( K S || �|| SessionID || epoch || TTL ack 

d 
|| EncB 

e 
d 
)) 

18: AckProb = { � , SessionID , epoch , EncB 

e 
d 
, Sign B 

e 
d 
} 

19: Forwarding : 

20: D delivers AckProb to intermediate entities towards S . 
21: end function 

On receiving ReqProb, R i firstly performs source and path verifi-

cation via recomputing M 

req 
i 

, the pre-inserted marking for R i in

ReqProb. Then R i starts a timer T i and forwards ReqProb to the

downstream entity towards D . When receiving ReqProb, D initial-

izes a probing ack packet (AckProb) according to Algorithm 4 , in

which the encrypted B 

e 
d 

and D ’s signature are all added. Then, D
sends AckProb back through entities on � until it arrives at S .
During AckProb transmission, each entity R i firstly checks all sig-

natures in AckProb. If no error occurs, R i inserts its encrypted B 

e 
R i 

and signature in AckProb. Thus, the architecture of AckProb is as

Eq. (14) shows when it arrives at R i and is overwritten by R i . 

AckProb = { �, SessionID , epoch , Enc B 

e 
d , Sign B 

e 
d 

Enc B 

e 
R n 

, Sign B 

e 
R n 

, . . . , Enc B 

e 
R i 

, Sign B 

e 
R i 
} , (14)

where Sign B 

e 
R i 

uses all encrypted bloom filters of entities from R i to

D as the calculation input, as shown in Eq. (15) , to prevent the pre-
iously encrypted bloom filters from malicious modification and

voids frame attack. If the forwarding path is asymmetric, 3 R i will

reate AckProb i to send its sampling information back to S when

 i on R i expires. On receiving AckProb i , R j (0 < j < i ) will also check

he signatures and add its B 

e 
R j 

and Sign B 

e 
R j 

to AckProb i . 

ign B 

e 
R i 

= Sign 

K - 1 i 
( H ( K S || �|| SessionID || epoch 

|| TTL ack 
i || Enc B 

e 
d || Enc B 

e 
R n 

|| . . . || Enc B 

e 
R i 
)) . (15)

.1. Positive-ratio-bound fault localization 

Targeting at the data-plane fault localization, RFL tries to iden-

ify the difference between the actual and pre-computed sampling

esults for determining which routing entity is misbehaved. This

s because S shares symmetric keys with intermediate routing en-

ities, which unify the way for pre-computed and actual packet

ampling. In order to express this difference and easily localize the

ault, we introduce positive ratio denoted by P i and P D for R i and

 , which illustrates the probability that the corresponding entity

s misbehaved. Meanwhile, considering the possibility of a natural

oss of a link or routing entity, we introduce positive ratio threshold

denoted by ζ ) that illustrates the probability of abnormal sam-

ling only caused by packet natural loss. When P i is larger than ζ ,

nd P 1 , . . . , P i- 1 are all less than ζ , we can identify R τ or R i- 1 as the

isbehaved entity. As Algorithm 5 shows, when receiving AckPorb,

lgorithm 5 Positive-ratio-bound Fault Localization. 

1: function Fault Localization ( ) 

2: Require : AckPorb , K i , B 

e 
i 

(1 ≤ i ≤n ), K D , B 

e 
D 

, ζ
3: for 1 ≤ i ≤n do 

4: if ! ( CheckSig K i ( Sign B 

e 
R i 

) & CheckSig K D ( Sign B 

e 
R D 

)) then 

5: R 1 is localized as the misbehaved entity. 

6: end if 

7: Compute : B 

e 
R i 

= Dec K S,R i 
( Enc B 

e 
R i 

), B 

e 
i,R i 

= B 

e 
i 

⊕ 

B 

e 
R i 

8: end for 

9: Compute : B 

e 
d 

= Dec K S,D 
( Enc B 

e 
d 
), B 

e 
D,d 

= B 

e 
D 

⊕ 

B 

e 
d 

10: for 1 ≤ i ≤n do 

11: C i : Count binary 1 in B 

e 
i 
, C ′ 

i 
: Count binary 1 in B 

e 
i,R i 

12: Compute : P i = C i / C ′ i 
13: end for 

14: C D : Count binary 1 in B 

e 
D 

, C ′ 
D 

: Count binary 1 in B 

e 
D,d 

15: Compute : P D = C D / C ′ D , P 0 = 0 , P D-1 = P n 

16: for τ from 1 to n and D do 

17: if P τ ≥ ζ & P τ - 1 < ζ then 

18: 〈 R τ - 1 , R τ 〉 is localized as the misbehaved entity. 

19: end if 

0: end for 

21: end function 

 firstly checks the signatures Sign B 

e 
R i 

(1 ≤ i ≤n ) and Sign B 

e 
D 

to ver-

fy the validity and authenticity of AckPorb. If any error occurs, S
an localize R 1 as a misbehaved entity, because R 1 still forwards an

nvalid AckProb to S instead of verifying and drop it. Concretely, if

 ε (1 < ε ≤ n ) on � modified AckPorb, R ε - 1 , . . . , R 1 will all discard

ckPorb when receiving it. In this case, if AckPorb with error sig-

atures arrives at S , R 1 either modify it or ignores the signature

erification for collusion attack. Note that if no AckProb is received,

 can directly localize R 1 as the fault, because R 1 neither forwards

ckPorb to S nor initializes it AckProb 1 . 

After all signatures in AckProb are verified by S , B 

e 
R i 

and B 

e 
d 

an be obtained through decrypting Enc B 

e 
R i 

and Enc B 

e 
d 
. We define
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(  

a  

b  

a  
 i ( C d ) as the number of packet sampling difference between pre-

omputed sampling B 

e 
i 

( B 

e 
D 

) and actual sampling B 

e 
R i 

( B 

e 
d 
), which

ctually is the number of binary 1 in B 

e 
i 

⊕ 

B 

e 
R i 

( B 

e 
D 

⊕ 

B 

e 
d 
). In RFL

rotocol, positive ratio P i ( P D ) is the ratio of C i ( C d ) to bloom fil-

er length L . S tries to find P τ ( τ= 1, . . . , n, D ) that meets P τ ≥ ζτ

nd P τ - 1 < ζτ - 1 , where ζ is the threshold of positive ratio of en-

ity (detailed in Section 9 ). In this case, 〈 R τ - 1 , R τ 〉 is localized as

he misbehaved entity, because one of R τ - 1 and R τ modified packet

rigin and path, causing the actual packet sampling in B 

e 
R τ

is dis-

urbed. Note that if P D ≥ ζD and P n < ζn , R n is then localized by S .
ore generally, when S receives AckProb i instead of AckProb, ac-

ual sampling results of R i+ 1 , . . . , R n , D will be regarded as empty

et, i.e., B 

e 
R i+ 1 

= . . . = B 

e 
R n 

= B 

e 
d 

= ∅ . Then the fault can also be

ocalized according to Algorithm 5 . 

. Security analysis 

In this section, we make security analysis of RFL protocol, es-

ecially against data-plane attacks (i.e., source spoofing and path

nconsistency) from misbehaved entities and sophisticated attacks

esulting from unreliable detection channels. In our adversary

odel, the misbehaved entity can modify source address and for-

arding path, interfere with secret key distribution and try to cor-

upt fault localization. We show RFL protocol is secure against both

 single misbehaved entity and multiple colluding entities even

ver unreliable channels. 

.1. Source spoofing 

Modifying the source address of an IP packet by R τ will intro-

uce marking discrepancies between the pre-inserted (by S ) and

he recomputed (by downstream entities) values. For example, if

 τ corrupts the packet source address, all downstream entities

e.g., R τ+ 1 ) will drop this received packet, because the recalculated

arking M 

′ 
τ+ 1 

(according to Eq. (12) ) is not equal to the inserted

alue M τ+ 1 in RFL header as the source address also acts as an in-

ut of marking calculation. 

.2. Forwarding path inconsistency 

As packet forwarding is verified hop by hop, corrupting packets

orwarding path will cause non-correspondences between the pre-

nserted and the recomputed markings for downstream entities on

he actual forwarding path. For example, if R τ delivers the packets

o R ϕ instead of R τ+ 1 , R ϕ will discard this packet, because the re-

alculated marking M 

′ 
ϕ does not equal M τ+ 1 in RFL header. As for

ollusion attacks, we will discuss it shortly. 

.3. Corrupting symmetric keys distribution 

The misbehaved entity can drop, modify and redirect ReqKey or

ckKey packet to destroy symmetric keys establishment and distri-

ution, which is a precondition of the data-plane source and path

erification in RFL protocol. In our proposed RSKey, the expired

imer T i on each entity enables R τ ’s upstream entities to send the

reated symmetric keys to S . Besides, each entity will also verify

eqKey and AckKey packet, such as the integrity and authenticity

erification, to avoid the modification or redirection of these two

ypes of packets. More importantly, based on acknowledgements

n AckKey ( i ) packet, S can localize the misbehaved entity if any er-

or occurs during the distribution of symmetric keys, which makes

 τ have to behave normally to avoid the fault localization. 
.4. Corrupting fault localization 

There are three methods for R τ to corrupt RFL protocol. Firstly,

 τ can disturb the packet verification and the sampling opera-

ion by means of tampering the markings of downstream enti-

ies, which is pre-inserted in RFL header. For example, R τ modi-

es M τ+ 2 in RFL header, causing R τ+ 2 to drop this packet. This can

rame 〈 R τ+ 1 ,R τ+ 2 〉 as a misbehaved entity. In RFL protocol, each en-

ity R i uses the markings of downstream entities ( M i+ 1 , . . . , M D ) in

FL header as inputs to recompute the marking M 

′ 
i 
, as shown in

q. (12) . In this case, the recomputed markings differ from the pre-

nserted markings. Thus, R τ+ 1 will drop the packet and 〈 R τ ,R τ+ 1 〉
ill be regarded as the fault if R τ corrupts M τ+ 
 (2 ≤
≤ n- τ ) in

FL header. 

Secondly, R τ can drop, modify and redirect ReqProb and Ack-

rob packet to prevent S from obtaining sampling information of

ntities. In RFL protocol, if timer T τ - 1 expires, AckProb τ - 1 packet

ill be initialized and sent back to S . According to the positive-

atio-bound fault localization, P τ ≥ ζ and P τ - 1 < ζ can make

 R τ - 1 ,R τ 〉 easily localized. 

Thirdly, R τ can frame other entities on � by launching TTL at-

ack. For example, R τ lowers TTL value of ReqProb packet to a

maller value (say, κ) with the purpose that R τ+ κ drops this packet

nd can be then localized as the fault. RFL protocol can deal with

TL attack, in which TTL value is added to compute signatures on

ckProb (i) packet during sampling information transmission and

ault localization, and to calculate the markings on ReqProb (see

q. (12) ) at RFL header initialization stage. Therefore, if R τ launches

TL attack, the packet will be discarded at downstream entities. In

his case, R τ and one of its neighbor on � will be localized as the

ault. 

.5. Tunnel-based misbehavior 

The forwarded packets can be bypassed by the misbehaved en-

ity using a tunnel implemented at any layer, which seems to

e able to evade the hop-by-hop packet verification in RFL. That

akes the packets with spoofed source address or inconsistent for-

arding path not be dropped. However, this tunnel-based misbe-

avior can be discovered in this paper. RFL enables each routing

ntity to perform packet sampling operations and periodically send

ampling results to the source. In this case, if some packets are by-

assed and forwarded to another destination using a tunnel-based

ttack, these packets will not be sampled in the downstream en-

ities. As the probabilistic packet sampling function (in Section 6 )

s determined by the established symmetric key, the sampling re-

ults can be only known by the source and some routing entity,

here others would not know the results. In this case, the sam-

ling results of downstream entities will not be consistent with

he sources calculated results. So, the source will localize the mis-

ehaved entity that launches a tunnel-based attack. 

.6. Collusion attacks 

All attacks discussed above can also be launched by more than

ne colluding entities. In this case, we can prove by induction

ethod that RFL protocol works well to defend against collusion

ttacks. We give a proof sketch as following: 

We assume there is another entity (denoted by R σ , τ < σ ≤ n )

n � colluding with R τ . Without loss of generality: 

1) In the first case where R τ is not adjacent to R σ (i.e., σ > τ+ 1),

i) if R τ launches the above source spoofing or path inconsistency

ttacks while the packets are forwarded, the intermediate entities

etween R τ and R σ will also perform the verification for source

nd path, and then drop the corrupted packets. (ii) If R τ corrupts
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Table 1 

Communication overhead comparison. 

RFL OPT ICING OSV Faultprints 

Com-overhead (Byte) 90.44 277.76 563.62 134.22 160.88 

Com-overhead ratio (%) 6.03 18.52 37.57 8.95 10.73 

Com-overhead is short for communication overhead. 
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fault localization in any case of three methods described above, R τ
and its one neighbor will be localized as the fault. 

2) In the other case where R τ and R σ are adjacent to each other

(i.e., σ = τ+ 1), we can regard these two entities as one single “vir-

tual” misbehaved entity R v with upstream entity R τ - 1 and down-

stream entity R τ+2 . (i) If R v launches the above source spoofing or

path inconsistency attack described above, R τ+2 will find the ver-

ification for packet origin and path fails, and then drop the cor-

rupted packet. (ii) If R v corrupts the fault localization, S can also

obtain the packet sampling information of R 1 , . . . , R τ - 1 (i.e., B 

e 
R 1 

, . . . ,

B 

e 
R τ−1 

). In this case, at least one entity of R τ and R σ will be local-

ized as the misbehaved entity. 

8. Theoretical analysis 

In this section, we provide the theoretical analysis for fault

localization accuracy, communication and storage overhead, and

some key parameters. Meanwhile, we analyze the rationalization

of RFL’s source and path verification, bloom filter size and S ’s de-

tection interval. 

8.1. Fault localization accuracy 

In this section, we make an in-depth theoretical analysis about

fault localization accuracy. In RFL, no matter what happens in these

attacks: source spoofing, forwarding path inconsistency, packet

modification and redirection, the packets will be certainly dropped

as RFL enables every entity to perform packet forwarding verifica-

tion. Therefore, we can regard these abnormal actions as dropping

packets. We respectively define θna and θmis as the probability of

natural loss and malicious loss (mis-loss) of the entity (as well as

its upstream neighbored link), where θmis > θna . Thus, the positive

ratio threshold ζi of R i is as Eq. (16) shows, where no malicious

loss occurs during packet forwarding. From Eq. (16) , we can learn

the ζi of R i is positively related to θna , where more natural losses

can cause a larger positive ratio threshold. 

ζi = 1 − (1 − θna ) 
i . (16)

When the misbehaved entity R i drops packets with the probability

θmis , its positive ratio P i is as Eq. (17) shows, where a larger θna 

can result in more observed packet losses for the routing entity R i .

P i = 1 − (1 − θna ) 
i −1 · (1 − θmis ) . (17)

Thereby, the fault localization accuracy (denoted by δ) that identi-

fies R i as the misbehaved entity is as Eq. (18) shows, where P( · )

denotes the probability that satisfies some constraint conditions in

brackets. We can learn the higher positive ratio brings about the

higher accuracy of fault localization. Based on Eqs. (16) and (17) ,

we also learn both the smaller θna and the larger θmis contribute

to easily localizing the fault. 

δ = P (P i > ζi & P 1 ≤ ζ1 & . . . & P i- 1 ≤ ζi- 1 ) . (18)

8.2. Communication overhead 

In RFL protocol, RFL header is the additional communication

overhead. From Section 5.1 , we can learn ( 38+4n ) bytes are occu-

pied in RFL header, where n is the length of � . According to the

research Huffaker et al. [30] , the average end-to-end path length

of the Internet is 13.11 hops, i.e., n = 13.11, causing the commu-

nication overhead of 90.44 bytes in RFL protocol. It is worth men-

tioning that about 85% data of the Internet is transmitted by large

( > 1400 bytes) packet [31] . We can adjust the packet sizes by con-

figuring the interface of Maximum Transmission Unit (MTU). In

this case, with packet size P size = 1500 bytes, RFL communication

overhead accounts for 6.03% of the entire IP packet. 
Compared with other related mechanisms [2,13,15,32] , RFL pro-

ocol outperforms in terms of communication overhead and its ra-

io under average path length and large packet (1500 bytes) of In-

ernet, as shown in Table 1 . 

.3. Verification rationalization 

From Section 5.1 , we can learn each pre-computed marking M i 

ccupies 32 bits. The verification at each hop is mainly performed

y employing PRF to recompute the marking M i . We must accept

hat although the inputs are different, there is also a probability,

onated by ϕ, to result in the same output of PRF as the hash col-

ision occurs. As every bit has an equal collision probability (i.e.,

.5), ϕ is the probability that collision of all 32 bits occurs at

he same time, i.e., ϕ = 

1 
2 32 . This illustrates sending 2 32 packets

r 2 32 · 1500 > 2 42 = 4 TB data (almost impossible for the normal

nd-to-end communication) will only cause this verification colli-

ion, averagely. Therefore, RFL protocol can perform rationally ver-

fication for source authenticity and path compliance as ϕ is small

nough. 

.4. Bloom filter size 

In RFL, end-hosts and intermediate entities all store at least

wo bloom filters , which is an important factor in determining their

torage overhead. Although RFL tries to decrease storage require-

ents, blindly reducing bloom filter size is not advisable. On one

and, bloom filter should be sufficient to store the packet sam-

ling information of one epoch , where the usage rate ξ e 
i 

of B 

e 
i 

oes not exceed its the usage rate threshold ξ e 
th 

. This is also re-

ated to the link bandwidth (detailed in Section 8.6 ). On the other

and, false positive rate increases with the decrease of bloom fil-

er size. For one epoch e , at most L ·ξ e 
th 

packets will be sampled,

ausing C( L, L ·ξ e 
th 

) sampling results, where C( · ) donates the num-

er of combinations of L and L ·ξ e 
th 

. Therefore , the false positive rate

s F = C ( L , L · ξ e 
th 

) - 1 . 

In this paper, we set bloom filter size L = 1 Kb and usage rate

hreshold ξ e 
th 

= 0.8. In this case, F 	 0 . 001% , which is reasonable

n RFL protocol. 

.5. Storage overhead 

We make an analysis for RFL’s storage overhead of routing en-

ities and end hosts ( S and D ), and compare it with some related

ault localization schemes (e.g., Faultprints [13] , ShorMAC [16] and

ynaFL [18] ) in Table 2 . We can learn our proposed RFL achieves

he same storage overhead for both routing entities and end hosts,

ompared with Faultprints that is the best-of-the-art for inter-

omain fault localization. In contrast, ShortMAC and DynaFL, al-

hough outperforming in some aspects (e.g., the sources storage of

hortMAC), does not provide robust fault localization on unreliable

ommunication channels. Besides, DynaFL assumes a trusted cen-

ral authority for localizing the fault, which easily becomes com-

romised due to malicious attacks in practice. More detailed anal-

sis for RFL’s storage overhead is shown as follows. 



B. Wu, K. Xu and Q. Li et al. / Computer Networks 158 (2019) 158–174 167 

Table 2 

Storage overhead comparison. 

RFL Faultprints ShortMAC DynaFL 

Routing entity ( R i ) 1 ∗key + 2 NL 1 ∗key + 2 NL N ∗key + 2 NL key ∗# neighbors + 2 L 

Source ( S ) (n + 1) ∗key+2(n+1) L (n + 1) ∗key+2(n+1) L (n + 1) ∗key N/A 

Destination ( D ) 1 ∗key + 2 L 1 ∗key + 2 L 1 ∗key + 2 L N/A 

N is the number of sessions in each router per-second; # neightbors denotes the number of neighboring 

ASes or routing entities; L in this table is the size of bloom filter or counter. 
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l  
.5.1. Router storage overhead 

While performing symmetric key distribution, RSKey requires

ntermediate entities to store an established symmetric key (16

ytes) temporarily before its timer expires. Note that RSKey is per-

ormed only in the initial period of RFL, and enables each interme-

iate router to store 16-byte shared key for a short duration. 4 After

he shared key is obtained by S , each intermediate router does not

ave to store the symmetric key for per-path or per-source during

acket delivery verification. Thus, RFL provides a lightweight router

n terms of the symmetric key storage. 

To sample the forwarded packets, R i establishes two bloom fil-

ers for the current and next epoch of each session. Therefore, the

torage overhead of router is 2L bits for per-session and 2NL bits

.e., O( N ) with the fixed bloom filter size L for all sessions, where

 is the number of sessions in each router per-second. According

o the CAIDA results [31] , 12.91K application sessions, on average,

re observed in a router per-second. Therefore, each routing entity

torage overhead is (12.9K · 2L) bits. Due to 1 MB = 2 20 B = 2 20 ·8
its, we can obtain each routing entity storage overhead in RFL is

12.9K · 2L) bits = (12.9K · 2L)/(2 20 ·8) MB for storing bloom filters. 

.5.2. End-host storage overhead 

For one session, S stores the symmetric keys shared with enti-

ies on � . With 128 bits length of each secret key, 16(n+1) bytes is

ccupied to store these keys. For each entity, two bloom filters are

stablished, resulting in extra storage overhead of 2(n+1) L bytes in

 . So the source storage overhead for one session is (16+2 L )( n +1)

ytes. On the destination host, only two bloom filters should be

tored for packet sampling and localization, introducing its storage

verhead of 2 L 
8 = 0.25 L bytes. Thus, S and D have storage overhead

f O(n) and O(1) for the fixed bloom filter size L per-session. With

he average path length of the Internet (i.e., n = 13 hops), their

torage overhead is 146.28 bytes and 3.28 bytes, respectively. 

.6. Detection interval 

When S switches epoch value, ReqProb packet is forwarded to

ll entities on � for requiring their packet sampling information.

e respectively define T MI and W B as the detection interval and

ink bandwidth. As the existence of other sessions, there are at

ost 
W B 
P size 

packets of current session and 

W B 
2 ω ·P size 

packets of each

poch, which can be delivered and sampled by entities per-second.

q. (19) shows the bloom filter is consumed to the usage rate

hreshold ξ e 
th 

after time interval T MI , where the sampling capacity

denoted by SC ) is defined as the total sizes of all sampled packets

uring each epoch. 

W B 

2 

ω · P size 

· T MI = L · ξ e 
th ⇒ T MI = 

L · ξ e 
th 

· 2 

ω · P size 

W B 

= 2 

ω · SC 

W B 

(19) 

rom Eq. (19) , we can learn the detection interval is affected by

everal factors in the proposed RFL protocol. The number (denoted

y ω) of selected bottom bits determines the sampling probability
4 The duration can be equal to the timer threshold, which is evaluated by a 

ound-trip-time (RTT). 

f

 

p  

r  
detailed in Section 6 ), where 2 ω also has a positive correlation to

he detection interval. When L = 1 Kb, ξ e 
th 

= 80%, P size = 1500 bytes

nd W B = 1 Gbps, we can learn T MI increases as the selected bottom

its ω increases at the link bandwidth of both 1 Gbps and 10 Gbps,

s Fig. 4 shows. According to Basescu and Co-authors [13,33] , with

he average value of 225 ms, T MI between 100 ms and 350 ms con-

orms to the realistic network. The detection interval of RFL proto-

ol is carefully set mainly based on prior measurements in realistic

etworks, which can also be achieved by adjusting the value of ω 

n RFL. In this case, ω = 5, T MI = 292.97 ms when W B = 1 Gbps and

 = 8, T MI = 234.38 ms when W B = 10 Gbps meet the requirements

f detection interval in realistic network, respectively. 

.7. Computation overhead 

During packet transmission, each routing entity in the pro-

osed RFL will perform the following operations. (i) Compute the

ymmetric key K S , R i 
shared with the source. This is based on

q. (4) with O(1) PRF operation. (ii) Verify the source and path

f received packets. Each routing entity will recompute the mark-

ng using the symmetric key and compare the calculated value

ith the inserted one in RFL header. This process is based on

q. (12) with O(n-i) PRF operation, where i is the location of the

outing entity. iii) Perform probabilistic packet sampling. When

he packet passes the verification (in Section 5.2 ), routing entity

ill sample this packet according to a sampling probability (in

ection 6 ). In this process, O(1) hash operation (based on Eq. (13) )

nd O(1) PRF operation (to compute the sampling location in a

loom filter) will be introduced. Therefore, based on the above

nalysis, the computation overhead of each routing entity is O(n).

ote that the computation overhead has a significant effect on for-

arding efficiency, which is evaluated in Section 9.3 . 

. Performance evaluation 

In this section, we will evaluate RFL’s performance, including its

ocalization accuracy, the performance of key sharing and packet

orwarding with RFL. 

Experiment setup. We use simulation network to evaluate the

ositive ratio threshold ( Section 9.1 ) and fault localization accu-

acy ( Section 9.2 ), and employ our implemented RFL prototype
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a  
based on Click router for evaluating packet forwarding ( Section 9.3 )

and the performance of key sharing ( Section 9.4 ). The simulation

network is implemented by leveraging OMNeT ++ that is an ex-

tensible, modular, component-based C ++ simulation library and

framework for building network simulators [34] . We implement

RFL protocol described in Section 4, 5 and 6 with RSKey as a user-

level application for carrying out secret key distribution, source

and path verification, and fault localization. The prototype of the

router, called RFL router, is implemented by using Click Modu-

lar Router [35] , which runs on Ubuntu Linux 12.04 with Intel(R)

Core(TM) i5-4590, CPU @ 3.30 GHz, 16GB memory and NIC of

10 0 0 Mbps 5 We achieve communications between two comput-

ers acting as the source and the destination (Intel(R) Core(TM)

i5-4200U, CPU @ 1.6GHz/2.3 GHz, 12.0 GB memory) through RFL

router. In this evaluation, we use SHA-3 algorithm to compute hash

values of long strings, such as the calculation of PacketID (see

Eq. (10) ). For computing the PRF value, we use HMAC based on

SHA-1. We respectively truncate the value of SHA-3 and HMAC to

meet our requirements, such as from 256 bits to 128 bits for com-

puting PacketID and from 160 bits to 32 bits for computing M i . In

RSKey, RSA algorithm is employed to compute signatures, asym-

metric encryption, and decryption. To evaluate the effect of fault

localization, such as localization accuracy, we implement a multi-

hop simulation network, where the source communicates with the

detestation through more than one intermediate routing node. 

9.1. Positive ratio threshold 

We evaluate positive ratio threshold ζi of R i through the sim-

ulation network with the path length of 20 hops, the longest for-

warding path in end-to-end communication according to a CAIDA

research [30] . The positive ratio illustrates the probability that the

corresponding entity is misbehaved. When P i is larger than ζi ,

and P 1 , . . . , P i- 1 are respectively less than ζ1 , . . . , ζi- 1 , we can iden-

tify R i or R i- 1 as the misbehaved entity (detailed in Section 6 ). In

RFL, the attacks (including source spoofing, path hijacking, frame,

and collusion attack) all cause downstream entities to drop the

packets. 

To evaluate the positive ratio under different router locations

and packet natural loss probabilities, we have considered several

different actual packet loss probabilities, which is denoted by θ in

this paper. Note that θ can reflect three types of packet loss: no

packet loss ideally ( θ = 0), natural packet loss ( θ = θna ) and mali-

cious packet loss ( θ = θmis ). In order to be able to represent these

three types of packet losses more generally, we select θ as the

parameter/notation for evaluating positive ratio in Fig. 5 . Fig. 5 (a)

shows the relationship between router location and its positive ra-

tio with the variation of packet loss probability. To obtain a more

accurate result, we run our simulation over 500 times for each re-

sult. The red line depicts the scenarios only with natural packet

loss, which is also a threshold line that helps identify the misbe-

haved entity. According to the research [36] , many network sce-

narios for real-time communications indicate specific requirements

of Qualify of Service (QoS), including packet loss less than 0.1%.

More especially, the network performance requirements between

consumer network edge to a large company’s network edge must

be less than 0.1% packet loss during any 15s interval. In this case,

we set the value of natural packet loss probability as 0.001, i.e.,

( θna = 0.001). When the packet loss probability is 0.00, the posi-

tive ratio P is lower than the threshold value, because the lower

packet loss probability brings about less packet loss during trans-

mission. We set one misbehaved router at different locations from
5 Of course, it is also feasible for the similar packet processing as RFL to be im- 

plemented along fast TCAM path or in commercial router [13] . 

0  

l  

t  

v  
 1 to R 20 . The blue line ( θ = 0.10) and the green dotted line ( θ
 0.05) respectively show the positive ratio P of the misbehaved

outer in different locations. We learn that the positive ratio P i will

xceed the threshold ζi when the malicious router behaves abnor-

ally with the probability of θ = 0.10 or θ = 0.05. According to

his threshold, S can locate the misbehaved router who has differ-

nt mis-loss probabilities. 

We also evaluate the relationship between positive ratio and

atural packet loss probabilities under different misbehaved packet

oss probability. Fig. 5 (b) shows the positive ratio of the middle en-

ity (i.e., R 7 ) with the average Internet forwarding path length, i.e.,

 = 13 hops. With the increment of natural packet loss probability,

he positive ratio threshold becomes larger, because the higher loss

robability can easily introduce more packet loss. When the misbe-

aved packet loss probability is larger than the natural loss proba-

ility, the corresponding ratios exceed the threshold value. There-

ore, under different natural packet loss probabilities, the fault can

lso be localized in RFL protocol. 

.2. Fault localization accuracy 

Based on the positive ratio threshold above, we evaluate fault

ocalization accuracy denoted by δ through a simulation scenario

ith 13-hop forwarding path, which is the average forwarding

ath length during packet transmission [30] . We set one router

f random location on forwarding path as the misbehaved router,

hat can launch both source spoofing and path inconsistency at-

acks. Besides, this misbehaved router can also disturb RFL proto-

ol, which finally introduces the packets dropping. 

We first evaluate fault localization accuracy with the varia-

ion of packet mis-loss probability of misbehaved router, just as

ig. 6 (a) shows. We can learn the network function over 2% packet

oss over a period of time is a strong indicator of problems [37] .

hus, we try to adjust the value of mis-loss probability around 2%

from 0.01 to 0.03) for evaluating the localization accuracy. From

ig. 6 (a), we can learn fault localization accuracy of RFL becomes

igher with the increase of packet mis-loss probability. This is be-

ause more packet mis-loss results in higher positive ratio than

he threshold, and the higher mis-loss probability make RFL eas-

er to identify the fault. We respectively take the value of natural

acket loss probability as 0.0 01, 0.0 03 and 0.0 05, which introduce

ifferent positive ratio thresholds (described in Section 9.1 ). From

ig. 6 (a), we know less natural packet loss brings about higher lo-

alization accuracy, as the lower positive ratio threshold makes it

asier to localize the fault. This is in line with our theoretical anal-

sis in Section 8.1 . 

Then the localization accuracy trends over different natural

acket loss probabilities are evaluated in Fig. 6 (b). For a fixed

acket mis-loss probability (such as 1.5%), the localization accuracy

f RFL will become lower when the natural packet loss increases.

his is because the more natural losses will introduce a larger pos-

tive ratio threshold (according to Eq. (16) ). In this case, the local-

zation accuracy will become lower for a constant mis-loss proba-

ility, which can be theoretically learned from Eq. (18) . Fortunately,

nder the smaller natural packet loss probability, such as 0.001 or

.003, RFL achieves the fault localization with the accuracy of over

9.5% when the mis-loss probability is 0.020 or more. 

We define β as the ratio between packet mis-loss and natu-

al loss probabilities, i.e., β = θmis / θna . Based on the observations

entioned above, we make a further evaluation for the localization

ccuracy in terms of different values of β , as Fig. 7 shows, where

.0 01, 0.0 03, 0.0 05 are set as the value of θna , respectively. We can

earn the localization accuracy is positively correlated to the ra-

io β , where fault localization becomes more accurate when the

alue of β increases. This is because an increased β can introduce
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Fig. 5. The positive ratio for different router location and packet natural loss probabilities. 

Fig. 6. The Localization accuracy for different packet mis-loss or natural loss probabilities. 

Fig. 7. The localization accuracy for different ratios β between θmis and θna . 
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 larger θmis than θna , which keeps consistent with the analysis in

ection 8.1 . 

.3. Router throughput and goodput 

We implement the prototype of RFL router to evaluate the for-

arding efficiency, including throughput and goodput, which can
e used to demonstrate the technical feasibility in real experi-

ents. In order to evaluate the packet forwarding efficiency at

outing entities, we use iperf [38] to achieve the communications

etween the source and the destination through RFL router. RFL

outer performs the following operations when delivering packets:

ource and path validation, probabilistic packet sampling and stor-

ng sampling results. 

From Eq. (12) , we learn the computation overhead of RFL router

ncreases linearly from R n to R 1 when recomputing the markings.

amely, RFL routers close to S have higher computation overhead

han the router close to D as the longer input. In this case, we

valuate the performance of middle router R [ n 
2 

] for the average-

ase analysis with different path lengths and packet sizes. Fig. 8 (a)

hows the relationship between packet size and forwarding effi-

iency with the average Internet path length of 13 hops. We cal-

ulate goodput as the valid throughput of useful packet data, ex-

luding RFL header. Note that the smallest packet size is 130 bytes,

ncluding 90-byte RFL header and 40-byte IP/TCP header. We adjust

acket size of 130 bytes to 1500 bytes by configuring the interface

aximum Transmission Unit (MTU) sizes. From Fig. 8 (a), we can

now both throughput and goodput of RFL router increase with

he improvement of packet size. Especially for the large packet of

500 bytes, RFL router can achieve over 90% throughput and about

5% goodput of baseline. From [30] , we learn that the path length

f end-to-end communication is 15.3 ± 4.2 hops for IPv4 packets.

hus, we evaluate the packet forwarding efficiency with different
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Fig. 8. Forwarding efficiency of RFL router for different packet sizes and path lengths. 

Table 3 

RSKey evaluation - communication overhead. 

RSKey DRKey ICING 

Source ( S ) 2 2 4 ∗n + 4 

Router ( R i ) 2 2 4 ∗n + 4 

Destination ( D ) 2 2 4 ∗n + 4 

Here, the communication overhead is evaluated 

by the number of extra packets during symmet- 

ric key distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

RSKey evaluation - ReqKey and AckKey packet latency. 

Entity Path length Latency 

Source ( S ) Irrelevant 653 μs 

ReqKey Router ( R i ) Irrelevant 548 μs 

Destination ( D ) Irrelevant 627 μs 

11 13,128 μs 

13 16,534 μs 

Source ( S ) 15 20,176 μs 

AckKey 17 24,051 μs 

19 28,815 μs 

Router ( R i ) Irrelevant 903 μs 

Destination ( D ) Irrelevant 754 μs 
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s

path lengths (from 10 hops to 20 hops) for the same packet size

of 1500 bytes in Fig. 8 (b). We can learn that RFL router’s through-

put and goodput all decrease when the forwarding path length in-

creases because more downstream routers’ markings are added as

the input of marking recomputation. The longer input of marking

recomputation incurs lower forwarding efficiency. Concretely, with

path length increment of 1 hop, the throughput and goodput will

reduce by 9.26 Mbps. Fortunately, the throughput and goodput re-

spectively exceed 850 Mbps and 800 Mbps in the networks of 13-

hop path length, more than 90% and 85% compared to the baseline.

Thus RFL incurs only 10% forwarding efficiency while guaranteeing

the robustness of fault localization, which is an incomparable ad-

vantage of other packet verification mechanism. 

9.4. Performance and overhead of RSKey 

To demonstrate the feasibility of RSKey in the early stage of RFL

protocol, we perform RSKey performance evaluation during sym-

metric key distribution. The evaluation results show that RSKey in-

troduces low communication overhead and packet latency. 

Table 3 provides the results of communication overhead (evalu-

ated by the number of extra packets) at the source ( S ), the router

( R i ) and the destination ( D ). We can learn RSKey achieves the same

lower communication overhead with the state-of-the-art scheme

DRKey [2] , and outperforms than ICING [32] . Note that RSKey and

DRKey all require only 2 additional packets as the communication

overhead for the symmetric key establishment, while ICING needs

4 ∗n + 4 extra packets on all entities. 

More importantly, RSKey achieves a more secure and ro-

bust symmetric key distribution than the state-of-the-art scheme

DRKey. On one hand, if any misbehaved router disturbs secret key

distribution by means of dropping, modifying or redirecting re-
uest or acknowledgement packet, DRKey scheme will fail. However,

SKey enables each entity to verify the request or acknowledgement

essage. If any failure occurs or the timer expires, the entity will

end its encrypted symmetric key back to S . In this case, S can still

btain reliable entities’ symmetric key even if there is any router

rying to disturb secret key establishment. On the other hand, if

ny misbehaved router disturbs key distribution, DRKey will be

tranded, resulting in S ’s wasting time to wait for acknowledgment

essage. However, RSKey can realize it as soon as possible with

he help of timer, and localize the fault who disturbs secret key

istribution. In this case, S can adjust the policies (e.g., avoiding

he localized misbehaved router or correcting the fault) based on

he result of fault localization. 

To evaluate packet latency during RSKey processing, we imple-

ent the prototype of RSKey on the source host, the RFL router,

nd the destination host. RSKey scheme contains two stages: Re-

Key stage and AckKey stage. From Section 4.1 , we can learn the

acket latency on different entities is irrelevant to path length on

eqKey stage. In this case, we will ignore the effect of path length

hanges on entities’ performance. 

Table 4 shows the packet latency of ReqKey stage and AckKey

tage on the source, intermediate routers, and the destination. We

an learn the packet latency of RSKey on the source is affected by

ath length, especially on AckKey stage. That is mainly because the

ource will check all the signatures and decrypts the encrypted

ymmetric keys when receiving AckKey packet, leading to higher

omputation overhead in proportion to path length. This result also

hows the packet latency on RFL router is smaller than at least one

f end hosts, which enables more cycles to be used to distribute

ecret keys by the source or the destination. 
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0. Discussion 

0.1. Asymmetric paths 

We mainly describe the fault localization for the packet verifi-

ation with symmetrical paths, while many forwarding paths be-

ween the source and the destination in the current Internet are

symmetric [29,39,40] . RFL can also provide the compatibility for

symmetric paths. With the asymmetric paths, the timer T i will

xpire as R i does not receive AckKey or AckProb packets from its

ownstream entities. In this case, R i then creates and initializes

ckKey i or AckProb i , which will be delivered to the source. Based

n the encrypted symmetric keys or sampling information, the

ource can also identify and localize the misbehaved entity (see

lgorithm 5 ). 

0.2. Forwarding path instability 

RFL enable the source to pre-insert the markings of entities on

into RFL header for later packet verification. There is still a prob-

bility that the forwarding path � changes due to the link fail-

re, network congestion, and misconfiguration, making both the

ackets dropped incorrectly and the fault localized wrongly. Fortu-

ately, the network end-to-end communications keep stable from

ens of minutes to several days [41,42] . Besides, the stable forward-

ng paths (longer than 6 hours) will be chosen to transmit packets

or 96% of times [41] . To further address this problem, the source

nd perform RSKey several times until it can obtain symmetric

eys of all entities on the latest purposed path � . Using the newly

btained symmetric keys, RFL provides a better compatibility for

etwork instability. 

0.3. Changed natural packet loss 

The proposed RFL protocol enables the source to compute the

ositive ratio threshold ( Eq. (16) ) using the natural loss probability

hat is based on the prior observed knowledge for network com-

unications. This can be obtained by using several existing meth-

ds, such as ping, traceroute, Paessler [43] , VoIP Spear [44] and

ppneta [45] , which is beyond the research scope of this paper.

ue to the dynamic network traffic that may incur a changed nat-

ral loss probability, RFL allows the source to update the positive

atio threshold for adapting to the change of natural packet loss

ate. In this case, RFL can avoid false detection for a misbehaved

outer even though packet loss changes due to network traffic load

nstability. 

0.4. Tradeoff between robustness and overhead 

In RFL, there is a conflict between robustness and overhead. On

ne hand, to ensure the robustness against unreliable communi-

ation channels, RFL introduces the timer for each entity, which

lso incurs extra overhead. Fortunately, RFL enables each entity to

se its timer only receiving request packets (i.e., ReqKey and Re-

Prob). This can help to lower the overhead of each entity to a

ertain extent. On the other hand, each entity has to store bloom

lters for sampling packets. However, we think the packet sam-

ling operation is an essential element for constructing robust

ault localization. Through our analysis in Section 8.5 , the aver-

ge storage overhead of each entity is within an acceptable range,

ortunately. 

0.5. Incremental deployment 

The proposed RFL protocol in this paper is compatible with the

resence of routing entities that do not deploy RFL protocol, and
rovide a strong adaptability for the incremental deployment from

he following aspects. i) RFL keeps the current IP header unchange-

ble and employs RFL header for packet delivery verification and

ault localization, in which RFL-less entities can still forward RFL’s

ackets based on the information in IP header without any dis-

urbs due to the presence of RFL header. ii) Although RFL protocol

ntroduces hop-by-hop packet verification for ensuring source au-

henticity and path compliance, the illegal packets with spoofed

ource(s) or redirected forwarding path(s) can be still filtered as

ong as there is only one RFL-compatible routing entity on the

ctual forwarding path. This is because this entity can recalcu-

ate its marking ( Eq. (12) ) and compare it with inserted one in

he RLF header. iii) The proposed RFL protocol mainly focuses on

he fault localization during packet transmission. The routing enti-

ies that have not installed RFL protocol will not affect the packet

ampling of other RFL-compatible entities, whose sampling infor-

ation can be still delivered to S at the end of each epoch. Us-

ng a portion of sampling results only from RFL-compatible en-

ities, RFL enables S to narrow the scope of the fault based on

lgorithm 5 . 

0.6. Comparison between centralized and distributed solutions 

The centralized methods usually rely on an authority that col-

ects diagnostic results and performs fault localization, which can

e easily deployed (especially under the control of a single en-

ity) [18,46] and apply to more complex networks (using machine

earning [47] and big data techniques [48] ). However, they ig-

ore users security requirements for monitoring their traffic and

olerate the possibility that the compromised authority occurs,

hich can result in an incorrect localization or a false warn-

ng. By contrast, the distributed methods can avoid a compro-

ised authority and achieve hop-by-hop packet verification, while

ntroducing frequent interactions among network entities, which

gnores the unreliable communication channels. The proposed RFL

an achieve robust fault localization even facing unreliable com-

unication channels, which can be easily deployed especially

n administrative domains and does not rely on any third-party

uthority. 

1. Related work 

1.1. Secure routing and forwarding 

Routing security has been widely studied to ensure correct

acket forwarding on the Internet [11,21,4 9–54] . IETF RFC 64 80

roposes the RPKI architecture as an infrastructure to support se-

ure Internet routing [49] . S-BGP [11] verified the authenticity of

nnounced routing paths by signing them, which incurs signifi-

ant computation and communication overhead. In order to re-

uce the costs, a large amount of variants have been proposed.

or example, So-BGP [51] ensured the correctness of announced

outing paths by leveraging network topologies. IRV [50] vali-

ated the correctness of the announced routing paths by estab-

ishing an additional IRV server in each AS, which limited its

eployment ability. RADAR [55] can be used to mitigate DDoS at-

acks introduced by vulnerabilities of current TCP/UDP. However,

ll these approaches did not address the security of routing data

lane. 

1.2. Source and path verification 

IETF RFC 7039 and RFC 5210 provide a source address valida-

ion improvement (called SAVI) and architecture (called SAVA) for

efending against source spoofing attacks [56,57] . RFC 6483 intro-

uces validation of route origination using the resource certificate
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PKI and route origin authorizations [58] . Origin and Path Trace

(OPT) protocol [2,59] allows each router to verify delivered pack-

ets so as to verify the correctness of packet source and forwarding

paths. It reduced storage overhead in routers, which prevents state

exhaustion attack. Naous et al. [32] proposed a Path Verification

Mechanism (PVM) to validate whether the packets correctly for-

warded their forwarding paths. Cai and Wolf [15] performed source

authentication and path validation by leveraging a set of orthogo-

nal sequences instead of lightweight cryptographic operations. Wu

et al. [60] introduced probabilistic packet marking to enable an ef-

ficient verification scheme, called PPV, for ensuring source authen-

ticity and path compliance. Unfortunately, these mechanisms can-

not localize the detected faults. Although Passport [7] and SNAPP

[20] did not have such a problem, they were vulnerable to source

spoofing or path deviation attacks. Qi et al. [61] presented a dy-

namic packet forwarding verification scheme called DynaPFV that

can detect various attacks using SDN-related technologies for se-

curing packet forwarding. 

11.3. Fault localization 

The proposed RFL can be classified as an active monitoring

technique for the fault localization according to the recent sur-

veys [62,63] . The prior schemes [64–67] are trying to select one or

more probing stations for diagnosing the fault(s) in networks. They

mainly rely on the selected stations that is assumed as trustworthy

entities while performing fault localization. In fact, the current In-

ternet, including network devices and end-hosts, are all unreliable.

In this case, the selected localization stations are easily becom-

ing an attack target, where the compromised stations can result

in an incorrect localization or a false warning. Faultprints [13] was

the first secure inter-domain fault localization scheme. It could lo-

calize the misbehaved links that drop, delay, modify packets at a

high speed. ShortMAC [16] leveraged probabilistic packet authenti-

cation to locate the illegal network links, which achieved low de-

tection delay and incurred small overhead. DynaFL [18] proposed

the secure neighborhood-based fault localization (FL) protocol to

cope with dynamic traffic patterns and routing path with a small

router state. TrueNet [68] leveraged trusted computing technology

to build a trusted network-layer architecture, and implemented a

small TCB to address secure FL with small router state. However,

these schemes might fail to localize faults if the generated ac-

knowledgment packets are maliciously dropped by colluding enti-

ties. Our proposed protocol well addresses this issue by setting the

timer on each entity, where the entity would send its sampling in-

formation towards S once the timer expires. 

12. Conclusion 

In this paper, we propose a robust data-plane fault localization

protocol called RFL, which achieves high accuracy of localizing mis-

behaved entities and tolerates unreliable communication channels.

RFL samples packets and embeds cryptographic markings in the

packets so as to verify packet source and forwarding paths, and

achieve fault localization, which ensures accuracy and robustness

of the protocol even in the presence of interference from adver-

saries. In particular, RFL leverages a robust symmetric key sharing

scheme to ensure that all entities can synchronize their verification

keys to perform localization. We use real experiments with the RFL

prototype to demonstrate the performance of RFL. The results show

RFL achieves around 99.5% localization accuracy, and incurs small

communication overhead, e.g., more than 90% throughput and 85%

goodput compared to the baseline. 
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