
A Horizontal Study on the Mixed IPID Assignment
Vulnerability in the Linux Ecosystem

Ao Wang∗, Xuewei Feng†, Qi Li†, Yuxiang Yang†, Ke Xu†
Southeast University∗ Tsinghua University†

Email: wangao@seu.edu.cn; fengxw06@126.com; yangyx22@mails.tsinghua.edu.cn; {qli01, xuke}@tsinghua.edu.cn

Abstract—The off-path TCP hijacking attack poses a signifi-
cant threat to Internet security, allowing attackers to manipulate
various upper-layer applications and causing severe real-world
damage. In this paper, we undertake a horizontal study on a
critical TCP hijacking attack affecting Linux servers, which
was reported in November 2020 (CVE-2020-36516). This attack
has the potential to compromise over 20% of popular websites
on the Internet. Our study particularly focuses on determining
the extent to which the developed stack patches, designed to
address this vulnerability, have been effectively deployed in the
real world and whether they have successfully mitigated the
identified attack. In our horizontal study, we thoroughly examine
the current status of the vulnerability, covering upstream and
downstream components of the Linux ecosystem. This study
encompasses 12 mainstream Linux distributions, 296 images from
7 leading cloud vendors, 2.92 million IPs from 301 network
segments belonging to 6 major CDN vendors, as well as the
top 1 million websites from 3 datasets. Our study unveils a
notable disparity in the patching of the vulnerability in the Linux
ecosystem, spanning various ISPs and vendors, which leaves the
vulnerability open to potential exploitation and poses a serious
threat to the Internet.

Index Terms—TCP Hijacking, Linux Vulnerability, Stack
Patches, Horizontal Study

I. INTRODUCTION

The development of TCP/IP has been accompanied by a va-
riety of security vulnerabilities that cause various attacks such
as information inference [1], [2], connection termination [3],
and session hijacking [4]–[7]. Among these attacks, the TCP
hijacking attack is considered particularly threatening, which
allows attackers to manipulate upper-layer applications that
rely on TCP. There are many real-world attacks constructed
based on TCP hijacking, e.g., SSH connections terminating
[6] and web traffic tampering [4]–[8].

However, the successful execution of a TCP hijacking
attack typically requires specific prerequisites, including the
knowledge of port numbers, sequence numbers, and acknowl-
edgment numbers, which are not easily obtainable for off-
path attackers. Previous attacks often rely on specific network
environments [9] or malware [4], [5], [8] to assist in obtaining
these prerequisites. For example, some attacks require both the
attacker and the victim to connect to the same Wi-Fi network

This work was supported in part by the Science Fund for Creative Research
Groups of the National Natural Science Foundation of China under No.
62221003, the Key Program of the National Natural Science Foundation
of China under No. 61932016 and No. 62132011, the National Science
Foundation for Distinguished Young Scholars of China under No. 62425201.

[9], [10], while some other attacks require the victim’s running
of unprivileged malware [4], [5]. Consequently, while the
TCP hijacking attack can pose a significant threat to Internet
security, its practical feasibility is markedly restricted.

In 2016 and 2020, Cao et al. and Feng et al. made significant
discoveries regarding TCP hijacking attacks [6], [7]. Cao et
al. uncovered the “challenge ACK rate limit vulnerability”,
while Feng et al. uncovered the “mixed IPID assignment
vulnerability”. These are two severe vulnerabilities, as they
enable attackers to manipulate TCP sessions completely off-
path, without any additional assistance, bringing TCP hijack-
ing attacks to a more practical level.

After the disclosure of the challenge ACK rate limit vulner-
ability, a subsequent 6-month longitudinal study was carried
out on the Alexa top 1 million websites to track their patching
behavior [11]. This study provided a valuable data point for
studying the patching of webservers running the Linux TCP
stack. However, this study focuses on the patching behavior
of webservers within a 6-month window, rather than the stable
patching status, which could have continued to evolve beyond
that timeframe. Moreover, the study did not offer a horizontal
view across the Linux ecosystem, such as upstream distribu-
tions, cloud and Content Delivery Network (CDN) services,
which are widely adopted in practice. Therefore, the study
lacks a comprehensive understanding of the patching status
concerning TCP stack vulnerabilities in the Linux ecosystem.

In this paper, we thoroughly investigate the impacts of
the critical mixed IPID assignment vulnerability uncovered 4
years ago [7], particularly the propagation of the developed
patches in the Linux ecosystem. In contrast to the study on
the challenge ACK rate limit vulnerability, which primarily
concentrated on webservers’ patching behavior, we aim at
conducting a horizontal study within the Linux ecosystem.
Specifically, we delve into the upstream Linux kernel and
distributions, the midstream cloud and CDN, as well as the
downstream websites, i.e., a comprehensive study along the
patch propagation path. The goal of our study is to offer an
in-depth perspective on the patching status concerning critical
stack vulnerabilities in the entire Linux ecosystem and serve
as an alarm for the located vulnerable links.

Furthermore, unlike the challenge ACK rate limit vul-
nerability that solely exploits rate limit in the challenge
ACK mechanism, the mixed IPID assignment vulnerability
we studied represents a more comprehensive exploitation of

2024 IEEE/ACM 32nd International Symposium on Quality of Service (IWQoS)

979-8-3503-5012-8/24/$31.00 ©2024 IEEE

20
24

 IE
EE

/A
C

M
 3

2n
d

In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
Q

ua
lit

y
of

 S
er

vi
ce

 (I
W

Q
oS

) |
 9

79
-8

-3
50

3-
50

12
-8

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

IW
Q

oS
61

81
3.

20
24

.1
06

82
84

5

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:47:25 UTC from IEEE Xplore. Restrictions apply.

both the challenge ACK mechanism and the fundamental
Linux IPID assignment strategy. We delve into the essential
components employed in performing the TCP hijacking attack
based on the mixed IPID assignment vulnerability, including
the implementation status of RFC 5961 and IPID assignment
strategy for different types of packets. For the Linux kernel
and distributions, we conduct tests on a local testbed to
identify their patching time and vulnerability exposure time.
For cloud and CDN, we test a wide range of Virtual Private
Servers (VPS) and CDN servers from well-known vendors. For
websites, we investigate the vulnerability and patching status
of top 1 million websites from three datasets.

After a thorough study spanning upstream to downstream
of the Linux ecosystem (i.e., covering 12 distributions, 296
images from 7 cloud vendors, and 2.92 million IPs from
301 network segments belonging to 6 CDN vendors), we
reveal significant disparities and delay in the patching of the
vulnerability among various network scenarios and different
vendors, which offer an in-depth perspective on the patching
behavior of TCP stack vulnerabilities in the Linux ecosystem.
The study aims to incentivize the community, vendors and
service providers to expeditiously patch and update their kernel
implementations and ancillary products, which is instrumental
for mitigating prospective protocol stack vulnerabilities and
fostering a more robust Linux ecosystem.
Contributions. Our main contributions are as follows:

• Our horizontal study reveals that the critical mixed IPID
assignment vulnerability within the Linux ecosystem
(originating from the kernel and extending to various
Linux distributions) experiences substantial patching de-
lays, which can extend up to two years. This substantial
delay exposes a vulnerable window for potential attackers
to launch the severe off-path TCP hijacking attack.

• We uncover that widely used real-world infrastructure
in Linux ecosystem, such as cloud services, remains
significantly impacted by the vulnerability, allowing off-
path attackers to manipulate various applications on the
Internet. Furthermore, we observe that the patch deploy-
ment status enforced by Internet ISPs and various vendors
is notably slow and lacks consistency.

• We identify two vulnerabilities concerning the handling
of ICMP error massages. The first vulnerability affects
three widely-used cloud platforms and could result in
session failures. The second vulnerability, on the other
hand, enables potential attackers to bypass checks on
carefully crafted ICMP error massages.

II. BACKGROUND

In this section, we provide a concise background of the
mixed IPID assignment vulnerability and the patches devel-
oped by the Linux community to mitigate the vulnerability.

A. Blind in Window Attacks and RFC 5961

To deal with brute-force guess attacks from blind (off-path)
attackers [12], RFC 5961 recommends a more strict check

on sequence and acknowledge numbers for incoming packets,
known as the challenge ACK mechanism. Specifically, for:

• Spoofed SYN: If an attacker tries to interrupt the target
connection with a spoofed SYN packet, a challenge ACK
packet will be sent and an RST packet with correct
sequence number is expected.

• Spoofed RST: If an attacker tries to interrupt the target
connection with a spoofed RST packet, even if the
guessed sequence number falls within the receive win-
dow, as long as it is not exactly equal to the next expected
sequence number (RCV.NXT), a challenge ACK packet
will be sent and an RST packet with correct sequence
number is expected.

• Spoofed Data: If an attacker tries to insert data packet
into the target connection, even if the guessed sequence
number falls within the receive window and the guessed
acknowledge number falls within the ACK window, as
long as the acknowledge number does not fall within a
smaller challenge ACK window, a challenge ACK packet
will be sent and a data packet with correct acknowledge
number is expected.

In earlier Linux implementations, the challenge ACK packet
was assigned a global rate limit for performance considera-
tions, which could be used by attackers to infer secrets as a
side channel and ultimately hijack TCP sessions [6].

B. IPID Assignment Strategy in Linux

IPID (IP Identification) is a 16-bit field in the IP header
that is used for packet fragmentation and reassembly. Linux
currently employs two strategies for IPID assignment: per-
socket and hash-based. The per-socket strategy maintains an
increasing counter as IPID while the hash-based strategy
selects IPID from 2048 hash counters maintained by the
kernel. The selection of the hash counter depends on the source
IP, destination IP, protocol number, and a random number
generated during system boot. Destinations with the same hash
value share the same hash counter.

hash(Src IP,Dest IP, Protocol num,Boot random) (1)
Linux kernel employs a mixed IPID assignment strategy

for TCP sockets before 5.16, incorporating both hash-based
strategy and per-socket strategy. Feng et al. uncovered that
when the DF (Don’t Fragment) flag of TCP packets can be
set to False (by default to True), the IPID assignment for
the packets will be downgraded from per-socket strategy to
hash-based strategy [7]. Additionally, they discovered that the
DF flag of TCP packets can be cleared by triggering fragmen-
tation through a forged ICMP error message (“Fragmentation
Needed”, type=3, code=4) embedded with ICMP echo reply,
which can deceive the originator’s check.

Specially, RST and SYN/ACK packets are processed inde-
pendently from other TCP socket packets in the Linux kernel
and adopt a separate IPID assignment strategy. SYN/ACK
packets employ a mixed IPID assignment strategy that can
be downgraded from 0 IPID to hash-based IPID. RST packets
employ only 0 IPID from kernel version 4.18 [2].

2024 IEEE/ACM 32nd International Symposium on Quality of Service (IWQoS)

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:47:25 UTC from IEEE Xplore. Restrictions apply.

Request

SYN
SYN/ACK𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =

 𝑥𝑥 + 2

Reply 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =
 𝑥𝑥 + 3

𝑠𝑠𝑠𝑠𝑠𝑠. 𝑖𝑖𝑖𝑖 =
 𝑠𝑠𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐

Hash collision

Attacker Victim server Victim Client

"𝐹𝐹𝑠𝑠𝐹𝐹𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝐹𝐹𝑐𝑐𝑖𝑖𝐹𝐹𝑐𝑐
 𝑁𝑁𝑐𝑐𝑐𝑐𝑁𝑁𝑐𝑐𝑁𝑁𝑁

Request

𝑠𝑠𝑠𝑠𝑠𝑠. 𝑖𝑖𝑖𝑖 =
 𝐹𝐹𝑐𝑐𝑐𝑐𝐹𝐹𝑠𝑠𝑎𝑎𝑐𝑐𝑠𝑠

Reply 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑥𝑥

SYN
SYN/ACK𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑦𝑦

Clearing the DF flag of
packets to the client

Reply 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =
 𝑥𝑥 + 1

𝑠𝑠𝑠𝑠𝑠𝑠. 𝑖𝑖𝑖𝑖 =
 𝑠𝑠𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐

No hash collision

Attacker Victim server

Request

Victim Client

Request

𝑠𝑠𝑠𝑠𝑠𝑠. 𝑖𝑖𝑖𝑖 =
 𝐹𝐹𝑐𝑐𝑐𝑐𝐹𝐹𝑠𝑠𝑎𝑎𝑐𝑐𝑠𝑠

Reply 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑥𝑥

SYN/ACK
RST𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 0

Reply 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =
 𝑥𝑥 + 1

Incorrect guess

𝑠𝑠𝑠𝑠𝑠𝑠. 𝑖𝑖𝑖𝑖 =
 𝑠𝑠𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐

ICMP

"𝐹𝐹𝑠𝑠𝐹𝐹𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝐹𝐹𝑐𝑐𝑖𝑖𝐹𝐹𝑐𝑐
 𝑁𝑁𝑐𝑐𝑐𝑐𝑁𝑁𝑐𝑐𝑁𝑁𝑁

Request

SYN/ACK Challenge
ACK𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =

 𝑥𝑥 + 2

Reply 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =
 𝑥𝑥 + 3

Correct guess

𝑠𝑠𝑠𝑠𝑠𝑠. 𝑖𝑖𝑖𝑖 =
 𝑠𝑠𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐

Request

RST 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =
 𝑥𝑥 + 2

Reply

Attacker Victim server

Request

Victim Client

ICMP

"𝐹𝐹𝑠𝑠𝐹𝐹𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝐹𝐹𝑐𝑐𝑖𝑖𝐹𝐹𝑐𝑐
 𝑁𝑁𝑐𝑐𝑐𝑐𝑁𝑁𝑐𝑐𝑁𝑁"

Request

Reply 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑥𝑥

RST

Reply

𝑠𝑠𝑠𝑠𝑠𝑠. 𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐
𝑠𝑠𝑐𝑐𝑠𝑠 𝑢𝑢𝑐𝑐𝐹𝐹𝑠𝑠𝑠𝑠𝑐𝑐𝑖𝑖𝑐𝑐𝐹𝐹𝑎𝑎𝑐𝑐𝑐𝑐

𝑇𝑇𝑇𝑇𝐼𝐼 𝑠𝑠𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑖𝑖𝐹𝐹𝑐𝑐

Incorrect guess

𝐼𝐼𝑖𝑖𝑠𝑠𝑠𝑠𝐹𝐹𝑠𝑠𝑁𝑁

𝑠𝑠𝑠𝑠𝑠𝑠. 𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐
𝑠𝑠𝑐𝑐𝑠𝑠 𝐹𝐹𝑠𝑠𝑠𝑠𝑐𝑐𝑖𝑖𝑐𝑐𝐹𝐹𝑎𝑎𝑐𝑐𝑐𝑐

Correct guess

Challenge
ACK

𝑠𝑠𝑠𝑠𝑠𝑠. 𝑖𝑖𝑖𝑖 =
 𝐹𝐹𝑐𝑐𝑐𝑐𝐹𝐹𝑠𝑠𝑎𝑎𝑐𝑐𝑠𝑠

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =
 𝑥𝑥 + 1

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =
 𝑥𝑥 + 3

Request

ICMP

(a) Constructing hash collisions

Request

SYN
SYN/ACK𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =

 𝑥𝑥 + 2

Reply 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =
 𝑥𝑥 + 3

𝑠𝑠𝑠𝑠𝑠𝑠. 𝑖𝑖𝑖𝑖 =
 𝑠𝑠𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐

Hash collision

Attacker Victim server Victim Client

"𝐹𝐹𝑠𝑠𝐹𝐹𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝐹𝐹𝑐𝑐𝑖𝑖𝐹𝐹𝑐𝑐
 𝑁𝑁𝑐𝑐𝑐𝑐𝑁𝑁𝑐𝑐𝑁𝑁𝑁

Request

𝑠𝑠𝑠𝑠𝑠𝑠. 𝑖𝑖𝑖𝑖 =
 𝐹𝐹𝑐𝑐𝑐𝑐𝐹𝐹𝑠𝑠𝑎𝑎𝑐𝑐𝑠𝑠

Reply 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑥𝑥

SYN
SYN/ACK𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑦𝑦

Clearing the DF flag of
packets to the client

Reply 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =
 𝑥𝑥 + 1

𝑠𝑠𝑠𝑠𝑠𝑠. 𝑖𝑖𝑖𝑖 =
 𝑠𝑠𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐

No hash collision

Attacker Victim server

Request

Victim Client

Request

𝑠𝑠𝑠𝑠𝑠𝑠. 𝑖𝑖𝑖𝑖 =
 𝐹𝐹𝑐𝑐𝑐𝑐𝐹𝐹𝑠𝑠𝑎𝑎𝑐𝑐𝑠𝑠

Reply 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑥𝑥

SYN/ACK
RST𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 0

Reply 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =
 𝑥𝑥 + 1

Incorrect guess

𝑠𝑠𝑠𝑠𝑠𝑠. 𝑖𝑖𝑖𝑖 =
 𝑠𝑠𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐

ICMP

"𝐹𝐹𝑠𝑠𝐹𝐹𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝐹𝐹𝑐𝑐𝑖𝑖𝐹𝐹𝑐𝑐
 𝑁𝑁𝑐𝑐𝑐𝑐𝑁𝑁𝑐𝑐𝑁𝑁𝑁

Request

SYN/ACK Challenge
ACK𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =

 𝑥𝑥 + 2

Reply 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =
 𝑥𝑥 + 3

Correct guess

𝑠𝑠𝑠𝑠𝑠𝑠. 𝑖𝑖𝑖𝑖 =
 𝑠𝑠𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐

Request

RST 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =
 𝑥𝑥 + 2

Reply

Attacker Victim server

Request

Victim Client

ICMP

"𝐹𝐹𝑠𝑠𝐹𝐹𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝐹𝐹𝑐𝑐𝑖𝑖𝐹𝐹𝑐𝑐
 𝑁𝑁𝑐𝑐𝑐𝑐𝑁𝑁𝑐𝑐𝑁𝑁"

Request

Reply 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑥𝑥

RST

Reply

𝑠𝑠𝑠𝑠𝑠𝑠. 𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐
𝑠𝑠𝑐𝑐𝑠𝑠 𝑢𝑢𝑐𝑐𝐹𝐹𝑠𝑠𝑠𝑠𝑐𝑐𝑖𝑖𝑐𝑐𝐹𝐹𝑎𝑎𝑐𝑐𝑐𝑐

𝑇𝑇𝑇𝑇𝐼𝐼 𝑠𝑠𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑖𝑖𝐹𝐹𝑐𝑐

Incorrect guess

𝐼𝐼𝑖𝑖𝑠𝑠𝑠𝑠𝐹𝐹𝑠𝑠𝑁𝑁

𝑠𝑠𝑠𝑠𝑠𝑠. 𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐
𝑠𝑠𝑐𝑐𝑠𝑠 𝐹𝐹𝑠𝑠𝑠𝑠𝑐𝑐𝑖𝑖𝑐𝑐𝐹𝐹𝑎𝑎𝑐𝑐𝑐𝑐

Correct guess

Challenge
ACK

𝑠𝑠𝑠𝑠𝑠𝑠. 𝑖𝑖𝑖𝑖 =
 𝐹𝐹𝑐𝑐𝑐𝑐𝐹𝐹𝑠𝑠𝑎𝑎𝑐𝑐𝑠𝑠

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =
 𝑥𝑥 + 1

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =
 𝑥𝑥 + 3

Request

ICMP

(b) Inferring port numbers

Request

SYN
SYN/ACK𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =

 𝑥𝑥 + 2

Reply 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =
 𝑥𝑥 + 3

𝑠𝑠𝑠𝑠𝑠𝑠. 𝑖𝑖𝑖𝑖 =
 𝑠𝑠𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐

Hash collision

Attacker Victim server Victim Client

"𝐹𝐹𝑠𝑠𝐹𝐹𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝐹𝐹𝑐𝑐𝑖𝑖𝐹𝐹𝑐𝑐
 𝑁𝑁𝑐𝑐𝑐𝑐𝑁𝑁𝑐𝑐𝑁𝑁𝑁

Request

𝑠𝑠𝑠𝑠𝑠𝑠. 𝑖𝑖𝑖𝑖 =
 𝐹𝐹𝑐𝑐𝑐𝑐𝐹𝐹𝑠𝑠𝑎𝑎𝑐𝑐𝑠𝑠

Reply 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑥𝑥

SYN
SYN/ACK𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑦𝑦

Clearing the DF flag of
packets to the client

Reply 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =
 𝑥𝑥 + 1

𝑠𝑠𝑠𝑠𝑠𝑠. 𝑖𝑖𝑖𝑖 =
 𝑠𝑠𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐

No hash collision

Attacker Victim server

Request

Victim Client

Request

𝑠𝑠𝑠𝑠𝑠𝑠. 𝑖𝑖𝑖𝑖 =
 𝐹𝐹𝑐𝑐𝑐𝑐𝐹𝐹𝑠𝑠𝑎𝑎𝑐𝑐𝑠𝑠

Reply 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑥𝑥

SYN/ACK
RST𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 0

Reply 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =
 𝑥𝑥 + 1

Incorrect guess

𝑠𝑠𝑠𝑠𝑠𝑠. 𝑖𝑖𝑖𝑖 =
 𝑠𝑠𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐

ICMP

"𝐹𝐹𝑠𝑠𝐹𝐹𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝐹𝐹𝑐𝑐𝑖𝑖𝐹𝐹𝑐𝑐
 𝑁𝑁𝑐𝑐𝑐𝑐𝑁𝑁𝑐𝑐𝑁𝑁𝑁

Request

SYN/ACK Challenge
ACK𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =

 𝑥𝑥 + 2

Reply 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =
 𝑥𝑥 + 3

Correct guess

𝑠𝑠𝑠𝑠𝑠𝑠. 𝑖𝑖𝑖𝑖 =
 𝑠𝑠𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐

Request

RST 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =
 𝑥𝑥 + 2

Reply

Attacker Victim server

Request

Victim Client

ICMP

"𝐹𝐹𝑠𝑠𝐹𝐹𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝐹𝐹𝑐𝑐𝑖𝑖𝐹𝐹𝑐𝑐
 𝑁𝑁𝑐𝑐𝑐𝑐𝑁𝑁𝑐𝑐𝑁𝑁"

Request

Reply 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑥𝑥

RST

Reply

𝑠𝑠𝑠𝑠𝑠𝑠. 𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐
𝑠𝑠𝑐𝑐𝑠𝑠 𝑢𝑢𝑐𝑐𝐹𝐹𝑠𝑠𝑠𝑠𝑐𝑐𝑖𝑖𝑐𝑐𝐹𝐹𝑎𝑎𝑐𝑐𝑐𝑐

𝑇𝑇𝑇𝑇𝐼𝐼 𝑠𝑠𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑖𝑖𝐹𝐹𝑐𝑐

Incorrect guess

𝐼𝐼𝑖𝑖𝑠𝑠𝑠𝑠𝐹𝐹𝑠𝑠𝑁𝑁

𝑠𝑠𝑠𝑠𝑠𝑠. 𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐
𝑠𝑠𝑐𝑐𝑠𝑠 𝐹𝐹𝑠𝑠𝑠𝑠𝑐𝑐𝑖𝑖𝑐𝑐𝐹𝐹𝑎𝑎𝑐𝑐𝑐𝑐

Correct guess

Challenge
ACK

𝑠𝑠𝑠𝑠𝑠𝑠. 𝑖𝑖𝑖𝑖 =
 𝐹𝐹𝑐𝑐𝑐𝑐𝐹𝐹𝑠𝑠𝑎𝑎𝑐𝑐𝑠𝑠

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =
 𝑥𝑥 + 1

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =
 𝑥𝑥 + 3

Request

ICMP

(c) Inferring seq and ack numbers

Fig. 1: The attack process of the mixed IPID assignment vulnerability

C. Off-path Attacks Utilizing Mixed IPID as a Side-channel

Based on the aforementioned challenge ACK mechanism
and the IPID assignment strategy, an off-path TCP hijacking
attack can be constructed. Firstly, the attacker downgrades the
IPID assignment strategy of the victim server to the hash-
based IPID assignment strategy using a carefully constructed
ICMP “Fragmentation Needed” message. Then, through hash
collision, the attacker identifies a hash counter shared by the
attacker and the victim client. This hash counter serves as a
side channel, enabling the attacker to determine whether the
guessed value is right or fall within the correct range. Fig.1
illustrates the detailed process of exploiting the mixed IPID
assignment vulnerability when fragmentation is triggered:

• Constructing Hash Collisions: As shown in Fig.1a, the
attacker sends request to the victim server with its own
IP and sends spoofed SYN packet to the victim server
with the victim client’s IP. The victim server will reply
a SYN/ACK packet to the victim client with an IPID
selected from one of the 2048 hash counters. The shared
hash counter is found once the attacker observes an IPID
jump change (more than 1) in the replies. If not found, the
attacker changes its IP address and repeats the process.

• Inferring Port Numbers: As shown in Fig.1b, the
attacker sends request to the victim server with its own IP
and sends spoofed SYN/ACK packet to the victim server
with the victim client’s IP. The victim server will return
a RST packet with 0 IPID if the target connection does
not exist [13]. Otherwise, the victim server will return a
challenge ACK, which shares the same hash counter with
replies. The attacker can determine whether a challenge
ACK is triggered by observing the IPID in replies.

• Inferring Sequence and Acknowledge Numbers: As
shown in Fig.1c, the attacker sends request to the victim
server with its own IP and sends spoofed RST (or ACK)
packet to the victim server with the victim client’s IP.
Similar to the process of guessing the port number, only
the packet within the receive window (challenge ACK
window) can trigger a challenge ACK, and then a jump
change of IPID in replies can be observed.

We refer readers to the original paper [7] for more details.

D. Patches for the Mixed IPID Assignment Vulnerability

Two patches have been implemented in the Linux kernel to
deal with the vulnerability.

• Patch 1: Clearing the IPID of SYN/ACK: Starting from
kernel version 5.16.5, the Linux kernel applies a patch
that sets SYN/ACK packets’ IPID to 0 and DF flag to 1 if
it is smaller than IPV4 MIN MTU, otherwise, a random
IPID is used [14].

• Patch 2: Assigning IPID Based on the Protocol Field:
The mixed IPID assignment vulnerability comes from
the side channel formed by the shared hash counter. To
completely eliminate this side channel, kernel version
5.16.5 and beyond adopt only per-socket IPID assignment
strategy for TCP sockets [15].

III. MEASUREMENT METHOD

In this section, we present the target object, basic idea, and
measurement method.

A. Target Object: Linux Ecosystem

Linux systems are widely used to provide various Internet
services, and Linux is the world’s most used server operating
system [16]. The deployment of Linux patches on actual
servers in use involves a propagation chain that encompasses
the entire Linux ecosystem. First, the Linux kernel releases
patches for various vulnerabilities. Then, distributions inte-
grate these patches into their own operating systems according
to their release cycles and policies. Next, ISPs update their
images with the latest patched versions of the distributions.
Finally, downstream websites access services from ISPs. Our
study aims to conduct a horizontal study of the whole Linux
ecosystem and evaluate the patching status at each stage of
the propagation chain.

B. Basic Idea

In order to assess the security status of the targets, we
employ two metrics: vulnerability rate and patch rate. The
former denotes the proportion of samples that are vulnerable

2024 IEEE/ACM 32nd International Symposium on Quality of Service (IWQoS)

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:47:25 UTC from IEEE Xplore. Restrictions apply.

to the attack, whereas the latter indicates the proportion of
samples that have been patched against the vulnerability. We
note that some samples are neither vulnerable nor patched,
since they are either non-Linux systems or Linux systems
with kernel versions below 4.18, which are immune to the
vulnerability. We exclude these samples from the calculation
of the patch rate.

We examine the adherence of RFC 5961 on the target server
(Section III-C) and its IPID allocation policy (Section III-D)
to differentiate among vulnerable, patched, and otherwise
unaffected machines. All tests are performed on self-built
connections, through which we transmit customized requests
and analyze the responses. Our self-built connections enable
us to construct packets that satisfy specific requirements (e.g.,
with in-window sequence numbers or acknowledgment num-
bers). The potential biases exist in the method are discussed
in Section VII-A and Section VII-B.

C. RFC 5961 Test
We commence by examining the target server’s compliance

of RFC 5961, which encompasses blind SYN test, blind RST
test, and blind data test, as depicted in Fig. 2. All vulnerable
and patched machines ought to conform to RFC 5961.

SYN/ACK

RST

Test machine
port 1 Victim server

SYN

Test machine
port 2

ICMP
"𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
 𝑁𝑒𝑒𝑑𝑒𝑑"

Three-way Handshake Three-way Handshake

HTTP GET𝐻𝑜𝑠𝑡: 𝑉𝑖𝑐𝑡𝑖𝑚 𝑠𝑒𝑟𝑣𝑒𝑟 𝐻𝑜𝑠𝑡: 𝑉𝑖𝑐𝑡𝑖𝑚 𝑠𝑒𝑟𝑣𝑒𝑟

SYN/ACK

RST

SYN/ACK

RST
IPID
test

TCP
Socket
IPID
test

HTTP GET

Three-way Handshake

Test machine Victim server

SYN/ACK𝑠𝑒𝑞 = 𝑆𝑁𝐷. 𝑁𝑋𝑇 − 10

RST𝑠𝑒𝑞 = 𝑆𝑁𝐷. 𝑁𝑋𝑇 + 10

RST𝑠𝑒𝑞 = 𝑆𝑁𝐷. 𝑁𝑋𝑇 − 10

ACK
𝑠𝑒𝑞 = 𝑆𝑁𝐷. 𝑁𝑋𝑇
ack = 𝑅𝐶𝑉. 𝑁𝑋𝑇 − 10

ACK
𝑠𝑒𝑞 = 𝑆𝑁𝐷. 𝑁𝑋𝑇
ack = 𝑅𝐶𝑉. 𝑁𝑋𝑇 − 231

1s

1s

𝐻𝑜𝑠𝑡: 𝑉𝑖𝑐𝑡𝑖𝑚 𝑠𝑒𝑟𝑣𝑒𝑟

Challenge ACK

Challenge ACK

Challenge ACK

1s

Blind
SYN
test

Blind
RST
test

Blind
data
test

SYN

SYN/ACK

SYN/ACK
IPID test

ICMP
"𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
 𝑁𝑒𝑒𝑑𝑒𝑑"

ACKACK

𝐼𝑃𝐼𝐷 = 0

𝐼𝑃𝐼𝐷 = 𝑥

𝐼𝑃𝐼𝐷 = 𝑛1 𝐼𝑃𝐼𝐷 = 𝑛2

𝐼𝑃𝐼𝐷 = 𝑥 + 𝑡 𝐼𝑃𝐼𝐷 = 𝑥 + 𝑡 + 1

HTTP GET

PUSH/ACK PUSH/ACK

ACK ACK

PUSH/ACK PUSH/ACK

SYN

SYN/ACK𝐼𝑃𝐼𝐷 = 𝑥 + 1

Fig. 2: RFC 5961 test

Blind SYN Test. Here we test whether a challenge ACK packet
can be triggered by a SYN/ACK packet, which is exploited by
off-path attackers to verify whether the guessed port number is
correct. In the test, a SYN/ACK packet is sent, and a challenge
ACK packet is expected as a response. Given that some servers
have only implemented the challenge ACK mechanism for in-
window SYN/ACK packets [17], our actual test assigns the
sequence number of SYN/ACK packets to SND.NXT - 10 to
ensure that SYN/ACK with out-of-window sequence numbers
can also provoke challenge ACK packets.
Blind RST Test. Subsequently, we verify whether RST pack-
ets with in-window sequence numbers can provoke challenge
ACK packets, while RST packets with out-of-window sequence
numbers cannot, which is exploited by off-path attackers to
determine whether the guessed sequence number is within
the receive window. We send two RST packets: one with
an in-window sequence number and one with an out-of-
window sequence number. We expect only the former packet

to provoke a challenge ACK packet and the latter to get no
response.
Blind Data Test. Lastly, we examine whether data packets
with acknowledge number in the challenge ACK window can
elicit challenge ACK packets, while data packets with acknowl-
edge number out of the challenge ACK window cannot, which
is leveraged by off-path attackers to test whether the guessed
acknowledge number is within the challenge ACK window. We
send a data packet in the challenge ACK window expecting a
challenge ACK packet as reply, and one data packet out of the
challenge ACK window expecting no response.

Two additional optimizations are introduced to address
problems encountered in the test. Firstly, we insert a 1s delay
after finalizing the 3-way handshake prior to the test. This
delay accommodates some servers, such as some Akamai
servers, that tend to discard packets that arrive shortly after the
handshake. Second, some servers will terminate the connec-
tion immediately upon receiving an unexpected request (TCP
deferred accept), so we send an HTTP GET request to alter
the connection’s state to Established after the handshake.

D. IPID Assignment Strategy Test

Here we present the measurement method for the IPID
assignment strategy of the target server. Three tests have
been conducted to identify the IPID assignment policy for
RST packets, SYN/ACK packets, and TCP socket packets,
respectively, as illustrated in Fig.3.

SYN/ACK

RST

Test machine
port 1 Victim server

SYN

Test machine
port 2

ICMP
"𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
 𝑁𝑒𝑒𝑑𝑒𝑑"

Three-way Handshake Three-way Handshake

HTTP GET𝐻𝑜𝑠𝑡: 𝑉𝑖𝑐𝑡𝑖𝑚 𝑠𝑒𝑟𝑣𝑒𝑟 𝐻𝑜𝑠𝑡: 𝑉𝑖𝑐𝑡𝑖𝑚 𝑠𝑒𝑟𝑣𝑒𝑟

SYN/ACK

RST

SYN/ACK

RST
IPID
test

TCP
Socket
IPID
test

HTTP GET

Three-way Handshake

Test machine Victim server

SYN/ACK𝑠𝑒𝑞 = 𝑆𝑁𝐷. 𝑁𝑋𝑇 − 10

RST𝑠𝑒𝑞 = 𝑆𝑁𝐷. 𝑁𝑋𝑇 + 10

RST𝑠𝑒𝑞 = 𝑆𝑁𝐷. 𝑁𝑋𝑇 − 10

ACK
𝑠𝑒𝑞 = 𝑆𝑁𝐷. 𝑁𝑋𝑇
ack = 𝑅𝐶𝑉. 𝑁𝑋𝑇 − 10

ACK
𝑠𝑒𝑞 = 𝑆𝑁𝐷. 𝑁𝑋𝑇
ack = 𝑅𝐶𝑉. 𝑁𝑋𝑇 − 231

1s

1s

𝐻𝑜𝑠𝑡: 𝑉𝑖𝑐𝑡𝑖𝑚 𝑠𝑒𝑟𝑣𝑒𝑟

Challenge ACK

Challenge ACK

Challenge ACK

1s

Blind
SYN
test

Blind
RST
test

Blind
data
test

SYN

SYN/ACK

SYN/ACK
IPID test

ICMP
"𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
 𝑁𝑒𝑒𝑑𝑒𝑑"

ACKACK

𝐼𝑃𝐼𝐷 = 0

𝐼𝑃𝐼𝐷 = 𝑥

𝐼𝑃𝐼𝐷 = 𝑛1 𝐼𝑃𝐼𝐷 = 𝑛2

𝐼𝑃𝐼𝐷 = 𝑥 + 𝑡 𝐼𝑃𝐼𝐷 = 𝑥 + 𝑡 + 1

HTTP GET

PUSH/ACK PUSH/ACK

ACK ACK

PUSH/ACK PUSH/ACK

SYN

SYN/ACK𝐼𝑃𝐼𝐷 = 𝑥 + 1

Fig. 3: IPID assignment strategy test

RST IPID Test. Only when the 0 IPID assignment strategy
is employed for RST packets, can attackers distinguish them
from challenge ACK packets that employ the hash-based IPID
assignment strategy. Ideally, we can send a SYN/ACK packet
to an open port with no connection to the target server and
check whether the returned RST packet has 0 IPID. However,
we observe that many webservers do not adhere this Linux
kernel modification [18] and assign a constant IPID to RST
packets in practice. Therefore, we send two SYN/ACK packets
to the target server and compare IPIDs of the two received

2024 IEEE/ACM 32nd International Symposium on Quality of Service (IWQoS)

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:47:25 UTC from IEEE Xplore. Restrictions apply.

RST packets. If the IPIDs are identical, the server employs a
constant IPID for RST, which is equivalent to 0 IPID.
SYN/ACK IPID Test. The IPID assignment strategy of
SYN/ACK packets may be exploited to determine whether a
shared hash counter is used. We send a SYN packet to the
target server and check the IPID of the returned SYN/ACK
packet. If it is 0, an ICMP “Fragmentation Needed” message
is sent to attempt to downgrade the target server’s IPID
assignment strategy. Subsequently, two SYN packets are sent to
the target server and IPIDs of the returned SYN/ACK packets
are recorded. If the IPIDs are not 0 or random number, the
IPID assignment strategy has been successfully downgraded.
If fragmentation cannot be triggered (i.e., DF = 1) and the IPID
of the SYN/ACK packet is still 0, Patch 1 has been applied.
TCP Socket IPID Test. The final crux of the attack is that
the IPID assignment strategy of TCP sockets can be down-
graded from per-socket IPID to hash-based IPID. We establish
two TCP connections with the target server and transmit a
PUSH/ACK packet through each connection in a short time
interval. The target server should return two ACK packets.
If the IPIDs of the two returned packets are non-sequential,
the target server employs the per-socket IPID assignment
strategy for TCP sockets. Then, we trigger fragmentation on
the target server, dispatch another PUSH/ACK packet through
each connection, and compare the IPID of the two returned
ACK packets. If the IPIDs are sequential, the IPID assignment
strategy has been successfully downgraded. Otherwise, Patch
2 has been applied.

Other OSes and middleboxes may influence the results of
the measurement. In Section VII-A and Section VII-B, we
discuss the potential measurement bias that may be introduced
by other OSes and middleboxes and the respective mitigation.

E. Implementation

All tests are conducted on a local testbed for kernel and
distributions, with a test machine loaded with Ubuntu 20.04,
and a tested machine loaded with OSes under test. Both
machines are equipped with an Intel Xeon E3-1230 V2 CPU
(4 cores, 8 threads), 8G memory, and 5Mbps bandwidth.
For cloud, CDN, and webservers that deployed worldwide, a
local test is unachievable. To minimize the impact of filtering
strategies of different ISPs [19] and mitigate possible packet
loss, we deploy three vantage points in Frankfurt, Hongkong,
and Toronto and repeat each test three times.
Ethical Considerations: All measurements are performed on
our own TCP connections, without affecting any other network
traffic. We do not launch actual attacks by sending a large
number of probe packets, but mainly examine the features
required for a successful attack with trivial traffic load (about
0.4kbps) on the tested targets.

IV. KERNEL AND DISTRIBUTION

Being the foundation of the Linux ecosystem, vulnerability
status of the kernel and distributions directly affects the
security of upper-layer services. In this section, we reveal
substantial patching delays existing in kernel and distributions.

Endeavour OS

Arch Linux

Arco Linux

Fedora

RHEL

Open SUSE

Debian

Ubuntu

MX Linux

Linux Mint

Zorin OS

Elementary OS

: OS not released: Vulnerable

19/7 22/4

18/10 22/3

21/9 22/3

18/10 22/5

22/1119/5

18/12 22/6

19/12 23/1

22/10

22/7

19/8

18/11 22/3

22/4

18/12 22/4

19/12

19/6

2018 2019 2020 2021 2022

: Patched

Fig. 4: Timeline for Linux distributions patch

A. Linux Kernel Patch

Feng et al. presented their findings on the mixed IPID
assignment vulnerability during the ACM Conference on Com-
puter and Communications Security (CCS’20) in November
2020 [7]. In response to this discovery, the Linux community
underwent subsequent development in February 2022 to ad-
dress the issue, resulting in the implementation of two patches.

The first patch addresses the vulnerability by clearing or
randomizing the IPID of SYN/ACK packets. Commencing
with kernel version 5.16.5, the Linux kernel incorporates a
modification that sets the IPID of SYN/ACK packets to 0
and the DF flag to 1 if it is smaller than IPV4 MIN MTU,
otherwise, random IPID will be used. Consequently, this
prevents attackers from constructing hash collisions, thereby
thwarting their ability to identify a victim client. The second
patch, also applicable to Linux kernel version 5.16.5 and
beyond, involves assigning IPIDs for TCP packets based on the
protocol field. Specifically, this strategy adopts the per-socket
IPID assignment method for TCP packets without taking into
account the DF flag of the packets. As a result, off-path
attackers will be unable to manipulate the IPID assignment
methods of the target Linux server by crafting an ICMP error
message to clear the DF flag of the server’s TCP packets.

B. Linux Distributions Patch

Subsequent to the Linux kernel patch, various Linux distri-
butions adopted patches for the mixed IPID assignment vulner-
ability. We test different versions of 12 Linux distributions in a
local testbed to assess their patching latency and vulnerability
exposure time, depicted in Fig.4. As of January 2023, all
examined distributions were updated with the patches.

The upstream-downstream relationship determines the
patching sequence of Linux distributions, with the upstream
ones patching earlier. Among the tested distributions, Debian,
Open SUSE, Fedora, and Arch Linux are the direct down-
stream of the Linux kernel. They exhibit the shortest patching
latency, within 4 months after the kernel patch. MX Linux and
Ubuntu are downstream of Debian, which patched their kernel
about 5 months after the Linux kernel patch. Linux Mint,
Zorin OS, and Elementary OS are downstream of Ubuntu, and
they patched later. Elementary OS patched even after a year
since the original patch. The discrepancy in patching latency
between upstream and downstream distributions creates an
exploitable attack window for attackers.

2024 IEEE/ACM 32nd International Symposium on Quality of Service (IWQoS)

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:47:25 UTC from IEEE Xplore. Restrictions apply.

Regarding the vulnerability exposure time, the Linux kernel
cleared RST packets’ IPID in September 2018 and patched the
mixed IPID assignment vulnerability in February 2022, expos-
ing the vulnerability for a period of 3 years and 5 months.
This period may vary in different distributions. Among them,
Fedora has the longest exposure time of 3 years and 7 months,
while Linux Mint has the shortest exposure time of 2 years
and 7 months.

None of the versions of Endeavor OS are susceptible to the
vulnerability, as its firewall proactively intercepts SYN/ACK
and in-window data packets and thereby precludes the re-
sponse of corresponding challenge ACK packets.

C. Summary of Findings for Kernel and Distributions

In this section, we study the patching status of the Linux
kernel and 12 distributions. We discover that despite being
patched, the kernel and distributions suffer from a substantial
patching latency. The kernel was patched more than a year
after the vulnerability was disclosed, while distributions add
an additional delay of 4 months to 1 year on top of the kernel
patch, which results in a total delay of up to 2 years, leaving
an exploitable window for potential attackers.

V. CLOUD AND CDN

Open port services are widely deployed on cloud and CDN
platforms. Cloud and CDN vendors typically maintain some
system images themselves, allowing users to deploy services
on them. The security of these images is crucial for the security
of the deployed services. We uncover the disparity in the
patching status of different ISPs and vendors.

A. Targets

We test 296 images from seven cloud vendors: Google
Cloud, Amazon EC2, Microsoft Azure, Alibaba Cloud, Ten-
cent Cloud, Huawei Cloud, and Tianyi Cloud. We purchase
VPSs with special images deployed directly from these ven-
dors. Except for Azure, we evaluate all official Linux-based
images from these cloud vendors. For Azure, as it only offers
third-party images, we evaluate 30 popular third-party images.

We study 6 major CDN vendors, including Akamai, Cloud-
flare, CloudFront, Azure CDN, Fastly, and Imperva. Previous
work maps the top 10k IPs to the corresponding CDN corpo-
rations using WHOIS [6], which has two limitations: Firstly,
the tested samples are limited to the top 10k IPs, which might
not fully represent the CDN servers. Secondly, CDN vendors
often optimize content delivery by utilizing their partners’ IPs,
making it challenging to accurately identify CDN vendors
through WHOIS. To overcome these challenges and ensure
a more comprehensive evaluation, we leverage the publicly
available whitelists for our study, which CDN vendors offer
to prevent webservers from incorrectly filtering traffic from
CDN servers [20].

B. Cloud Vulnerability

We present the investigation results of clouds in Fig.5. As
of July 2023, Alibaba Cloud, AWS EC2, and Tencent Cloud

20
(40%)

16
(32%)

21
(91.3%)

25
(27.8%)

47
(52.2%)

18
(20%)

14
(28%)

2
(8.7%)

107
(100%)

14
(53.8%)

7
(26.9%)

3
(11.5%)

2
(7.7%)

: Patched : UnknownUnaffected: Vulnerable

Fig. 5: Vulnerability and patching status of 7 cloud vendors

still offer vulnerable images. Among them, Alibaba Cloud
exhibits the highest vulnerability rate (approximately 52.2%),
whereas all Google Cloud images are not affected by the
vulnerability. There is also a considerable discrepancy in the
patch rate among different vendors. When considering only
vulnerable and patched images, the patch rate of Google Cloud
images attains 100%, while the patch rate of Tencent Cloud
and Alibaba Cloud are below 50%. Furthermore, each cloud
vendor supplies a number of unaffected images that adopt
Linux kernel versions prior to 4.18 that are neither vulnerable
nor patched, which are excluded when computing the patching
rate. As an exceptional case, we discovered that RHEL 7 and
SUSE 15 SP4 provided by AWS EC2 cannot be fragmented
appropriately, which hindered us from assessing their vulnera-
bility and patching status. Owing to space constraints, we only
display the detailed results of Alibaba Cloud in Table II.

TABLE I: Categorized vulnerable status for 4 cloud vendors

Alibaba
Cloud

Google
Cloud

AWS
EC2

Tencent
Cloud

No patch provided 11/47 0/0 3/7 12/20
Patch provided 36/47 0/0 4/7 8/20

We attempt to understand why there is such a significant
disparity in the vulnerability rate and patch rate among dif-
ferent cloud vendors. As depicted in Table I, we classify the
vulnerable images into two groups: No patch provided and
Patch provided. The “No patch provided” denotes that the
image is vulnerable since the distribution does not offer any
patched images, such as Debian 8 and RHEL 7. The “Patch
provided” implies that the distribution provides patches, but
the cloud vendor has not updated the images accordingly, such
as Ubuntu Xenial in all cloud vendors except Google Cloud.

We find two factors account for the disparity: 1) Some cloud
vendors offer images that exceed the security support period,
such as Ubuntu Trusty, Fedora 33 and CentOS 8. Unless users
manually apply patches, these images remain vulnerable. 2)
Many images that should have been patched are not patched
promptly. Among the 47 vulnerable images in Alibaba Cloud,
36 images have not been patched timely.
Middlebox Error: Gateway Translates ICMP Error Packet
Incorrectly. We find no fragmentation can be triggered in
images provided by Microsoft Azure, Huawei Cloud, and
Tianyi Cloud. As depicted in Fig.6, by capturing packets
on the VPS side, we find that the source IP of the ICMP

2024 IEEE/ACM 32nd International Symposium on Quality of Service (IWQoS)

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:47:25 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Measurement results for Alibaba Cloud

Distribution(Number) Version(Minor version) Kernel base IP Location RFC
5961?

0 IPID
for RST?

Fragment
triggered?

SYN/ACK IPID
downgraded?

Socket IPID
downgraded?

Alibaba Cloud Linux 2.1903 4.19 123.56.x.x CN
Alibaba Cloud Linux 3.2104 5.10 123.56.x.x CN
Debian(2) Jessie(9/11) 3.16 39.106.x.x/39.107.x.x CN
Debian(5) Stretch(6/8/9/11/12) 4.9 8.209.x.x JP
Debian Stretch(13) 4.9 123.56.x.x CN
Debian(10) Buster(2-11) 4.19 47.91.x.x AE
Debian(2) Buster(12/13) 4.19 47.91.x.x AE
Debian(3) Bullseye(0-2) 5.10 8.208.x.x GB
Debian(4) Bullseye(3-6) 5.10 47.254.x.x DE
Ubuntu Server Trusty 4.4 47.95.x.x CN
Ubuntu Server Xenial 4.4 39.106.x.x CN
Ubuntu Server Bionic 4.15 39.105.x.x CN
Ubuntu Server Focal 5.4 39.106.x.x CN
Ubuntu Server Jammy 5.15 182.92.x.x CN
CentOS(8) 7(2-9) 3.10 8.213.x.x KR
CentOS(6) 8(0-5) 4.18 8.213.x.x KR
CentOS Stream 8 4.18 8.209.x.x JP
CentOS Stream 9 5.14 47.74.x.x AU
RHEL(2) Maipo(8/9) 3.10 147.129.x.x/147.139.x.x ID
RHEL(7) Ootpa(0-6) 4.18 147.129.x.x/147.139.x.x ID
RHEL Plow 5.14 147.139.x.x ID
Fedora 33 5.11 8.208.x.x GB
Fedora 34 5.16 47.115.x.x CN
Fedora 35 5.18 116.62.x.x CN
Rocky Linux(2) Green Obsidian(5/6) 4.18 47.74.x.x AU
Rocky Linux Green Obsidian(7) 4.18 47.74.x.x AU
Rocky Linux Blue Onyx(0) 5.14 8.138.x.x TH
Rocky Linux Blue Onyx(1) 5.14 8.213.x.x TH
OpenSUSE 42.3 4.4 47.250.x.x MY
OpenSUSE(3) 15(1-3) 4.12/5.3 147.139.x.x IN
OpenSUSE 15(4) 5.14 8.219.x.x SG
SUSE Enterprise 12(SP3) 4.4 47.89.x.x US
SUSE Enterprise 12(SP4) 4.4 47.89.x.x US
SUSE Enterprise 12(SP5) 4.12 47.252.x.x US
SUSE Enterprise(2) 15(SP1/SP2) 4.12/5.3 47.252.x.x/198.11.x.x US
SUSE Enterprise 15(SP3) 5.3 198.11.x.x US
Anolis OS(2) 7(7/9) 3.10 121.41.x.x/8.217.x.x CN
Anolis OS(2) 8(2/4) 4.18 8.130.x.x/39.104.x.x CN
Anolis OS(2) 8(6/8) 5.19 47.104.x.x CN
AlmaLinux(2) 8(5/6) 4.18 47.90.x.x US
AlmaLinux 8(7) 4.18 47.251.x.x US
AlmaLinux 9 5.14 47.251.x.x US
AlmaLinux 9(1) 5.14 147.139.x.x ID

means that the feature is implemented, while means that the feature is not implemented.

IP Header

Dst IP= VPS Private IP

ICMP Header

Fragmentation

Needed

Src IP= VPS Public IP

Dst IP= Attacker IP

Echo

Reply

Embedded ICMP Echo Reply

Fig. 6: ICMP error message with mistranslated padding

echo reply embedded in the received ICMP “Fragmentation
Needed” message is not the private IP of the VPS, but the
public IP of the VPS. That is, the cloud gateway device
does not translate the padding of the ICMP error message
correctly, which is required by RFC 792 [21]. This translation
error results in the kernel rejecting the ICMP error message,
thus preventing fragmentation from being triggered and may
eventually result in network session failure. We have reported
the error to affected vendors.

C. CDN Vulnerability

We obtain 301 network segments belonging to 6 CDN
vendors through whitelists. Since not all IPs in these network
segments are deployed with CDN services, we use the Zmap
tool [22] to scan the IPs with port 80/443 open, resulting in
2.92 million IPs that are potential CDN servers. We conducted
a comprehensive investigation on these IPs and summarized
the results in Table III. We find that the patching status of

TABLE III: Patching status of 6 CDN vendors

Provider Network
segment

Valid
IP

Patching
rate

Akamai 16 1,168,815 99.1%
Cloudflare 15 109,210 100%
CloudFront 142 1,418,291 99.9%
Azure CDN 98 19,499 99.7%
Fastly 19 125,389 100%
Imperva 11 76,606 99.9%

CDN vendors is extremely consistent. CDN vendors have a
high level of patch rate (over 99% of all the tested vendors)
and almost none of their servers exhibited the vulnerability.
Both as ISP, the patching status of CDN is far better than
cloud.

D. Summary of Findings for Cloud and CDN

In this section, we show the disparity in the patching of
the vulnerability among intermediary ISPs. We find that while
almost all CDN servers are well patched, cloud images are
poorly patched, with 74 out of 296 cloud images vulnerable.
Furthermore, there are discrepancies in the patching status
among different vendors. More than 50% of Alibaba Cloud
images exhibit mixed IPID assignment vulnerability, whereas
none of Google Cloud images has this vulnerability.

2024 IEEE/ACM 32nd International Symposium on Quality of Service (IWQoS)

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:47:25 UTC from IEEE Xplore. Restrictions apply.

VI. WEBSITES VULNERABILITY

Web services often expose public ports and IPs, making
them the most common targets for off-path TCP hijacking [4],
[6], [7]. In this section, we demonstrate that the mixed IPID
assignment vulnerability is prevalent in the top websites.

A. Targets

Since Alexa no longer provided its website ranking service
since May 2022, we opt for the top 1 million websites in the
Chrome User Experience Report as the dataset, which is the
most accurate list according to Ruth et al. [23]. Other two
datasets (Majestic [24] and Tranco [25]) are also tested for
comparison. We obtain IP of target websites through domain
name resolution. In case of multiple IP due to load balancing
or CDN, we choose the first IP returned by the DNS resolver
as the target and test duplicate IP only once. After excluding
duplicate IP, active server disconnections, and test timeouts,
we get 341,395 IPs belonging to 876,026 websites for Google
datasets.

B. Bypass Checks on Crafted ICMP Error Packets

We find that only 55% of tested webservers correctly ac-
cepted the crafted ICMP ”Fragmentation Needed” packet and
cleared the DF bits of subsequent packets. Various reasons may
contribute to the fragmentation failure, such as hosts ignoring
ICMP messages, the middlebox filtering, and the gateway
mistranslation (Section V-B). Here we find a vulnerability
which allows attackers to bypass checks on crafted ICMP
“Fragmentation Needed” packet by partial firewalls. We find
that sending a crafted ICMP echo request to the target server
before sending crafted ICMP “Fragmentation Needed” packet
can increase the success rate of triggering fragmentation. It
exploits the fact that although the Linux kernel does not
check whether the ICMP echo reply embedded in the ICMP
“Fragmentation Needed” message originated from itself, some
firewalls will do so. By inducing the target server to send
an ICMP echo reply that passed through the firewall, we
make the ICMP “Fragmentation Needed” packet pass some
firewall’s check, since its payload is indeed a packet sent by
the target server. With this trick, we improved the probability
of successfully triggering fragmentation to 72.8%.

C. Basic Results

Fig.7 illustrates the measurement results of Google top
1 million websites regarding the mixed IPID assignment
vulnerability. We study their patching status by a hierarchical
representation of their features. The leaf nodes denote the
fraction of websites that adopt a specific feature, whereas
the parent nodes denote the fraction of websites that adopt
both/at least one feature of their child nodes (intersection
set/union set). By manipulating the DF flag, we are able to
downgrade the IPID assignment strategy for TCP sockets and
SYN/ACK packets for 101.3k (11.6%) and 104.9k (12.0%)
websites, respectively. Among them, 93.3k (10.6%) websites
are concurrently susceptible to both downgrades, implying that
they do not implement any patches. Moreover, 62.3% of the

Challenge
ACK for

SYN/ACK Challenge
ACK for

RST

Challenge
ACK for

data

Patch 2

Patch 1

No response
for out of

window RST

No response
for out of

window data

670.7k
(76.6%)

861.3k
(98.3%)

829.2k
(94.7%)

861.7k
(98.3%)

696.2k
(79.5%)

428.7k
(48.9%)

427.6k
(48.8%)

817.2k
(93.3%)

682.8k
(77.9%)

599.6 k (68.0%)

434.1k (49.6%)23.0k (2.6%)
Vulnerable

RFC 5961
fully implemented

RFC 5961 test results IPID test results

0 IPID
for RST

484.2k
(55.3%)

SYN/ACK
IPID

downgraded

TCP socket
IPID

downgraded

104.9k
 (12.0%)

101.3k
 (11.6%)

Patched

: P(A∩B) : P(A∪B)

Fig. 7: Measurement results of Google top 1 million websites

websites have fully implemented the challenge ACK mecha-
nism and 484.2k (55.3%) of the websites have cleared their
RST IPID. By combining all features implemented, we identify
23.0k websites that are susceptible to the vulnerability with
a vulnerability rate of 2.6%. Fig.8 displays the geographical
distribution of the vulnerable websites.

Fig. 8: Geographical distribution of vulnerable websites

Our results demonstrate that the IPID assignment strategy
of SYN/ACK of 427.6k (48.8%) websites is immune to down-
grade with Patch 1 applied, and the IPID assignment strategy
of TCP sockets of 428.7k (48.9%) websites is immune to
downgrade with Patch 2 applied. Ultimately, 434.1k (49.6%)
websites have implemented at least 1 patch, with a patching
rate of 95.1% (434.1k

22.5k+434.1k × 100%).

D. Comparison of Different Rank of Websites

Fig.9 shows the vulnerability rate and patch rate of different
rank websites. For comparison, we also present the results of
the Majestic and Tranco. The results of the three datasets are
analogous and essentially exhibit the same tendency. Regard-
ing vulnerability, the proportion of websites with vulnerability
in the top 1k to the top 1M websites of the three datasets
does not surpass 3%. Although the ratio is comparatively low,
considering that there are hundreds of millions of websites on
the Internet, a 3% vulnerability rate implies that millions of
websites are susceptible to this vulnerability. We detect this

2024 IEEE/ACM 32nd International Symposium on Quality of Service (IWQoS)

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:47:25 UTC from IEEE Xplore. Restrictions apply.

1k 10k 100k 500k 1M
Google

0

1

2

3

4
Vu

ln
er

ab
ilit

y
Ra

te
(%

)

95

96

97

98

99

1k 10k 100k 500k 1M
Majestic

0

1

2

3

4

95

96

97

98

99

1k 10k 100k 500k 1M
Tranco

0

1

2

3

4

95

96

97

98

99

Pa
tc

h
Ra

te
(%

)

Vulnerability Rate Patch Rate

Fig. 9: Vulnerability rate and patch rate of different rank in 3
datasets

vulnerability in well-known websites, comprising but not re-
stricted to news (www.munet.com), communication (vk.com),
e-commerce (jd.com), etc. Regarding patch rate, websites with
higher rank typically patch more than websites with lower
rank, and the patching status deteriorates as the rank declines.

E. Summary of Findings for Websites

In this section, we study the top 1 million websites and
discover that the vulnerability is prevalent in webservers. We
identify 23k websites with vulnerable webservers in Google
dataset. Moreover, we find that the vulnerability rate and patch
rate are consistent across three website ranking datasets.

VII. DISCUSSION

A. Interference of Other OSes

We utilize the RFC 5961 implementation and IPID assign-
ment policy to distinguish among vulnerable, patched and
unaffected targets. In this section, we discuss the potential
deviation caused by other OSes, that is, whether other unaf-
fected OSes/versions manifest the same feature and lead to
false positive. We investigate the RFC 5961 implementation
and IPID assignment strategy of four prevalent server OSes
(Linux, Windows, FreeBSD, and OpenBSD), as depicted in
Table IV. The results demonstrate that other OSes have only
trivial impact on our measurement.

We can easily filter out vulnerable targets from a diversity
of operating systems and versions. Linux (3.2 and above)
is the sole OS that fully implements the challenge ACK
mechanism. Hence, RFC 5961 can be utilized to filter out
all non-linux OSes and earlier Linux (before 3.2). For the
remaining Linux versions, the only deviation arises in kernel
versions 3.2 and 3.3, which adopt a hybrid of per-socket
IPID assignment strategy and per-destination IPID assignment
strategy and produce the same IPID test results as vulnerable
machine. We consider this deviation to be negligible since
these are very early versions of Linux (released 12 years ago)
and they switched to hash-based IPID assignment after only
four months.

For Patch 1, the IPID of SYN/ACK packets for FreeBSD
is also 0 and cannot be downgraded, except for patched
Linux (5.16 and above). This is because FreeBSD cannot be
fragmented with ICMP “Fragmentation Needed” embedded
with ICMP echo reply. We exclude FreeBSD servers by

observing if DF bits can be cleared. For Patch 2, only the
patched Linux adopts the pure per-socket IPID assignment
policy, and no other systems interfere.

B. Interference of Middleboxes

Measurements are inevitably affected by middleboxes, we
summarize 4 potential impacts and possible mitigation. First,
middleboxes may introduce packet loss, which is unavoidable
in network transmission. To reduce the impact of packet
loss, we adopt multiple vantage points and repeat each test
three times. Second, middleboxes may apply specific filtering
policies. For instance, we observed that the Tsinghua campus
network filters partial challenge ACK packets. To minimize
the impact of filtering policies, we select vantage points from
different locations and networks. Third, middleboxes may filter
out forged packets, and we discuss a trick to bypass the
check on middleboxes in Section VI-B. Finally, as discussed
in Section V-B, misconfiguration of some middleboxes may
affect our measurements.

VIII. RELATED WORK

Off-Path TCP Hijacking. The first TCP hijacking attack
using predictable sequence numbers was proposed by Morris
in 1985 [26]. Mitnick successfully hijacked Shimomura’s
host in 1995 [27], raising public awareness of TCP security.
Exploiting the TCP window mechanism, Watson constructed
a blind in-window reset attack in 2003 [12], which could be
performed without knowing the exact sequence number. RFC
5961 [28] proposed the challenge ACK mechanism in 2010,
which increased the difficulty for attackers to carry out blind
in-window attacks. Qian et al. exploited firewall middleboxes
and some system counters to infer the sequence number and
constructed two off-path TCP hijacking attacks in 2012 [4],
[5]. Gilad et al. also proposed four off-path hijacking attacks in
2014 [29]. However, these attacks relied on malware running
on the victim to obtain the port number. Cao et al. and Feng
et al. constructed two pure off-path TCP hijacking attacks
exploiting challenge ACK rate limit vulnerability and mixed
IPID vulnerability in 2016 and 2020 respectively [6], [7].
Additionally, some TCP hijacking attacks occur in specific
scenarios such as NAT [3] and WiFi [9], [10], [30].
Protocol Stack Large-Scale Measurements. Durumeric et
al. proposed Zmap in 2013 [22], a scanning tool that can scan
the entire IPv4 address space within 45 minutes. Luckie et al.
measured the resilience of top websites, routers, and switches
to blind attacks in 2015 [17]. They found a surprisingly
high level of vulnerabilities in the TCP stack in use, which
illustrates the fragility of the Internet. Quach et al. tracked the
patch status of Challenge ACK rate limit vulnerability in 2016
[11]. They tracked the Top 1M websites for half a year since
the release of the patch, illustrating the TCP stack vulnerability
patching behavior of websites over time. Pan et al. measured
the deployment of inbound source address validation (ISAV)
and the reachability between arbitrary Internet nodes via the
ICMP rate limiting channel in 2023 [31].

2024 IEEE/ACM 32nd International Symposium on Quality of Service (IWQoS)

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:47:25 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: RFC 5961 implementation and IPID assignment for four mainstream server OSes

OS RFC 5961 RST IPID SYN/ACK IPID TCP socket IPID

Linux (prior to 3.2) Not implemented 0 0/per-destination per-socket/per-destination
Linux (3.2-3.3) Fully implemented 0 0/per-destination per-socket/per-destination
Linux (3.4-4.17) Fully implemented hash-based 0/hash-based per-socket/hash-based

Linux (4.18-5.15) Fully implemented 0 0/hash-based per-socket/hash-based
Linux (5.16 and above) Fully implemented 0 0/random per-socket

Windows Partially implemented hash-based hash-based hash-based
Earlier FreeBSD ∗ Partially implemented random random random

FreeBSD ∗ Partially implemented 0 0 0
OpenBSD∗ Partially implemented random random random

Old Linux/Windows Not implemented global global global

* FreeBSD and OpenBSD cannot be fragmented with ICMP “Fragmentation Needed” embedded with ICMP echo reply.

IX. CONCLUSION

In this work, we study a critical protocol stack vulnerability
within the scope of the Linux ecosystem. After a horizontal
study on the vulnerability against different Linux components,
we discover that there is a substantial delay in the patching of
the stack vulnerability, and the patching status varies among
different ISPs and vendors. We find that the kernel and
distributions do not release patches promptly, with delays of
up to 2 years. And while all CDN vendors are well patched, we
find more than 1/3 of the images provided by the cloud vendors
are vulnerable. The patching status of different cloud vendors
also varies greatly. Besides, we identify 22.5k websites that
still have vulnerability among the top 1 million websites.

REFERENCES

[1] J. Knockel and J. R. Crandall, “Counting packets sent between arbitrary
internet hosts,” in 4th USENIX Workshop on Free and Open Communi-
cations on the Internet (FOCI), 2014.

[2] G. Alexander, A. M. Espinoza, and J. R. Crandall, “Detecting tcp/ip
connections via ipid hash collisions,” Proceedings on Privacy Enhancing
Technologies, vol. 2019, no. 4, 2019.

[3] X. Feng, Q. Li, K. Sun, Z. Qian, G. Zhao, X. Kuang, C. Fu, and K. Xu,
“Off-Path network traffic manipulation via revitalized ICMP redirect
attacks,” in 31st USENIX Security Symposium (USENIX Security), 2022,
pp. 2619–2636.

[4] Z. Qian, Z. M. Mao, and Y. Xie, “Collaborative tcp sequence number
inference attack: how to crack sequence number under a second,” in
Proceedings of the 2012 ACM conference on Computer and communi-
cations security (CCS), 2012, pp. 593–604.

[5] Z. Qian and Z. M. Mao, “Off-path tcp sequence number inference attack-
how firewall middleboxes reduce security,” in 2012 IEEE Symposium on
Security and Privacy (SP). IEEE, 2012, pp. 347–361.

[6] Y. Cao, Z. Qian, Z. Wang, T. Dao, S. V. Krishnamurthy, and L. M.
Marvel, “Off-path tcp exploits: Global rate limit considered dangerous,”
in 25th USENIX Security Symposium (USENIX Security), 2016, pp. 209–
225.

[7] X. Feng, C. Fu, Q. Li, K. Sun, and K. Xu, “Off-path tcp exploits
of the mixed ipid assignment,” in Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security, 2020,
p. 1323–1335.

[8] X. Feng, Q. Li, K. Sun, K. Xu, B. Liu, X. Zheng, Q. Yang, H. Duan,
and Z. Qian, “Pmtud is not panacea: Revisiting ip fragmentation attacks
against tcp,” in Proceedings of the Network & Distributed System
Security Symposium (NDSS), 2022, pp. 24–28.

[9] X. Feng, Q. Li, K. Sun, Y. Yang, and K. Xu, “Man-in-the-middle attacks
without rogue ap: When wpas meet icmp redirects,” in 2023 IEEE
Symposium on Security and Privacy (SP), 2022, pp. 694–709.

[10] D. Schepers, A. Ranganathan, and M. Vanhoef, “Framing frames:
Bypassing wi-fi encryption by manipulating transmit queues,” in 32th
USENIX Security Symposium (USENIX Security), 2023.

[11] A. Quach, Z. Wang, and Z. Qian, “Investigation of the 2016 linux tcp
stack vulnerability at scale,” Proceedings of the ACM on Measurement
and Analysis of Computing Systems, vol. 1, no. 1, pp. 1–19, 2017.

[12] P. Watson, “Slipping in the window: Tcp reset attacks,” 2004.

[13] J. Postel, “Internet protocol,” Internet Requests for Comments, Internet
Engineering Task Force, document RFC 791, Sep. 1981. [Online].
Available: http://www.rfc-editor.org/rfc/rfc791.txt

[14] E. Dumazet, “ipv4: tcp: send zero ipid in synack messages,”
2022. [Online]. Available: https://lore.kernel.org/all/20220126200518.
990670-2-eric.dumazet@gmail.com/

[15] ——, “ipv4: avoid using shared ip generator for connected sockets,”
2022. [Online]. Available: https://lore.kernel.org/all/20220126200518.
990670-3-eric.dumazet@gmail.com/

[16] “Usage statistics of operating systems for websites.” [Online]. Available:
https://w3techs.com/technologies/overview/operating system

[17] M. Luckie, R. Beverly, T. Wu, M. Allman, and k. claffy, “Resilience
of deployed tcp to blind attacks,” in Proceedings of the 2015 Internet
Measurement Conference (IMC), 2015, pp. 13–26.

[18] E. Dumazet, “ipv4: tcp: send zero ipid for rst and ack sent
in syn-recv and time-wait state,” 2018. [Online]. Available: https:
//lore.kernel.org/all/20180822203045.76928-1-edumazet@google.com/

[19] R. S. Raman, A. Stoll, J. Dalek, R. Ramesh, W. Scott, and R. Ensafi,
“Measuring the deployment of network censorship filters at global
scale.” in Proceedings of the Network & Distributed System Security
Symposium (NDSS), 2020.

[20] “Google ip address ranges.” [Online]. Available: https://www.gstatic.
com/ipranges/cloud.json

[21] J. Postel, “Internet control message protocol,” Internet Requests for
Comments, Internet Engineering Task Force, document RFC 792, Sep.
1981. [Online]. Available: https://www.rfc-editor.org/rfc/rfc792.txt

[22] Z. Durumeric, E. Wustrow, and J. A. Halderman, “ZMap: Fast internet-
wide scanning and its security applications,” in 22th USENIX Security
Symposium (USENIX Security), 2013.

[23] K. Ruth, D. Kumar, B. Wang, L. Valenta, and Z. Durumeric, “Top-
pling top lists: Evaluating the accuracy of popular website lists,” in
Proceedings of the 22nd ACM Internet Measurement Conference, 2022,
pp. 374–387.

[24] “The majestic million.” [Online]. Available: https://majestic.com/reports/
majestic-million

[25] V. L. Pochat, T. van Goethem, S. Tajalizadehkhoob, M. Korczynski,
and W. Joosen, “Tranco: A research-oriented top sites ranking hardened
against manipulation,” in 26th Annual Network and Distributed System
Security Symposium, (NDSS), 2019.

[26] R. T. Morris, “A weakness in the 4.2 bsd unix tcp/ip software,” 1985.
[27] T. Shimomura and J. Markoff, Takedown: the pursuit and capture of

Kevin Mitnick, America’s most wanted computer outlaws-by the man
who did it. Hyperion Press, 1995.

[28] R. R. Stewart, M. Dalal, and A. Ramaiah, “Improving tcp’s robustness
to blind in-window attacks,” Internet Requests for Comments, Internet
Engineering Task Force, document RFC 5961, Aug. 2010. [Online].
Available: https://www.rfc-editor.org/rfc/rfc5961.txt

[29] Y. Gilad and A. Herzberg, “Off-path tcp injection attacks,” ACM
Transactions on Information and System Security (TISSEC), vol. 16,
no. 4, pp. 1–32, 2014.

[30] Y. Yang, X. Feng, Q. Li, K. Sun, Z. Wang, and K. Xu, “Exploiting
sequence number leakage: Tcp hijacking in nat-enabled wi-fi networks,”
in Network and Distributed System Security (NDSS) Symposium, 2024.

[31] L. Pan, J. Yang, L. He, Z. Wang, L. Nie, G. Song, and Y. Liu, “Your
router is my prober: Measuring ipv6 networks via icmp rate limiting side
channels,” in Proceedings of the Network & Distributed System Security
Symposium (NDSS), 2023.

2024 IEEE/ACM 32nd International Symposium on Quality of Service (IWQoS)

Authorized licensed use limited to: Tsinghua University. Downloaded on January 13,2025 at 15:47:25 UTC from IEEE Xplore. Restrictions apply.

